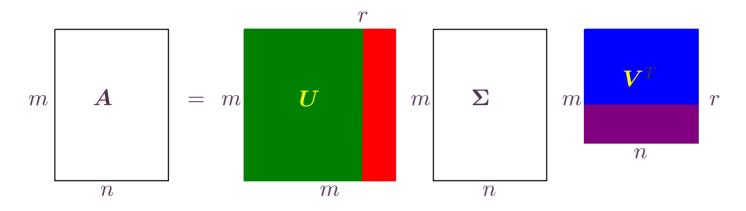
- The Singular Value Decomposition:
 - Encapsulates all aspects of a matrix (hence of a linear transformation)
 - Can be used to solve the basic problems of linear algebra
 - Is widely used in data reduction

- Singular value decomposition (SVD), for any $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^T$, with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma \in \mathbb{R}^{m \times n}_+$ diagonal
- The SVD is determined by eigendecomposition of A^TA , and AA^T
 - $A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V (\Sigma^T \Sigma) V^T$, an eigendecomposition of $A^T A$. The columns of V are eigenvectors of $A^T A$ and called *right singular vectors* of A
 - $AA^T = (U\Sigma V^T)(U\Sigma^T V^T)^T = U(\Sigma\Sigma^T)U^T$, an eigendecomposition of AA^T . The columns of U are eigenvectors of AA^T and called *left singular vectors* of A
 - The matrix Σ has zero elements except for the diagonal that contains σ_i , the singular values of A computed as the square roots of the eigenvalues of $A^T A$ (or $A A^T$)

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{1} & & & \\ & \sigma_{2} & & & \\ & & \ddots & & \\ & & & \sigma_{r} & & \\ & & & & \sigma_{r} & & \\ & & & & & \ddots \end{pmatrix} \in \mathbb{R}_{+}^{m \times n}$$

• The SVD of $A \in \mathbb{R}^{m \times n}$ reveals: rank(A), bases for $C(A), N(A^T), C(A^T), N(A)$



$$\boldsymbol{A} = (\boldsymbol{u}_1 \ \dots \ \boldsymbol{u}_r \ \boldsymbol{u}_{r+1} \ \dots \ \boldsymbol{u}_m) \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r & \\ & & & 0 & \\ & & & \ddots \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_1^T \\ \vdots \\ \boldsymbol{v}_r^T \\ \boldsymbol{v}_{r+1}^T \\ \vdots \\ \boldsymbol{v}_n^T \end{pmatrix}$$

• Change of coordinates (solving a linear system) $m{A}m{x} = m{b}$, $m{A} \in \mathbb{R}^{m imes m}$, $m{x}, m{b} \in \mathbb{R}^m$

LU solution	Operations (flops)	SVD solution	Operations (flops)
Factor $LU = A$	$\mathcal{O}\left(\frac{2m^3}{3}\right)$	Factor $\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}\!=\!\boldsymbol{A}$	$\mathcal{O}(11m^3)$
Forward substitution $Ly = b$	$\mathcal{O}\left(\frac{m^2}{2}\right)$	Compute $oldsymbol{c} = oldsymbol{U}^T oldsymbol{b}$	$\mathcal{O}(m^2)$
Back substitute $oldsymbol{U} x = oldsymbol{y}$	$\mathcal{O}\left(\frac{m^2}{2}\right)$	Compute $d\!=\!\Sigma^{-1}c$	$\mathcal{O}(m)$
		$d_i = c_i / \sigma_i$, $i = 1,, m$	
		Compute $x{=}Vd$	${\cal O}(m^2)$

flop = floating point operation, defined as an addition and multiplication

• SVD can be used for solving a linear system, but is generally more expensive than the standard LU factorization (Gaussian elimination)

• Find closest approximation to $b \in \mathbb{R}^m$ by linear combination of column vectors of $A \in \mathbb{R}^{m \times n}$, m > n, $\min_{x} \|b - Ax\|$

QR solution	Operations (flops)	SVD solution	Operations (flops)
Factor $QR\!=\!A$	$\mathcal{O}\left(2mn^2-\frac{2n^3}{3}\right)$	Factor $oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T \!=\! oldsymbol{A}$	$\mathcal{O}(2mn^2+11n^3)$
Compute $oldsymbol{c} = oldsymbol{Q}^T oldsymbol{b}$	$\mathcal{O}(mn)$	Compute $oldsymbol{c} = oldsymbol{U}^T oldsymbol{b}$	$\mathcal{O}(mn)$
Back substitute ${old R} x = c$	$\mathcal{O}\left(\frac{n^2}{2}\right)$	Compute $d\!=\!\Sigma^+c$	$\mathcal{O}(n)$
		$d_i = c_i / \sigma_i$, $i = 1,, n$	
		Compute ${m x}{=}{m V}{m d}$	$\mathcal{O}(n^2)$

flop = floating point operation, defined as an addition and multiplication

• SVD can be used for solving a least squares problem, but is generally more expensive than the standard QR factorization (Gram-Schmidt orthogonalization)