
FORMAL RULES

1. Algebraic structures

1.1. Typical structures

A vector space has been introduced as a 4-tuple 𝒱 = (V , S, +, ⋅) with specific behavior of the vector addition and
scaling operations. Arithmetic operations between scalars were implicitly assumed to be similar to those of the real
numbers, but also must be specified to obtain a complete definition of a vector space. Algebra defines various struc-
tures that specify the behavior operations with objects. Knowledge of these structures is useful not only in linear
algebra, but also in other mathematical approaches to data analysis such as topology or geometry.

Groups. A group is a 2-tuple 𝒢 = (G, +) containing a
set G and an operation + with properties from Table 2.
If ∀a,b∈G, a+b=b+a, the group is said to be commu-
tative. Besides the familiar example of integers under
addition (ℤ,+), symmetry groups that specify spatial or
functional relations are of particular interest. The rota-
tions by 0, 𝜋

2 ,𝜋, 3𝜋
2 or vertices of a square form a group.

Addition rules
a+b∈G Closure
a+(b+c)=(a+b)+c Associativity
0+a=a Identity element
a+(−a)=0 Inverse element

Table 1. Group 𝒢=(G, +) properties, for ∀a,b, c∈G

Rings. A ring is a 3-tuple ℛ=(R,+, ⋅) containing a set
R and two operations +, ⋅ with properties from Table 1.
As is often the case, a ring is more complex structure
built up from simpler algebraic structures. With respect
to addition a ring has the properties of a commutative
group. Only associativity and existence of an identity
element is imposed for multiplication. Matrix addition
and multiplication has the structure of ring (ℝm×m,+, ⋅).

Addition rules
(R,+) is a commutative (Abelian) group
Multiplication rules
a ⋅b∈R Closure
(a ⋅b) ⋅c=a ⋅ (b ⋅c) Associativity
a ⋅ 1=1 ⋅a=a Identity element
Distributivity
a ⋅ (b+c)=(a ⋅b)+(a ⋅c) on the left
(a+b) ⋅c=(a ⋅c)+(b ⋅c) on the right

Table 2. Ring ℛ=(R, +, ⋅) properties, for ∀a,b,c ∈R.

Fields. A ring is a 3-tuple ℱ=(F,+, ⋅) containing a set
F and two operations +, ⋅, each with properties of a com-
mutative group, but with special behavior for the inverse
of the null element. The multiplicative inverse is denoted
as a−1. Scalars S in the definition of a vector space must
satisfy the properties of a field. Since the operations are
often understood from context a field might be referred
to as the full 3 − tuple, or, more concisely just through
the set of elements as in the definition of a vector space.

Addition rules
(F,+) is a commutative (Abelian) group
Multiplication rules
(F, ⋅) is a commutative group except
that 0−1 does not exist
Distributivity
a ⋅ (b+c)=(a ⋅b)+(a ⋅c)

Table 3. Field ℛ=(F, +, ⋅) properties, for ∀a,b,c ∈F.

Using the above definitions, a vector space 𝒱=(V ,S,+, ⋅) can be described as a commutative group (V ,+) combined
with a field S that satisfies the scaling properties a𝒖∈V , a(𝒖+𝒗)=a𝒖+b𝒗, (a+b)𝒖=a𝒖+b𝒖, a(b𝒖)=(ab)𝒖, 1𝒖=𝒖,
for ∀a,b∈S, ∀𝒖, 𝒗∈V .

1.2. Vector subspaces

A central interest in data science is to seek simple description of complex objects. A typical situation is that many
instances of some object of interest are initially given as an m-tuple 𝒗∈ℝm with large m. Assuming that addition and
scaling of such objects can cogently be defined, a vector space is obtained, say over the field of reals with an Euclidean
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distance, Em. Examples include for instance recordings of medical data (electroencephalograms, electrocardiograms),
sound recordings, or images, for which m can easily reach in to the millions. A natural question to ask is whether all the
m real numbers are actually needed to describe the observed objects, or perhaps there is some intrinsic description that
requires a much smaller number of descriptive parameters, that still preserves the useful idea of linear combination.
The mathematical transcription of this idea is a vector subspace.

DEFINITION. (VECTOR SUBSPACE) . 𝒰=(U,S,+, ⋅), U ≠∅, is a vector subspace of vector space 𝒱=(V ,S,+, ⋅) over
the same field of scalars S, denoted by 𝒰≤𝒱, if U ⊆V and ∀a,b∈S, ∀𝒖, 𝒗∈U, the linear combination a𝒖+b𝒗∈U.

The above states a vector subspace must be closed under linear combination, and have the same vector addition and
scaling operations as the enclosing vector space. The simplest vector subspace of a vector space is the null subspace
that only contains the null element, U ={𝟎}. In fact any subspace must contain the null element 𝟎, or otherwise closure
would not be verified for the particular linear combination 𝒖 + (−𝒖) = 𝟎. If U ⊂ V , then 𝒰 is said to be a proper
subspace of 𝒱, denoted by 𝒰<𝒱.

Setting n − m components equal to zero in the real space ℛm defines a proper subspace whose elements can be
placed into a one-to-one correspondence with the vectors within ℛn. For example, setting component m of 𝒙 ∈ ℝm

equal to zero gives 𝒙= [ x1 x2 . . . xm−1 0 ]T that while not a member of ℝm−1, is in a one-to-one relation with 𝒙′=
[ x1 x2 . . . xm−1 ]T ∈ ℝm−1. Dropping the last component of 𝒚 ∈ ℝm, 𝒚 = [ y1 y2 . . . ym−1 ym ]T gives vector 𝒚′ =
[ y1 y2 . . . ym−1 ] ∈ ℝm−1, but this is no longer a one-to-one correspondence since for some given 𝒚′, the last com-
ponent ym could take any value.

octave] m=3; x=[1; 2; 0]; xp=x(1:2); disp(xp)

1
2

octave] y=[1; 2; 3]; yp=y(1:2); disp(yp)

1
2

octave]

Vector subspaces arise in decomposition of a vector space. The converse, composition of vector spaces 𝒰 = (U,
S,+, ⋅) 𝒱 = (V , S, +, ⋅) is also defined in terms of linear combination. A vector 𝒙 ∈ ℝ3 can be obtained as the linear
combination

𝒙=[[[[[[[[[[[[[[[[[
[[[
[
[ x1

x2
x3 ]]]]]]]]]]]]]]]]]

]]]
]
]=[[[[[[[[[[[[[[[[[

[[[
[
[ x1

0
0 ]]]]]]]]]]]]]]]]]

]]]
]
]+[[[[[[[[[[[[[[[[[

[[[
[
[ 0

x2
x3 ]]]]]]]]]]]]]]]]]

]]]
]
],

but also as

𝒙=[[[[[[[[[[[[[[[[[
[[[
[
[ x1

x2
x3 ]]]]]]]]]]]]]]]]]

]]]
]
]=[[[[[[[[[[[[[[[[[

[[[
[
[ x1

x2 −a
0 ]]]]]]]]]]]]]]]]]

]]]
]
]+[[[[[[[[[[[[[[[[[

[[[
[
[ 0

a
x3 ]]]]]]]]]]]]]]]]]

]]]
]
],

for some arbitrary a ∈ ℝ. In the first case, 𝒙 is obtained as a unique linear combination of a vector from the set
U = �� x1 0 0 �T | x1 ∈ ℝ� with a vector from V = {[ 0 x2 x3 ]T | x2, x3 ∈ ℝ}. In the second case, there is an infinity
of linear combinations of a vector from V with another from W = �� x1 x2 0 �T | x1, x2 ∈ ℝ� to the vector 𝒙. This is
captured by a pair of definitions to describe vector space composition.

DEFINITION. Given two vector subspaces 𝒰=(U,S,+, ⋅), 𝒱=(V ,S,+, ⋅) of the space 𝒲=(W,S,+, ⋅), the sum is the
vector space 𝒰+𝒱=(U +V ,S,+, ⋅), where the sum of the two sets of vectors U,V is U +V ={𝒖+𝒗| 𝒖∈U, 𝒗∈V}.



DEFINITION. Given two vector subspaces 𝒰 = (U, S, +, ⋅), 𝒱 = (V , S, +, ⋅) of the space 𝒲 = (W, S, +, ⋅), the direct
sum is the vector space 𝒰 ⊕ 𝒱 = (U ⊕ V , S, +, ⋅), where the direct sum of the two sets of vectors U, V is U ⊕ V =
{𝒖+𝒗| ∃!𝒖∈U, ∃!𝒗∈V}. (unique decomposition)

Since the same scalar field, vector addition, and scaling is used , it is more convenient to refer to vector space sums
simply by the sum of the vector sets U +V , or U ⊕V , instead of specifying the full tuplet for each space. This shall
be adopted henceforth to simplify the notation.

octave] u=[1; 0; 0]; v=[0; 2; 3]; vp=[0; 1; 3]; w=[1; 1; 0]; disp([u+v vp+w])

1 1
2 2
3 3

octave]

In the previous example, the essential difference between the two ways to express 𝒙 ∈ ℝ3 is that U ∩ V = {𝟎}, but
V ∩W ={[ 0 a 0 ]T |a∈ℝ}≠{𝟎}, and in general if the zero vector is the only common element of two vector spaces
then the sum of the vector spaces becomes a direct sum. In practice, the most important procedure to construct direct
sums or check when an intersection of two vector subspaces reduces to the zero vector is through an inner product.

DEFINITION. Two vector subspaces U,V of the real vector space ℝm are orthogonal, denoted as U⊥V if 𝒖T𝒗=0 for
any 𝒖∈U, 𝒗∈V.

DEFINITION. Two vector subspaces U,V of U + V are orthogonal complements, denoted U = V ⊥, V = U⊥ if they are
orthogonal subspaces, U⊥V, and U ∩V ={𝟎}, i.e., the null vector is the only common element of both subspaces.

octave] disp([u'*v vp'*w])

0 1

octave]

The above concept of orthogonality can be extended to other vector subspaces, such as spaces of functions. It can also
be extended to other choices of an inner product, in which case the term conjugate vector spaces is sometimes used.

The concepts of sum and direct sum of vector spaces used linear combinations of the form 𝒖+𝒗. This notion can be
extended to arbitrary linear combinations.

DEFINITION. In vector space 𝒱= (V ,S, +, ⋅), the span of vectors 𝒂1, 𝒂2, . . . , 𝒂n ∈ V , is the set of vectors reachable by
linear combination

span{𝒂1, 𝒂2, . . . , 𝒂n}={𝒃∈V | ∃x1, . . . ,xn ∈S such that 𝒃=x1𝒂1+ . . . +xn 𝒂n}.

Note that for real vector spaces a member of the span of the vectors {𝒂1, 𝒂2, . . . , 𝒂n} is the vector 𝒃 obtained from the
matrix vector multiplication

𝒃=𝑨𝒙=[ 𝒂1 𝒂2 . . . 𝒂n ]
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ x1

x2
⋅⋅⋅
xn ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
]

.
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From the above, the span is a subset of the co-domain of the linear mapping 𝒇 (𝒙)=𝑨𝒙.

2. Vector subspaces of a linear mapping

The wide-ranging utility of linear algebra essentially results a complete characterization of the behavior of a linear
mapping between vector spaces 𝒇 :U →V , 𝒇 (a𝒖+b𝒗)=a 𝒇 (𝒖)+b 𝒇 (𝒗). For some given linear mapping the questions
that arise are:

1. Can any vector within V be obtained by evaluation of 𝒇 ?

2. Is there a single way that a vector within V can be obtained by evaluation of 𝒇 ?

Linear mappings between real vector spaces 𝒇 : ℝn → ℝm, have been seen to be completely specified by a matrix
𝑨∈ℝm×n. It is common to frame the above questions about the behavior of the linear mapping 𝒇 (𝒙)=𝑨𝒙 through sets
associated with the matrix 𝑨. To frame an answer to the first question, a set of reachable vectors is first defined.

DEFINITION. The column space (or range) of matrix 𝑨∈ ℝm×n is the set of vectors reachable by linear combination
of the matrix column vectors

C(𝑨)=range(𝑨)={𝒃∈ℝm| ∃𝒙∈ℝn such that𝒃=𝑨𝒙}.

By definition, the column space is included in the co-domain of the function 𝒇 (𝒙)=𝑨𝒙, C(𝑨)⊆ℝm, and is readily seen
to be a vector subspace of ℝm. The question that arises is whether the column space is the entire co-domain C(𝑨)=ℝm

that would signify that any vector can be reached by linear combination. If this is not the case then the column space
would be a proper subset, C(𝑨)⊂ℝm, and the question is to determine what part of the co-domain cannot be reached
by linear combination of columns of 𝑨. Consider the orthogonal complement of C(𝑨) defined as the set vectors
orthogonal to all of the column vectors of 𝑨, expressed through inner products as

𝒂1
T 𝒚=0,𝒂2

T 𝒚=0, . . . , 𝒂n
T 𝒚=0.

This can be expressed more concisely through the transpose operation

𝑨=[ 𝒂1 𝒂2 . . . 𝒂n ],𝑨T 𝒚=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[
[
[ 𝒂1

T

𝒂2
T

⋅⋅⋅
𝒂n

T ]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]
]
]

=

[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[
[
[ 𝒂1

T 𝒚
𝒂2

T 𝒚
⋅⋅⋅

𝒂n
T 𝒚 ]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]
]
]
,

and leads to the definition of a set of vectors for which 𝑨T 𝒚=𝟎

DEFINITION. The left null space (or cokernel) of a matrix 𝑨∈ℝm×n is the set

N(𝑨T)=null(𝑨T)={𝒚∈ℝm|𝑨T 𝒚=𝟎}.

Note that the left null space is also a vector subspace of the co-domain of 𝒇 (𝒙)=𝑨𝒙, N(𝑨T)⊆ℝm. The above defin-
itions suggest that both the matrix and its transpose play a role in characterizing the behavior of the linear mapping
𝒇 =𝑨𝒙, so analagous sets are define for the transpose 𝑨T .

DEFINITION. The row space (or corange) of a matrix 𝑨∈ℝm×n is the set

R(𝑨)=C(𝑨T)= range(𝑨T)={𝒄∈ℝn| ∃𝒚∈ℝm 𝒄=𝑨T 𝒚}⊆ℝn



DEFINITION. The null space of a matrix 𝑨∈ℝm×n is the set

N(𝑨)=null(𝑨)={𝒙∈ℝn|𝑨𝒙=𝟎}⊆ℝn

Examples. Consider a linear mapping between real spaces 𝒇 :ℝn→ℝm, defined by 𝒚=𝒇 (𝒙)=𝑨𝒙=[ y1 . . . yn ]T , with
𝑨∈ℝm×n.

1. For n=1, m=3,

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1

0
0 ]]]]]]]]]]]]]]]]]

]]]
]
],𝑨T =[ 1 0 0 ],

the column space C(𝑨) is the y1-axis, and the
left null space N(𝑨T) is the y2y3-plane. Vectors
that span these spaces are returned by the Octave
orth and null functions.

octave] A=[1; 0; 0];
disp(orth(A));
disp('-----');
disp(null(A'))

-1
-0
-0

-----
0 0
1 0
0 1

octave]

2. For n=2, m=3,

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1 −1

0 0
0 0 ]]]]]]]]]]]]]]]]]

]]]
]
]=[ 𝒂1 𝒂2 ], 𝑨T =� 1 0 0

−1 0 0 �,

the columns of 𝑨 are colinear, 𝒂2 = −𝒂1, and the
column space C(𝑨) is the y1-axis, and the left
null space N(𝑨T) is the y2y3-plane, as before.

octave] A=[1 -1; 0 0; 0 0];
disp(orth(A));
disp('-----');
disp(null(A'))

-1.00000
-0.00000
-0.00000

-----
0 0
1 0
0 1

octave]

3. For n=2, m=3,

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1 0

0 1
0 0 ]]]]]]]]]]]]]]]]]

]]]
]
], 𝑨T =� 1 0 0

0 1 0 �,

the column space C(𝑨) is the y1y2-plane, and the
left null space N(𝑨T) is the y3-axis.

octave] A=[1 0; 0 1; 0 0];
disp(orth(A));
disp('-----');
disp(null(A'))

-1 -0
-0 -1
-0 -0

-----
0
0
1

octave]

4. For n=2, m=3,

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1 1

1 −1
0 0 ]]]]]]]]]]]]]]]]]

]]]
]
], 𝑨T =� 1 1 0

1 −1 0 �,

the same C(𝑨), N(𝑨T) are obtained, albeit with
a different set of spanning vectors returned by
orth.

octave] A=[1 1; 1 -1; 0 0];
disp(orth(A));
disp('-----');
disp(null(A'))

0.70711 0.70711
0.70711 -0.70711
-0.00000 -0.00000

-----
0
0
1
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5. For n=3, m=3,

𝑨=[[[[[[[[[[[[[[[[[
[[[
[
[ 1 1 3

1 −1 −1
1 1 3 ]]]]]]]]]]]]]]]]]

]]]
]
]=[ 𝒂1 𝒂2 𝒂3 ],

𝑨T =[[[[[[[[[[[[[[[[[
[[[
[
[ 1 1 1

1 −1 1
3 −1 3 ]]]]]]]]]]]]]]]]]

]]]
]
]=[[[[[[[[[[[[[[[[

[[[[[[[[
[
[ 𝒂1

T

𝒂2
T

𝒂3
T ]]]]]]]]]]]]]]]]
]]]]]]]]
]
]
,𝑨T 𝒚=[[[[[[[[[[[[[[[[

[[[[[[[[
[
[ 𝒂1

T 𝒚
𝒂2

T 𝒚
𝒂3

T 𝒚 ]]]]]]]]]]]]]]]]
]]]]]]]]
]
]

since 𝒂3 = 𝒂1 + 2𝒂2, the orthogonality condi-
tion 𝑨T 𝒚 = 𝟎 is satisfied by vectors of form 𝒚 =
[ a 0 −a ], a∈ℝ.

octave] A=[1 1 3; 1 -1 -1; 1 1 3];
disp(orth(A));
disp('-----');
disp(null(A'))

0.69157 0.14741
-0.20847 0.97803
0.69157 0.14741

-----
0.70711
0.00000
-0.70711

octave]

The above low dimensional examples are useful to gain initial insight into the significance of the spaces C(𝑨),N(𝑨T).
Further appreciation can be gained by applying the same concepts to processing of images. A gray-scale image of size
px by py pixels can be represented as a vector with m = px py components, 𝒃 ∈ [0, 1]m ⊂ ℝm. Even for a small image
with px = py = 128 = 27 pixels along each direction, the vector 𝒃 would have m = 214 components. An image can be
specified as a linear combination of the columns of the identity matrix

𝒃=𝑰𝒃=[ 𝒆1 𝒆2 . . . 𝒆m ]
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ b1

b2
⋅⋅⋅

bm ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]
]
]
,

with bi the gray-level intensity in pixel i. Similar to the inclined plane example from §1, an alternative description as a
linear combination of another set of vectors 𝒂1, . . . , 𝒂m might be more relevant. One choice of greater utility for image
processing mimics the behavior of the set {1, cos t, cos 2t, . . . , sin t, sin 2t, . . .} that extends the second example in §1,
would be for m=4

𝑨=[ 𝒂1 𝒂2 𝒂3 𝒂4 ]=
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ 1 1 1 0

1 1 0 1
1 0 1 1
1 0 0 0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
]
.
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