CHAPTER 1

LINEAR COMBINATIONS

VECTORS AND MATRICES

1. Quantities

1.1. Numbers

Most scientific disciplines introduce an idea of the amount of some entity or property of interest. Furthermore,
the amount is usually combined with the concept of a number, an abstraction of the observation that the two sets
A={Mary, Jane, Tom} and B={apple, plum, cherry} seem quite different, but we can match one distinct person to
one distinct fruit as in {Mary—plum, Jane—apple, Tom—cherry}. In contrast we cannot do the same matching
of distinct persons to a distinct color from the set {red, green}, and one of the colors must be shared between two
persons. Formal definition of the concept of a number from the above observations is surprisingly difficult since it
would be self-referential due to the apperance of the numbers “one” and “two”. Leaving this aside, the key concept
is that of quantity of some property of interest that is expressed through a number. Several types of numbers have
been introduced in mathematics to express different types of quantities, and the following will be used throughout
this text:

N. The set of natural numbers, N={0,1,2,3,...}, infinite and countable, N, ={1,2,3,...};
Z. The set of integers, Z={0,+1,+2,+3,...}, infinite and countable;

Q. The set of rational numbers Q={p/q,p€Z,q€IN.}, infinite and countable;

R. The set of real numbers, infinite and not countable;

C. The set of complex numbers, C={x+iy,x,y €R}.

A computer has a finite amount of memory, hence cannot represent all numbers, but rather a subset of the above
sets. Furthermore, computers internally use binary numbers composed of binary digits, or bits. Many computer
number types are defined for specific purposes, and are often encountered in applications such as image represen-
tation or digital data acquisition. Here are the main types.

Subsets of N. The number types uint8, uint16, uint32, uint64 represent subsets of the natural numbers
(unsigned integers) using 8,16,32, 64 bits respectively. An unsigned integer with b bits can store a natural
number in the range from 0 to 22— 1. Two arbitrary natural numbers, written as Vi, j€ N can be added and
will give another natural number, k=i+ j€IN. In contrast, addition of computer unsigned integers is only
defined within the specific range 0 to 2°- 1.

octave] i=uint8(15); j=uint8(10); k=i+j

k = 25
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‘ octave] i=uint8(150); j=uint8(200); k=i+j ‘

k = 255

‘ octave] k=i-j ‘

k=20

‘ octave] ‘

Subsets of Z. The number types int8, int16, int32, int64 represent subsets of the integers. One bit is used
to store the sign of the number, so the subset of Z that can be represented is from 1 —2b-Ttg 2b-1_q

‘octave] i=int8(100); j=int8(101); k=i+j ‘

k = 127

‘ octave] k=i-j ‘

k=-1

‘ octave] ‘

Subsets of Q,R,C. Computers approximate the real numbers through the set [F of floating point numbers.
Floating point numbers that use b= 32 bits are known as single precision, while those that use b=64 are
double precision. A floating point number x € [F is stored internally as x =+.B1B;...Bp, x ptbibzbe y here B;,

i=1,...,mare bits within the matissa of length m, and b;, j=1,..., e are bits within the exponent, along with

signs * for each. The default number type is usually double precision, more concisely referred to as simply
double. Common constants such as e, 7 are predefined as double, can be truncated to single, and the

number of displayed decimal digits is controlled by format.

‘ octave] format long; disp([e pi]) ‘

2.718281828459045  3.141592653589793

‘octave] disp([single(e) single(pi)]) ‘

2.7182817  3.1415927

‘ octave] ‘

The approximation of the reals R by the floats [F is characterized by: realmax, the largest float, realmin
the smallest float in absolute value, and eps known as machine epsilon. Machine epsilon highlights the
differences between floating point and real numbers since it is defined as the largest number e €[F that
satisfies T+e=1. If €€ER of course 1+¢e=1implies £=0, but floating points exhibit “granularity”, in the sense
that over a unit interval there are small steps that are indistinguishable from zero due to the finite number
of bits available for a float. Machine epsilon is small, and floating point errors can usually be kept under
control. Keep in mind that perfect accuracy is a mathematical abstraction, not encountered in nature. In
fields as sociology or psychology 3 digits of accuracy are excellent, in mechanical engineering this might
increase to 6 digits, or in electronic engineering to 8 digits. The most precisely known physical constant is
the Rydberg constant known to 12 digits. The granularity of double precision expressed by machine epsilon
is sufficient to represent natural phenomena.

‘ octave] format short; disp([realmin realmax eps l+eps]) ‘

2.2251e-308 1.7977e+308 2.2204e-16 1.0000e+00

‘ octave] ‘

Within the reals certain operations are undefined such as 1/0. Special float constants are defined to handle
such situations: Inf is a float meant to represent infinity, and NaN (“not a number”) is meant to represent
an undefinable result of an arithmetic operation.
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‘ octave] warning("off"); disp([Inf 1/0 2*realmax NaN Inf-Inf Inf/Inf]) ‘

Inf Inf Inf NaN NaN NaN

‘ octave] ‘

Complex numbers z€ C are specified by two reals, in Cartesian form as z=x+iy, x, y€R or in polar form as
z=pe®, p,O€R, p=0. The computer type complex is similarly defined from two floats and the additional
constant | is defined to represent /=1 =i=e”% Functions are available to obtain the real and imaginary
parts within the Cartesian form, or the absolute value and argument of the polar form.

‘ octave] zl=complex(1,1); z2=complex(1l,-1); disp([z1+z2 z1/2z2]) ‘

2+01 O+ 1i
‘octave] disp([real(zl) real(z2) real(zl+z2) real(z1/z2)]) ‘

1 1 2 0

‘octave] disp([imag(z1l) imag(z2) imag(zl+z2) imag(z1/z2)]) ‘

1 -1 0 1
‘octave] disp([abs(zl) abs(z2) abs(zl1+z2) abs(z1/z2)]) ‘

1.4142 1.4142  2.0000 1.0000

‘octave] disp([larg(zl) arg(z2) arg(zl+z2) arg(zl/z2)]) ‘

Care should be exercised about the cummulative effect of many floating point errors. For instance, in an “irrational”
numerical investigation of Zeno's paradox, one might want to compare the distance traversed Sy by step sizes that
are scaled by 1/ starting from one to Ty, that traversed by step sizes that are scaled by r starting from 7~V

1 1
SN=1l+—+—+:--+
T

— In=—x+
2 aN’ T

In the reals the above two expressions are equal Sy = Ty, but this is not verfied for all N when using floating point
numbers.

‘octave] N=10; S=pi.~(0:-1:-N); T=pi."(-N:1:0); sum(S)==sum(T) ‘

ans = 1

‘octave] N=30; S=pi.~(0:-1:-N); T=pi."(-N:1:0); sum(S)==sum(T) ‘

ans = 0

‘ octave] ‘

In the above numerical experiment a==b expresses an equality relationship which might evaluate as true denoted
by 1, or false denoted by 0.

‘octave] disp([1==1 1==2]) ‘

1 0

‘ octave] ‘

The above was called an “irrational” investigation since in Zeno's original paradox the scaling factor was 2 rather
than 7, and given the binary representation used by floats equality always holds.

‘octave] N=30; S=2.~(0:-1:-N); T=2.~(-N:1:0); sum(S)==sum(T) ‘

ans = 1
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octave]

1.2. Quantities described by a single number

The above numbers and their computer approximations are sufficient to describe many quantities encountered in
applications. Typical examples include:

« the position x€R of a point on the unit line segment [0, 1], approximated by the floating point number x€[F,
to within machine epsilon precision, | x-x| <€

« the measure of resistance to change of the rate of motion known as mass, meR, m>0;

« the population of a large community expressed as a float p€[F, even though for a community of individuals
the population is a natural number, as in “the population of the United States is p = 328.2E6, i.e., 328.2
million”.

In most disciplines, there is a particular interest in comparison of two quantities, and to facilitate such comparison
a common reference is used known as a standard unit. For measurement of a length L, the meter £=1m is a standard
unit, as in the statement L=10m, that states that L is obtained by taking the standard unit ten times, L=10¢. The
rules for carrying out such comparisons are part of the definition of real and rational numbers. These rules are
formalized in the mathematical definition of a field (F,+, x) presented in the next chapter. Quantities that obey
such rules, i.e., belong to a field, allow for changes of scale and are called scalars. Not all numbers are scalars in this
sense. For instance, the integers would not allow a scaling of 1:2 (halving the scale) even though 1,2 are integers.

1.3. Quantities described by multiple numbers

Other quantities require more than a single number. The distribution of population in the year 2000 among the
alphabetically-ordered South American countries (Argentina, Bolivia,..,Venezuela) requires 12 numbers. These are
placed together in a list known in mathematics as a tuple, in this case a 12-tuple P=(ps, pa, ..., p12), with p; the pop-
ulation of Argentina, p, that of Bolivia, and so on. An analogous 12-tuple can be formed from the South American
populations in the year 2020, say Q=(q1, ga,-..,g12). Note that it is difficult to ascribe meaning to apparently plausible
expressions such as P+ Q since, for instance, some people in the 2000 population are also in the 2020 population,
and would be counted twice.

2. Vectors

In contrast to the population 12-tuple example above, combining multiple numbers is well defined in operations
such as specifying a position within a three-dimensional Cartesian grid, or determining the resultant of two forces
in space. Both of these lead to the consideration of 3-tuples or triples such as the force (fi, f5, f3). When combined
with another force (g1, 82, g3) the resultant is (f1+ g1, fo+ &2, 3+ £3). If the force (fi, f2, f3) is amplified by the scalar «
and the force (g1, 82, &3) is similarly scaled by B, the resultant becomes

a(f1, fos f3) + P(&1, 82, 83) = (ahh, afa, af3) + (Bgr, P& BE3) = (atfi + Bgr, afa+ &, atfs + BG3).

It is useful to distinguish tuples for which scaling and addition is well defined from simple lists of numbers. In fact,
since the essential difference is the behavior with respect to scaling and addition, the focus should be on these
operations rather than the elements of the tuple.
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The above observations underlie the definition of a
vector space as a set V whose elements satisfy certain
scaling and addition properties, denoted all together
by the 4-tuple (V, S, +,-). The first element of the 4-
tuple is a set whose elements are called vectors. The
second element is a set of scalars, and the third is the
vector addition operation. The last is the scaling oper-
ation, seen as multiplication of a vector by a scalar.
The vector addition and scaling operations must satisfy
rules suggested by positions or forces in three-dimen-

Addition rules for

Va,b,c€V

a+beEV

Closure

a+(b+c)=(a+b)+c

Associativity

a+b=b+a

Commutativity

O+a=a

Zero vector

a+(-a)=0

Additive inverse

Scaling rules for

Va,b€EV,Vx,y€S

xa€V

Closure

x(a+b)=xa+xb

Distributivity

(x+yla=xa+ya

Distributivity

sional space, which are listed in Table ?. In particular, Composition

Scalar identity

x(ya)=(xy)a
a vector space requires definition of two distinguished la=a
elements: the zero vector 0€ V, and the identity scalar
element 1€S.

Table 1.1. Properties of vector space (V, S, +,-) for arbitrary a,b,c€V

The definition of a vector space reflects everyday experience with vectors in Euclidean geometry, and it is common
to refer to such vectors by descriptions in a Cartesian coordinate system. For example, a position vector r within
the plane can be referred through the pair of coordinates (x, y). This intuitive understanding can be made precise
through the definition of a vector space E,=(R% R, +,), called the Euclidean 2-space. Vectors within E, are elements
of RZ=R xR={(x,y)| x,y €R}, meaning that a vector is specified through two real numbers, r <> (x, y). Addition of
two vectors, g <> (s, t), r<>(x, y) is defined by addition of coordinates q + r=(s+x,t+v). Scaling r < (x, y) by scalar
a is defined by ar <> (ax, ay). Similarly, consideration of position vectors in three-dimensional space leads to the
definition of the Euclidean 3-space E3=(R3, R, +,-), or more generally an Euclidean m-space E,,=(R™ R, +,-), m€N,
m=>0.

Note however that there is no mention of coordinates in the definition of a vector space as can be seen from the
list of properties in Table 1.1. The intent of such a definition is to highlight that besides Euclidean vectors, many
other mathematical objects follow the same rules. As an example, consider the set of all continuous functions
C(R)={f | f:R—R}, with function addition defined by the sum at each argument x, (f +g)(x)= f(x) + g(x), and
scaling by a€R defined as (af)(x) =af (x). Read this as: “given two continuous functions f and g, the function f +g
is defined by stating that its value for argument x is the sum of the two real numbers f(x) and g(x)”. Similarly:
“given a continuous function f, the function af is defined by stating that its value for argument x is the product
of the real numbers a and f(x)”. Under such definitions (C(R),R, +,-) is a vector space, but quite different from E,,,.
Nonetheless, the fact that both C(R) and E,, are vector spaces can be used to obtain insight into the behavior of
continuous functions from Euclidean vectors, and vice versa.

Since the Euclidean spaces E,,=(R™,R, +,-) play such an important role in themselves and as a guide to other vector
spaces, familiarity with vector operations in E,, is necessary to fully appreciate the utility of linear algebra to a
wide range of applications. Note that E; corresponds to Following the usage in geometry and physics, the m real

numbers that specify a vector u € E,,, are called the components of u. The one-to-one correspondence between a
vector and its components u <> (uy,..., uy), is by convention taken to define an equality relationship,

uq
u=|: |,
Um

with the components arranged vertically and enclosed in square brackets. To aid in visual recognition of vectors,
the following notation conventions are introduced:

« vectors are denoted by lower-case bold

In Octave, successive components placed vertically are separated by a semicolon.



6 LINEAR COMBINATIONS

octave] [1; 0; -1; 2]

ans =

octave]

The equal sign in mathematics signifies a particular equivalence relationship. In computer systems such as Octave
the equal sign has the different meaning of assignment, that is defining the label on the left side of the equal sign
to be the expression on the right side. Subsequent invocation of the label returns the assigned object.

octave] u=[1; 0; -1; 2]; u

u =
1
0
-1
2
octave]

Instead of the vertical placement or components into one column, the components of could have been placed
horizontally in one row [ uy ... up ], that contains the same data, differently organized. The transpose operation
denoted by a T superscript is introduced to relate the two representations

u'=[uy ... Uyl

In Octave, horizontal placement of successive components is denoted by a space.

octave] uT=transpose(u)

uT =

1 o -1 2

octave] [1 0 -1 2]

ans =

octave]

By conventi

Though the same components might be present in both u and u”, the different organization means that the two
vectors are not equal for m>1 components, u€ £, m>1= u # ul.
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octave] u.+uT

ans =
2 1 0 3
1 0 -1 2
o -1 -2 1
3 2 1 4

octave]

3. Matrices

MATRIX OPERATIONS
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