
1. MATH547 HOMEWORK 4
Topic: Math@UNC environment
Post date: May 25, 2020
Due date: May 28, 2020

1.1. Background: modeling binary interaction in science and engineering
Many systems consist of point interactions. The iconic Eiffel Tower can be modeled through the trusses linking two
points with coordinates 𝒙i, 𝒙j ∈ℝ3. The unit vector along direction from point i to point j is

𝒍ij =
𝒙j −𝒙i

‖𝒙j −𝒙i‖
.

Suppose that structure deformation changes the coordinates to 𝒙i+𝒖i, 𝒙j +𝒖j. The most important structural response
is that on point i a force 𝒇ij is exerted that can be approximated as

𝒇ij =𝒍ij 𝒍ijT (𝒖i −𝒖j),

in appropriate physical units. An opposite force 𝒇ji =−𝒇ij acts on point j. Note the projector along the truss direction
𝒍ij 𝒍ijT . Adding forces on a point from all trusses leads to the linear relation

𝒇 =𝑲𝒖 (1)

with 𝒇 ,𝒖∈ℝm, 𝑲 ∈ℝm×m, d=3 the number of dimensions, N the number of points, and m=dN , the number of degrees
of freedom of the structure. Point interactions arise in molecular or social interactions, cellular motility, and economic
exchange much in the same form (1). The techniques in this homework are equally applicable to physical chemistry,
sociology, biology or business management.

Figure 1. Eiffel Tower models

Load the Eiffel Tower data.
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octave] cd /home/student/courses/MATH547ML/data/EiffelTower;
load EiffelPoints; X=Expression1; [NX,ndims]=size(X);
load EiffelLines; L=Expression1; [NL,nseg]=size(L);

octave] m=3*NX; disp([NX NX^2 NL m])

26464 700343296 31463 79392

octave]

Of the possible N 2 ≅7× 108 linkages between points in the structure, only Nl =31462 are present. It is wasteful, and
often impossible, to store the entire matrix of couplings between points 𝑲 ∈ℝm×m (m2 ≅6×109), but storing only the
nonzero elements corresponding to the interacting can be carried out through a sparse matrix. After allocating space
with spalloc, the matrix is initialized with zeros along the truss directions.

octave] K=spalloc(m,m,3*NL);
for k=1:NL
i = L(k,1); j = L(k,2);
p = 3*(i-1)+1; q = 3*(j-1)+1;
for id=1:3

for jd=1:3
K(i+id,j+jd) = 0;

end;
end;

end

octave]

The matrix 𝑲 can be formed by loops over the trusses. The following computation takes a few minutes. The matrix K
has been pre-computed, and can be loaded from a disk file when answering the questions below, rather than executing
the following loops.

octave] for k=1:NL
i = L(k,1); j = L(k,2);
lij = (X(j,:)-X(i,:))'; Pij = lij*lij';
p = 3*(i-1)+1; q = 3*(j-1)+1;
for id=1:3

for jd=1:3
K(i+id,j+jd) = K(i+id,j+jd) + Pij(id,jd);

end;
end;

end

octave] save "K.mat" K

octave]

1.2. Theoretical questions
Provide a proof or counter-example for these true or false questions.

1. If 𝑹 is an upper-triangular matrix, its singular values are the same as the diagonal values rii.

2. If 𝑨=𝑨T , the singular values of 𝑨 are the same as its eigenvalues.

3. If 𝑻 is of full rank, 𝑨 and 𝑩=𝑻−1𝑨𝑻 have the same singular values.

4. For 𝑨,𝑩∈ℝm×m, the matrices 𝑨𝑩 and 𝑩𝑨 have the same eigenvalues.
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1.3. Reduced order modeling
Load data, and define functions to draw the deformed structure.

octave] cd /home/student/courses/MATH547ML/data/EiffelTower;
load EiffelPoints; X=Expression1; [NX,ndims]=size(X);
load EiffelLines; L=Expression1; [NL,nseg]=size(L);
m=3*NX; load K;

octave] function drawXu(X,u,L,is)
clf; view(-30,45); [NX,nd]=size(X);
[nL,nseg]=size(L); x=[]; y=[]; z=[];
U=reshape(u,3,NX)';
for k=1:is:nL

x=[x X(L(k,1),1)+U(L(k,1),1) X(L(k,2),1)+U(L(k,2),1)];
y=[y X(L(k,1),2)+U(L(k,1),2) X(L(k,2),2)+U(L(k,2),2)];
z=[z X(L(k,1),3)+U(L(k,1),3) X(L(k,2),3)+U(L(k,2),3)];

end;
plot3(x,y,z);

end

octave] drawXu(X,zeros(m,1),L,20)

octave] function drawXU(X,U,L,is)
clf; view(-30,45); [NX,nd]=size(X);
[nL,nseg]=size(L); x=[]; y=[]; z=[];
for k=1:is:nL

x=[x X(L(k,1),1)+U(L(k,1),1) X(L(k,2),1)+U(L(k,2),1)];
y=[y X(L(k,1),2)+U(L(k,1),2) X(L(k,2),2)+U(L(k,2),2)];
z=[z X(L(k,1),3)+U(L(k,1),3) X(L(k,2),3)+U(L(k,2),3)];

end;
plot3(x,y,z);

end

octave] drawXU(X,zeros(NX,3),L,20)

octave]

The following questions only require a few Octave lines to solve correctly. Be careful to not request output of the
large vectors and matrices that arise. Use visualization with the draw function to represent results, and concentrate
on the mathematical formulation. For example, imposing displacement 𝒖 = (z, 0, 0) at each node, i.e., a horizontal
displacement along the x direction proportional to the z coordinate is accomplished by:

octave] U=zeros(NX,3); U(1:NX,1)=X(1:NX,3);

octave] drawXU(X,U,L,20)

octave]

1.3.1. Least squares solution on singular modes

Find the linear combination 𝒔 of the first 10 singular modes that best approximates a force 𝒇 =(z cos𝜃,z sin𝜃,0) on the
structure. Randomly choose 𝜃. Show the first 3 singular modes and the linear combination you find.
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1.3.2. Least squares solution on eigenmodes

Find the linear combination 𝒕 of the first 10 eigenmodes that best approximates a force 𝒇 = (z cos𝜃, z sin 𝜃, 0) on the
structure. Show the first 3 eigenmodes and the linear combination you find.

1.3.3. Least squares solution on Krylov modes

Replace singular modes or eigenmodes by orthogonal 𝑸, with 𝑸𝑹=� 𝒇 𝑲 𝒇 𝑲2 𝒇 . . . 𝑲9 𝒇 � (known as Krylov modes).
Find the linear combination 𝒘 of the first 10 Krylov modes that best approximates a force 𝒇 = (z cos 𝜃, z sin 𝜃, 0)
on the structure. Show the first 3 Krylov modes and the linear combination you find.

1.3.4. Reduced-rank singular mode approximation

From the SVD 𝑲 =𝒀𝚺𝒁T construct an approximate matrix

𝑲̃ =�
k=1

n

𝜎k 𝒚k 𝒛k
T

and compare the force 𝒇 with 𝒇 = 𝑲̃ 𝒔, 𝒔 from question 1.3.1.

1.3.5. Reduced-rank eigenmode approximation

From the eigendecomposition 𝑲𝑹=𝑹𝚲 construct an approximate matrix

𝑲̃ = �
k=1

n

𝜆k 𝒓k 𝒓k
T

and compare the force 𝒇 with 𝒇 = 𝑲̃ 𝒕, 𝒕 from question 1.3.2.

1.3.6. Reduced model convergence

Choose one of the reduced models from 1.3.1 to 1.3.4. Repeat the calculations for 15,20,25 modes, and comment on
whether the solutions converge.
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