- Review of matrix decompositions:
 - LU = A factorization (Gaussian elimination), used to solve linear systems (compute coordinates in new basis)
 - QR = A factorization (Gram-Schmidt algorithm), used to solve least squares problems (compute best possible approximation)
 - $AX = X\Lambda$, eigenproblem. If X nonsingular, eigendecomposition $X\Lambda X^{-1} = A$ (reduction to diagonal form)
- Additional matrix decompositions:
 - $QTQ^T = A$, Schur decomposition (reduction to triangular form)
 - $PJP^{-1} = A$, Jordan decomposition (reduction to disjoint eigenspaces)
 - $U \Sigma V^T = A$, singular value decomposition (SVD, reduction to diagonal form, but with different bases in the domain, codomain)

Theorem. (Schur) Any square matrix $A \in \mathbb{R}^{m \times m}$ can be decomposed as $A = QTQ^T$, with $T \in \mathbb{R}^{m \times m}$ upper triangular ($t_{ij} = 0$ for i > j) and $Q \in \mathbb{R}^{m \times m}$ orthogonal ($QQ^T = I$).

Proof. By induction. Consider the eigenvalue relationship $Ax = \lambda x$ with ||x|| = 1. Form an orthogonal matrix $U = (x \ u_2 \ \dots \ u_m)$. Then

$$\boldsymbol{U}^{T}\boldsymbol{A}\boldsymbol{U} = \begin{pmatrix} \boldsymbol{x}^{T} \\ \boldsymbol{u}_{2}^{T} \\ \vdots \\ \boldsymbol{u}_{m}^{T} \end{pmatrix} (\boldsymbol{A}\boldsymbol{x} \boldsymbol{A}\boldsymbol{u}_{2} \dots \boldsymbol{A}\boldsymbol{u}_{m}) = \begin{pmatrix} \boldsymbol{x}^{T} \\ \boldsymbol{u}_{2}^{T} \\ \vdots \\ \boldsymbol{u}_{m}^{T} \end{pmatrix} (\boldsymbol{\lambda}\boldsymbol{x} \boldsymbol{A}\boldsymbol{u}_{2} \dots \boldsymbol{A}\boldsymbol{u}_{m}) = \begin{pmatrix} \boldsymbol{\lambda} \boldsymbol{w} \\ \boldsymbol{0} \boldsymbol{B} \end{pmatrix}.$$

By induction hypothesis $B = VSV^T$ with S triangular, V orthogonal so

$$\boldsymbol{U}^{T}\boldsymbol{A}\boldsymbol{U} = \left(\begin{array}{cc} \lambda & \boldsymbol{w} \\ 0 & \boldsymbol{V}\boldsymbol{S}\boldsymbol{V}^{T} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & \boldsymbol{V} \end{array}\right) \left(\begin{array}{cc} \lambda & \boldsymbol{w} \\ 0 & \boldsymbol{S} \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & \boldsymbol{V} \end{array}\right)^{T} \Rightarrow \boldsymbol{Q} = \boldsymbol{U} \left(\begin{array}{cc} 1 & 0 \\ 0 & \boldsymbol{V} \end{array}\right)$$

- A non-defective square matrix can be diagonalized $oldsymbol{X}^{-1}oldsymbol{A}oldsymbol{X}=oldsymbol{\Lambda}$
- Reduction to diagonal form has shown to be very useful, e.g., when solving ODE systems
- Recall that computation of a matrix inverse is costly in general, but simple for orthogonal matrices, Q^TQ = I

Definition. A matrix is unitarily diagonalizable if it admits an complete, orthonormal set of eigenvectors.

Definition. A matrix $A \in \mathbb{R}^{m \times m}$ is normal if $A^T A = A A^T$, or if $A \in \mathbb{C}^{m \times m}$, $A^* A = A A^*$.

- Corollaries of the Schur theorem:
 - orthogonal matrices are unitarily diagonalizable
 - symmetric matrices are unitarily diagonalizable
 - skew-symmetric matrices are unitarily diagonalizable
 - normal matrices are unitarily diagonalizable