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MODEL REDUCTION

1. Projection of mappings

The least-squares problem
min |y -Ax| (1)
xeR”

focuses on a simpler representation of a data vector y € R™ as a linear combination of column vectors of A € R™".
Consider some phenomenon modeled as a function between vector spaces f: X — Y, such that for input parameters
x € X, the state of the system is y =f (x). For most models f is differentiable, a transcription of the condition that the
system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice of units
and origin, a linearized model

y=Ax,AeR"™",
is obtained if y e C(A), expressed as (1) if y ¢ C(A).

A simpler description is often sought, typically based on recognition that the inputs and outputs of the model can
themselves be obtained as linear combinations x =Bu, y = Cv, involving a smaller set of parameters u € R?, v e R?,
p <m, g<n. The column spaces of the matrices B € R"*?, C € R™? are vector subspaces of the original set of inputs
and outputs, C(B) <R”, C(C) <R™. The sets of column vectors of B, C each form a reduced basis for the system
inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been orthonormalized
through the Gram-Schmidt procedure such that B'B =1, and C*C=1,. Expressing the model inputs and outputs in
terms of the reduced basis leads to

Cv=ABu=v=C" ABu=v=Ru.
The matrix R = CT AB is called the reduced system matrix and is associated with a mapping g: U — V, that is a

restriction to the U, V vector subspaces of the mapping f. When f is an endomorphism, f: X — X, m = n, the same
reduced basis is used for both inputs and outputs, x =Bu, y = By, and the reduced system is

v=Ru,R=BT AB.
Since B is assumed to be orthogonal, the projector onto C(B) is Pg=BB”. Applying the projector on the inital model
Pgy=PgAx
leads to BBT y=BB” Ax, and since v=B" y the relation Bv = BB” ABu is obtained, and conveniently grouped as
Bv=B(BTAB)u=Bv=B(Ru),

again leading to the reduced model v = Bu. The above calculation highlights that the reduced model is a projection of
the full model y=Ax on C(B).

2. Reduced bases

2.1. Correlation matrices

Correlation coefficient. Consider two functions x,x;: R - R, that represent data streams in time of inputs x;(¢) and
outputs x;(#) of some system. A basic question arising in modeling and data science is whether the inputs and outputs
are themselves in a functional relationship. This usually is a consequence of incomplete knowledge of the system, such
that while x,x, might be assumed to be the most relevant input, output quantities, this is not yet fully established. A
typical approach is to then carry out repeated measurements leading to a data set D = {(x;(#;),x2(¢;))|i=1,...,N}, thus
defining a relation. Letx;,x, € RY denote vectors containing the input and output values. The mean values py, yt» of
the input and output are estimated by the statistics

m=f=x Y xi)=Elxl ==y x)=Elx]

N N
i=1 i=1



where E is the expectation seen to be a linear mapping, E: RY — R whose associated matrix is

1
E=5[11 .. 1],

and the means are also obtained by matrix vector multiplication (linear combination),
)El :Exl, )_CZZEXZ.

Deviation from the mean is measured by the stzandard deviation defined for x,x, by

1= EL(x1- 1)), 02= |E[(x2= 12)*].

Note that the standard deviations are no longer linear mappings of the data.

Assume that the origin is chosen such that x; =x,=0. One tool to estalish whether the relation D is also a function is

to compute the correlation coefficient
E[x1x2 E[xi1x2
p(x1,x2) = ([70 1 [2 ]2 )
12 E[x7] E[x3]

that can be expressed in terms of a scalar product and 2-norm as

T

X1 X2
(1, 2) = T
PN T

Squaring each side of the norm property |x; +x2l <[lx 1l + [|x2], leads to
T <xT T ) Ty <
(x1+x2)" (X1 +x2) X7 X1 +X2 X2+ 22y P2l = xq1 x2 < e[ e,

known as the Cauchy-Schwarz inequality, which implies —1 < p (x1,x2) < 1. Depending on the value of p, the variables
x1(t),x2(¢) are said to be:

1. uncorrelated, if p =0;
2. correlated, if p=1;
3. anti-correlated, if p=—1.
The numerator of the correlation coefficient is known as the covariance of x,x,
cov(xy,xa) = E[x1x3].
The correlation coefficient can be interpreted as a normalization of the covariance, and the relation
cov(x1,x2) =x1 X2= p (x1,x2) e ]l |2l

is the two-variable version of a more general relationship encountered when the system inputs and outputs become
vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters x € R”, y € R™ thought
to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful
description is furnished by u € R, v € R” with fewer components p <m, g <n. Applying the same ideas as in the
correlation coefficient, a sequence of N measurements is made leading to data sets

X=[x1x ... , ]eRY" Y=[y, y5 ... y,]e RN*"
Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero
E[x]=0,E[y]=0.

Covariance matrices can be constructed by

xT xTx; xTx, ... xTx,

T T T T
Cy=X"X=|*2|[x; x, ... x,]=| X251 ¥2X2 - X2 Xn | cRrxn,

x! xIx; xIx, ... xIx,
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Consider now the SVDs of Cy=NANT, X=UZXS7, and from
Cx=X"X=UZSHTUZS"=SXTUTUXLST=SET"XST=NANT,

identify N=S,and A=XT X.

Recall that the SVD returns an order set of singular values o> 02> --- >, and associated singular vectors. In many

applications the singular values decrease quickly, often exponentially fast. Taking the first g singular modes then gives
a basis set suitable for mode reduction

x:Squ:[sl $2 ... sq]u.



	Model Reduction
	1. Projection of mappings
	2. Reduced bases
	2.1. Correlation matrices
	Correlation coefficient.
	Patterns in data.




