- Review of main linear algebra problems and their solution by a particular matrix factorization
- The eigenvalue problem

Solving the main problems of linear algebra by matrix factorizations

- Compute the coordinates in a new basis, also known as *solving a linear system* Ax = Ib when $A \in \mathbb{R}^{m \times m}$ square, non-singular
 - 1. Compute LU factorization, LU = A
 - 2. Solve Ly = b by forward substitution
 - 3. Solve Ux = y by backward substition
- Compute the closest approximation to a high dimensional vector $b \in \mathbb{R}^m$ by linear combination of n vectors $a_1, ..., a_n \in \mathbb{R}^m$, $A = (a_1 \dots a_n)$, also known as the *least squares problem*
 - 1. Compute QR factorization, QR = A. The projector onto C(A) = C(Q) is $P_Q = QQ^T$
 - 2. Projection of b onto C(A) is QQ^Tb . Set this equal to a linear combination of columns of A, $Ax = QQ^Tb$, Since A = QR, solve the triangular system $Rx = Q^Tb$ to find x
- For a square matrix $A \in \mathbb{C}^{m \times m}$ find those non-zero vectors whose directions are not changed by multiplication by A, $Ax = \lambda x$, known as the *eigenvalue problem*.

• Consider the eigenproblem $Ax = \lambda x$ for $A \in \mathbb{C}^{m \times m}$ with $\lambda \in \mathbb{C}$, and $x \in \mathbb{C}^m$. Rewrite as

$$Ax = \lambda x \Rightarrow (A - \lambda I)x = 0.$$

Since $x \neq 0$, deduce that a solution to the eigenproblem exists only if $A - \lambda I$ is singular or

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

• Investigate form of $det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2m} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} - \lambda \end{vmatrix}$$

• Recall algebraic definition of a determinant as sum of products of index permutations to deduce that $det(A - \lambda I) = 0$ is an m^{th} degree polynomial in λ , defined as the characteristic polynomial of $A \in \mathbb{C}^{m \times m}$

$$p_m(\lambda) = \det(\boldsymbol{A} - \lambda \boldsymbol{I})$$