DATA REDUNDANCY

DATA REDUNDANCY

1. Linear dependence

For the simple scalar mapping $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax, the condition f(x) = 0 implies either that a = 0 or x = 0. Note that a = 0 can be understood as defining a zero mapping f(x) = 0. Linear mappings between vector spaces, $f: U \to V$, can exhibit different behavior, and the condition f(x) = Ax = 0, might be satisfied for both $x \neq 0$, and $A \neq 0$. Analogous to the scalar case, A = 0 can be understood as defining a zero mapping, f(x) = 0.

In vector space $\mathcal{V} = (V, S, +, \cdot)$, vectors $u, v \in V$ related by a scaling operation, v = au, $a \in S$, are said to be colinear, and are considered to contain redundant data. This can be restated as $v \in \text{span}\{u\}$, from which it results that $\text{span}\{u\} = \text{span}\{u,v\}$. Colinearity can be expressed only in terms of vector scaling, but other types of redundancy arise when also considering vector addition as expressed by the span of a vector set. Assuming that $v \notin \text{span}\{u\}$, then the strict inclusion relation $\text{span}\{u\} \subset \text{span}\{u,v\}$ holds. This strict inclusion expressed in terms of set concepts can be transcribed into an algebraic condition.

DEFINITION. The vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in V$, are linearly dependent if there exist n scalars, $x_1, \dots, x_n \in S$, at least one of which is different from zero such that

$$x_1 \boldsymbol{a}_1 + \ldots + x_n \boldsymbol{a}_n = \boldsymbol{0}.$$

Introducing a matrix representation of the vectors

$$\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]; \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

allows restating linear dependence as the existence of a non-zero vector, $\exists x \neq 0$, such that Ax = 0. Linear dependence can also be written as $Ax = 0 \Rightarrow x = 0$, or that one cannot deduce from the fact that the linear mapping f(x) = Ax attains a zero value that the argument itself is zero. The converse of this statement would be that the only way to ensure Ax = 0 is for x = 0, or $Ax = 0 \Rightarrow x = 0$, leading to the concept of linear independence.

DEFINITION. The vectors $a_1, a_2, ..., a_n \in V$, are linearly independent if the only n scalars, $x_1, ..., x_n \in S$, that satisfy

$$x_1 \boldsymbol{a}_1 + \ldots + x_n \boldsymbol{a}_n = \boldsymbol{0}, \tag{1}$$

are $x_1 = 0$, $x_2 = 0$,..., $x_n = 0$.

2. Basis and dimension

Vector spaces are closed under linear combination, and the span of a vector set $\mathcal{B} = \{a_1, a_2, ...\}$ defines a vector subspace. If the entire set of vectors can be obtained by a spanning set, $V = \operatorname{span} \mathcal{B}$, extending \mathcal{B} by an additional element $\mathcal{C} = \mathcal{B} \cup \{b\}$ would be redundant since $\operatorname{span} \mathcal{B} = \operatorname{span} \mathcal{C}$. This is recognized by the concept of a basis, and also allows leads to a characterization of the size of a vector space by the cardinality of a basis set.

DEFINITION. A set of vectors $\mathbf{u}_1, \dots, \mathbf{u}_n \in V$ is a basis for vector space $\mathcal{V} = (V, S, +, \cdot)$ if

- 1. $\mathbf{u}_1, \dots, \mathbf{u}_n$ are linearly independent;
- 2. span{ $u_1, ..., u_n$ } = V.

DEFINITION. The number of vectors $u_1, \ldots, u_n \in V$ within a basis is the dimension of the vector space $\mathscr{V} = (V, S, +, \cdot)$.

3. Dimension of matrix spaces

The domain and co-domain of the linear mapping $f: U \to V$, f(x) = Ax, are decomposed by the spaces associated with the matrix A. When $U = \mathbb{R}^n$, $V = \mathbb{R}^m$, the following vector subspaces associated with the matrix $A \in \mathbb{R}^{m \times n}$ have been defined:

• C(A) the column space of A

- $C(A^T)$ the row space of A
- N(A) the null space of A
- $N(A^T)$ the left null space of A, or null space of A^T

DEFINITION. The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of its column space and is equal to the dimension of its row space.

DEFINITION. The nullity of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of its null space.