DATA INFORMATION

DATA INFORMATION

1. Partition of linear mapping domain and codomain

A partition of a set S has been introduced as a collection of subsets $P = \{S_i | S_i \subset P, S_i \neq \emptyset\}$ such that any given element $x \in S$ belongs to only one set in the partition. This is modified when applied to subspaces of a vector space, and a partition of a set of vectors is understood as a collection of subsets such that any vector except $\mathbf{0}$ belongs to only one member of the partition.

Linear mappings between vector spaces $f: U \to V$ can be represented by matrices A with columns that are images of the columns of a basis $\{u_1, u_2, \dots\}$ of U

$$A = [f(u_1) f(u_2) \dots].$$

Consider the case of real finite-dimensional domain and co-domain, $f: \mathbb{R}^n \to \mathbb{R}^m$, in which case $A \in \mathbb{R}^{m \times n}$,

$$A = [f(e_1) \ f(e_2) \ \dots \ f(e_n)] = [a_1 \ a_2 \ \dots \ a_n].$$

The column space of A is a vector subspace of the codomain, $C(A) \leq \mathbb{R}^m$, but according to the definition of dimension if n < m there remain non-zero vectors within the codomain that are outside the range of A,

$$n < m \Rightarrow \exists v \in \mathbb{R}^m, v \neq 0, v \notin C(A).$$

All of the non-zero vectors in $N(A^T)$, namely the set of vectors orthogonal to all columns in A fall into this category. The above considerations can be stated as

$$C(A) \le \mathbb{R}^m$$
, $N(A^T) \le \mathbb{R}^m$, $C(A) \perp N(A^T)$ $C(A) + N(A^T) \le \mathbb{R}^m$.

The question that arises is whether there remain any non-zero vectors in the codomain that are not part of C(A) or $N(A^T)$. The fundamental theorem of linear algebra states that there no such vectors, that C(A) is the orthogonal complement of $N(A^T)$, and their direct sum covers the entire codomain $C(A) \oplus N(A^T) = \mathbb{R}^m$.

LEMMA 1. Let \mathcal{U}, \mathcal{V} , be subspaces of vector space \mathcal{W} . Then $\mathcal{W} = \mathcal{U} \oplus \mathcal{V}$ if and only if

- i. $\mathcal{W} = \mathcal{U} + \mathcal{V}$, and
- *ii.* $\mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}.$

Proof. $\mathcal{W} = \mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{W} = \mathcal{U} + \mathcal{V}$ by definition of direct sum, sum of vector subspaces. To prove that $\mathcal{W} = \mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}$, consider $\mathbf{w} \in \mathcal{U} \cap \mathcal{V}$. Since $\mathbf{w} \in \mathcal{U}$ and $\mathbf{w} \in \mathcal{V}$ write

$$w = w + 0 \quad (w \in \mathcal{U}, 0 \in \mathcal{V}), \quad w = 0 + w \quad (0 \in \mathcal{U}, w \in \mathcal{V}),$$

and since expression $\mathbf{w} = \mathbf{u} + \mathbf{v}$ is unique, it results that $\mathbf{w} = \mathbf{0}$. Now assume (i),(ii) and establish an unique decomposition. Assume there might be two decompositions of $\mathbf{w} \in \mathcal{W}$, $\mathbf{w} = \mathbf{u}_1 + \mathbf{v}_1$, $\mathbf{w} = \mathbf{u}_2 + \mathbf{v}_2$, with $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$. Obtain $\mathbf{u}_1 + \mathbf{v}_1 = \mathbf{u}_2 + \mathbf{v}_2$, or $\mathbf{x} = \mathbf{u}_1 - \mathbf{u}_2 = \mathbf{v}_2 - \mathbf{v}_1$. Since $\mathbf{x} \in \mathcal{U}$ and $\mathbf{x} \in \mathcal{V}$ it results that $\mathbf{x} = \mathbf{0}$, and $\mathbf{u}_1 = \mathbf{u}_2$, $\mathbf{v}_1 = \mathbf{v}_2$, i.e., the decomposition is unique.

In the vector space U + V the subspaces U, V are said to be orthogonal complements is $U \perp V$, and $U \cap V = \{0\}$. When $U \leq \mathbb{R}^m$, the orthogonal complement of U is denoted as $U^{\perp}, U \oplus U^{\perp} = \mathbb{R}^m$.

THEOREM. Given the linear mapping associated with matrix $A \in \mathbb{R}^{m \times n}$ we have:

- 1. $C(A) \oplus N(A^T) = \mathbb{R}^m$, the direct sum of the column space and left null space is the codomain of the mapping
- 2. $C(A^T) \oplus N(A) = \mathbb{R}^n$, the direct sum of the row space and null space is the domain of the mapping
- 3. $C(A) \perp N(A^T)$ and $C(A) \cap N(A^T) = \{0\}$, the column space is orthogonal to the left null space, and they are orthogonal complements of one another,

$$C(A) = N(A^{T})^{\perp}, N(A^{T}) = C(A)^{\perp}.$$

4. $C(A^T) \perp N(A)$ and $C(A^T) \cap N(A) = \{0\}$, the row space is orthogonal to the null space, and they are orthogonal complements of one another,

$$C(\mathbf{A}^T) = N(\mathbf{A})^{\perp}, \ N(\mathbf{A}) = C(\mathbf{A}^T)^{\perp}.$$

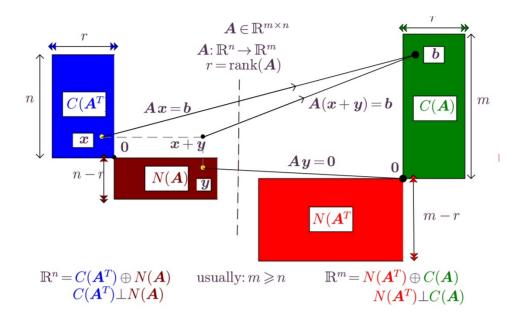


Figure 1. Graphical representation of the Fundamental Theorem of Linear Algebra, Gil Strang, Amer. Math. Monthly 100, 848-855, 1993.

Consideration of equality between sets arises in proving the above theorem. A standard technique to show set equality A = B, is by double inclusion, $A \subseteq B \land B \subseteq A \Rightarrow A = B$. This is shown for the statements giving the decomposition of the codomain \mathbb{R}^m . A similar approach can be used to decomposition of \mathbb{R}^n .

i. $C(A) \perp N(A^T)$ (column space is orthogonal to left null space).

Proof. Consider arbitrary $u \in C(A)$, $v \in N(A^T)$. By definition of C(A), $\exists x \in \mathbb{R}^n$ such that u = Ax, and by definition of $N(A^T)$, $A^Tv = \mathbf{0}$. Compute $u^Tv = (Ax)^Tv = x^TA^Tv = x^T(A^Tv) = x^T\mathbf{0} = 0$, hence $u \perp v$ for arbitrary u, v, and $C(A) \perp N(A^T)$.

ii. $C(A) \cap N(A^T) = \{0\}$ (0 is the only vector both in C(A) and $N(A^T)$).

Proof. (By contradiction, *reductio ad absurdum*). Assume there might be $b \in C(A)$ and $b \in N(A^T)$ and $b \neq 0$. Since $b \in C(A)$, $\exists x \in \mathbb{R}^n$ such that b = Ax. Since $b \in N(A^T)$, $A^Tb = A^T(Ax) = 0$. Note that $x \neq 0$ since $x = 0 \Rightarrow b = 0$, contradicting assumptions. Multiply equality $A^TAx = 0$ on left by x^T ,

$$\boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \Rightarrow (\boldsymbol{A} \boldsymbol{x})^T (\boldsymbol{A} \boldsymbol{x}) = \boldsymbol{b}^T \boldsymbol{b} = \|\boldsymbol{b}\|^2 = 0,$$

thereby obtaining b = 0, using norm property 3. Contradiction.

iii. $C(\mathbf{A}) \oplus N(\mathbf{A}^T) = \mathbb{R}^m$

Proof. (iii) and (iv) have established that $C(A), N(A^T)$ are orthogonal complements

$$C(A) = N(A^{T})^{\perp}, N(A^{T}) = C(A)^{\perp}.$$

By Lemma 2 it results that $C(A) \oplus N(A^T) = \mathbb{R}^m$.

DATA INFORMATION

The remainder of the FTLA is established by considering $\mathbf{B} = \mathbf{A}^T$, e.g., since it has been established in (v) that $C(\mathbf{B}) \oplus N(\mathbf{A}^T) = \mathbb{R}^n$, replacing $\mathbf{B} = \mathbf{A}^T$ yields $C(\mathbf{A}^T) \oplus N(\mathbf{A}) = \mathbb{R}^m$, etc.