Lesson 16: Data fitting, interpolation

New concepts:

Data fitting as a linear algebra problem
Linear regression
Normal system solution to least squares problem

Interpolation as linear algebra problem

Linear regression: the calculus approach as a linear algebra projection

In many scientific fields the problem of determining the straight line y(z) = ag + a1z,
that best approximate data D ={(x;,v;),i=1,...,m} arises. The problem is to find the
coefficients ag, a1, and this is referred to as the linear regression problem.

The calculus approach: Form sum of squared differences between y(x;) and y;

S(ao, ax) (a0 + a1z — y;)*

Ms
I
NE

and seek (ag, a1) that minimize S(ag, a1) by solving the equations

S — 3 3
%:szz (a0+a1xi_yi)20@mao+<; ZE@'>CL1:; Yi

1=1

%inZZ (ap+ arx; — —0<:><Z $Z>CL0+<Z x?)al—Z:myz

1=1

Geometry of linear regression

e Form a vector of errors with components e¢; = y(x;) — z;. Recognize that y(z;) is a linear
combination of 1 and z; with coefficients ag, ay, or in vector form

1 I a
e=| @ (O)—y—(l r)a—y=Aa—y
ai
1 x,,

e The norm of the error vector ||e|| is smallest when Aa is as close as possible to y. Since
Aa is within the column space of C(A), Aa € C(A), the required condition is for e to
be orthogonal to the column space

elC(A)= AT :(;§>e:< ;;Z):(8 >:0

Ale=0& AT(Aa—y)=0& (ATA)a= Ay

Yy
eLAa C(A)

Linear regression example: Solve (ATA)a= ATy < Na =1, to find best linear fit

1. Generate some data on a line and perturb it by some random quantities

octave> m=1000; x=(0:m-1)/m; a0=2; al=3; yex=al+al*x; y=(yex+rand(1,m)-0.5)°;

octave>

2. Form the matrices A, N = AT A, vector b= A’y

octave> A=ones(m,2); A(:,2)=x(:); N=A’*%A; b=A’x*y;

octave>
3. Solve the system Na = b, and form the linear combination y = Aa closest to vy

octave> a=N\b; disp(a’); ytilde=Ax*a;
2.0182 2.9738

octave>

Linear regression example result

e Plot the perturbed data (black dots), the result of the linear regression (green circles), as
well as the line used to generate yex (red line)

octave> plot(x,y,”.k’,x,ytilde,’0g’,x,yex,’r’); title(’Linear regression example’);
xlabel(’x?); ylabel(’y,yex,ytilde’); cd /home/student; print data.eps;

Linear regression example

U, Yex, YTl 1ae

0 0.2 0.4 0.6 0.8 1

Quadratic regression example

e The key observation is that the matrix A has columns obtained by evaluating the functions
1, x at the values 1, x9, ..., x,,. This leads to easy extension to data fitting to higher
degree polynomials, for instance a quadratic

e=(1 x x?)Ja—y=Aa—y,min|e| = (ATA)a=ATy= Na=>b

octave> m=1000; x=(0:m-1)/m; a0=2; al=3; a2=-5.; yex=aO+al*x+a2*x.~2; y=(yex+rand(1l,m)-
0.5)7;

octave> A=ones(m,3); A(:,2)=x(:); A(:,3)=x.72; N=A’%A; b=A’x*y;
octave> a=N\b;
octave> ytilde=Ax*a; disp(a’);
2.0239 2.8873 -4.8881
octave> disp(norm(y-ytilde) /norm(y)/m);
1.4494e-04

octave>

Quadratic regression result

e Plot the perturbed data (black dots), the result of the quadratic regression (green circles),

as well as the parabola used to generate yex (red line)

octave> plot(x,y,’.k’,x,ytilde,’0g’,x,yex,’r?); title(’Quadratic regression example’);
xlabel(’x?); ylabel(’y,yex,ytilde’); cd /home/student; print data.eps;
octave>

Quadratic regression example

Y, Yex, 4t lde

0 0,2 0.4 0.6 0.8 1

Transforming non-linear data dependencies

Up to now we have considered linear data fitting

When the data conforms to a non-linear law, it is often possible to transform the problem
into a linear dependency

Example: Find best fit of coefficients A, £, within Arrhenius law k= Aexp(—FE,/ (RT))
to measured data D={(T}, k;),i=1,...,m}.

Note that in the k(T") law, k depends linearly on A, but nonlinearly on F,. By taking the
natural logarithm, and setting y=Ink, x =1/(RT), ap=1In A, a1 = —FE,, we obtain a
linear dependence

y=Ink=InA—-E,x=a9+a1x

of the same type as before

Interpolation

Definition. The polynomial interpolant of data D = {(x;, y;),i =1, ..., m} with x; # x; if
i+ j is a polynomial of degree m — 1

Pm_1(x)=ag+a1x+ ...+ ap_12™m 1

that satisfies the conditions p,, —1(z;) =1vy;, i=1,...,m.

e We can apply the same approach, and formulate the normal equation system. In this
particular case, the error e can be made zero.

octave> m=4; x=(0:m-1)’; a0=2; al=3; a2=-5.; a3=-1; yex=al+al*x+a2*x. 2+a3*x."3;

octave> A=ones(m,m); A(:,2)=x(:); A(:,3)=x."2; A(:,4)=x."3; N=A’*A; b=A’x*yex;
octave> a=N\b; disp(a’);
2.00000 3.00000 -5.00000 -1.00000

Note that the coefficients used to generate the data are recovered exactly.

