
DATA REDUNDANCY

1. Linear dependence
For the simple scalar mapping f :ℝ→ℝ, f (x)=ax, the condition f (x)=0 implies either that a=0 or x =0. Note that
a=0 can be understood as defining a zero mapping f (x) =0. Linear mappings between vector spaces, 𝒇 :U →V , can
exhibit different behavior, and the condtion 𝒇 (𝒙)=𝑨𝒙=𝟎, might be satisfied for both 𝒙≠𝟎, and 𝑨≠𝟎. Analogous to
the scalar case, 𝑨=𝟎 can be understood as defining a zero mapping, 𝒇 (𝒙)=𝟎.

In vector space 𝒱 = (V ,S, +, ⋅), vectors 𝒖, 𝒗∈ V related by a scaling operation, 𝒗 = a𝒖, a∈ S, are said to be colinear,
and are considered to contain redundant data. This can be restated as 𝒗∈span{𝒖}, from which it results that span{𝒖}=
span{𝒖, 𝒗}. Colinearity can be expressed only in terms of vector scaling, but other types of redundancy arise when
also considering vector addition as expressed by the span of a vector set. Assuming that 𝒗 ∉ span{𝒖}, then the strict
inclusion relation span{𝒖}⊂span{𝒖,𝒗} holds. This strict inclusion expressed in terms of set concepts can be transcribed
into an algebraic condition.

DEFINITION. The vectors 𝒂1, 𝒂2, . . . , 𝒂n ∈V ,are linearly dependent if there exist n scalars, x1, . . . ,xn ∈S, at least one of
which is different from zero such that

x1𝒂1+ . . . +xn 𝒂n =𝟎.

Introducing a matrix representation of the vectors

𝑨=[ 𝒂1 𝒂2 . . . 𝒂n ];𝒙=
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[
[
[ x1

x2
⋅⋅⋅
xn ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]
]

allows restating linear dependence as the existence of a non-zero vector, ∃𝒙≠𝟎, such that 𝑨𝒙=𝟎. Linear dependence
can also be written as 𝑨𝒙=𝟎⇏𝒙=𝟎, or that one cannot deduce from the fact that the linear mapping 𝒇 (𝒙)=𝑨𝒙 attains a
zero value that the argument itself is zero. The converse of this statement would be that the only way to ensure 𝑨𝒙=𝟎
is for 𝒙=𝟎, or 𝑨𝒙=𝟎⇒𝒙=𝟎, leading to the concept of linear independence.

DEFINITION. The vectors 𝒂1, 𝒂2, . . . , 𝒂n ∈V ,are linearly independent if the only n scalars, x1, . . . ,xn ∈S, that satisfy

x1𝒂1 + . . . +xn𝒂n =𝟎, (1)
are x1=0, x2 =0,...,xn =0.

2. Basis and dimension
Vector spaces are closed under linear combination, and the span of a vector set ℬ = {𝒂1, 𝒂2, . . . } defines a vector
subspace. If the entire set of vectors can be obtained by a spanning set, V = span ℬ, extending ℬ by an additional
element 𝒞=ℬ∪{𝒃} would be redundant since spanℬ=span𝒞. This is recognized by the concept of a basis, and also
allows leads to a characterization of the size of a vector space by the cardinality of a basis set.

DEFINITION. A set of vectors 𝒖1, . . . , 𝒖n ∈V is a basis for vector space 𝒱=(V ,S,+, ⋅) if

1. 𝒖1, . . . , 𝒖n are linearly independent;

2. span{𝒖1, . . . , 𝒖n}=V.

DEFINITION. The number of vectors 𝒖1, . . . , 𝒖n ∈V within a basis is the dimension of the vector space 𝒱=(V ,S,+, ⋅).

3. Dimension of matrix spaces
The domain and co-domain of the linear mapping 𝒇 :U →V , 𝒇 (𝒙)=𝑨𝒙, are decomposed by the spaces associated with
the matrix 𝑨. When U =ℝn, V =ℝm, the following vector subspaces associated with the matrix 𝑨∈ℝm×n have been
defined:

• C(𝑨) the column space of 𝑨
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• C(𝑨T) the row space of 𝑨

• N(𝑨) the null space of 𝑨

• N(𝑨T) the left null space of 𝑨, or null space of 𝑨T

DEFINITION. The rank of a matrix 𝑨∈ℝm×n is the dimension of its column space and is equal to the dimension of its
row space.

DEFINITION. The nullity of a matrix 𝑨∈ℝm×n is the dimension of its null space.
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