Another realistic application of linear algebra arises in search engines

- Markov matrices and Markov chains
- PageRank algorithm, Brin-Page algorithm

- Motivational problems:
 - 1. Urban-suburban populations
 - Let $p_{k,1}$, $p_{k,2}$ denote the average urban, suburban populations in year k
 - People move from city to suburb with probability $r_{2,1}$
 - People move from suburb to city with probability $r_{1,2}$
 - Next year average population is expected to be

$$p_{k+1,1} = (1 - r_{2,1})p_{k,1} + r_{1,2}p_{k,2}$$

$$p_{k+1,2} = r_{2,1}p_{k,1} + (1 - r_{1,2})p_{k,2}$$

- $\,$ In matrix form, with ${m p}_k, {m p}_{k+1}\!\in\!\mathbb{R}^2$, ${m R}\!\in\!\mathbb{R}^{2\times 2}$

$$\boldsymbol{p}_{k+1} = \begin{pmatrix} p_{k+1,1} \\ p_{k+1,2} \end{pmatrix} = \boldsymbol{R} \boldsymbol{p}_k = \begin{pmatrix} 1 - r_{2,1} & r_{1,2} \\ r_{2,1} & 1 - r_{1,2} \end{pmatrix} \begin{pmatrix} p_{k,1} \\ p_{k,2} \end{pmatrix}$$

Markov matrices, Markov chains: Predator-prey-vegetation example

- 2. Wolves eat sheep and grass, sheep eat grass, grass uses nutrients from corpses, manure
- Let $p_{k,1}$, $p_{k,2}$, $p_{k,3}$ denote the average wolf, sheep, grass populations in year k
- Wolves catch sheep with probability r_{12} , consume fraction r_{13} of grass
- Sheep consume fraction r_{23} of grass
- Grass growth enhanced with probability r_{31} of wolf population, r_{32} of sheep population
- Next year average population is expected to be

$$p_{k+1,1} = (1 - r_{31})p_{k,1} + r_{12}p_{k,2} + r_{13}p_{k,3}$$

$$p_{k+1,2} = p_{k,1} + (1 - r_{32} - r_{12})p_{k,2} + r_{23}p_{k,3}$$

$$p_{k+1,3} = r_{31}p_{k,1} + r_{32}p_{k,2} + (1 - r_{13} - r_{23})p_{k,3}$$

– In matrix form, with $oldsymbol{p}_k,oldsymbol{p}_{k+1}\!\in\!\mathbb{R}^3$, $oldsymbol{R}\!\in\!\mathbb{R}^{3 imes3}$

$$\boldsymbol{p}_{k+1} = \begin{pmatrix} p_{k+1,1} \\ p_{k+1,2} \\ p_{k+1},3 \end{pmatrix} = \boldsymbol{R} \boldsymbol{p}_k = \begin{pmatrix} 1 - r_{21} - r_{31} & r_{12} & r_{13} \\ r_{21} & 1 - r_{32} - r_{12} & r_{23} \\ r_{31} & r_{32} & 1 - r_{12} - r_{23} \end{pmatrix} \begin{pmatrix} p_{k,1} \\ p_{k,2} \\ p_{k,3} \end{pmatrix}$$

Definition. A Markov matrix $\mathbf{R} \in \mathbb{R}^{m \times m}_+$ (a.k.a. stochastic matrix) is a matrix with positive components and column vectors of unit 1-norm, $\|\mathbf{r}_j\|_1 = \sum_{i=1}^m r_{ij} = 1$. The matrix entry r_{ij} is the probability of transition from state j to state i.

Definition. A Markov chain { $p_k \in \mathbb{R}^m, k = 0, 1, ...$ } (a.k.a. probability vectors) is a sequence of vectors generated by repeated application of a Markov matrix from the initial vector p_0

$$\boldsymbol{p}_{k+1} = \boldsymbol{R} \boldsymbol{p}_k$$

Definition. The steady state of a Markov chain (if it exists) is the probability vector x for which

$$x = Rx$$

• Note: The steady state of a Markov chain is simply the eigenvector associated with eigenvalue $\lambda\,{=}\,1$

Theorem. If $\mathbf{R} \in \mathbb{R}^{m \times m}_+$ is a Markov matrix there exists $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{R}\mathbf{x} = \mathbf{x}$. If $r_{i,j} > 0$, \mathbf{x} is unique.

- Given m interlinked webpages, rank them in order of "importance"
- Let x_i denote the importance score of page i, form vector $oldsymbol{x} \in \mathbb{R}^m$
- Use the link structure of the web to determine "importance"
- "Importance" (PageRank 1993):
 - 1. x_i number of links to page *i* (does not take into account importance of source)
 - 2. x_i sum of importance scores of all pages linking to i
 - 3. x_i sum of importance scores of pages that link to i divided by the number of outgoing links on each page

$$x_i = \sum_{j=1}^m a_{i,j} \frac{x_j}{n_j} = \sum_{j=1}^m r_{i,j} x_j \Rightarrow \boldsymbol{x} = \boldsymbol{R} \boldsymbol{x}$$

with $a_{i,j} = 1$ if j links to i, $a_{i,j} = 0$ otherwise (adjacency matrix)

$$r_{k,j} = \frac{1}{n_j}$$

• Brin-Page $P = 0.85 R + \frac{0.15}{m} \operatorname{ones}(m)$ (Stochastic matrices form a vector space!)

• Analyze importance of node within a foodchain

