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DATA TRANSFORMATION

1. Gaussian elimination and row echelon reduction

Suppose now that A x =b admits a unique solution. How to find it? We are especially interested in constructing a gen-
eral procedure, that will work no matter what the size of A might be. This means we seek an algorithm that precisely
specifies the steps that lead to the solution, and that we can program a computing device to carry out automatically.
One such algorithm is Gaussian elimination.

Consider the system

x1+2x2—x3 =2
2)(?1—)62-1—)(33 =2
3X1—XZ—X3 =1

The idea is to combine equations such that we have one fewer unknown in each equation. Ask: with what number
should the first equation be multiplied in order to eliminate x; from sum of equation 1 and equation 2? This number
is called a Gaussian multiplier, and is in this case —2. Repeat the question for eliminating x| from third equation, with
multiplier -3.

X1+2x—x3 = 2 X1+2x-x3 = 2
2x1=x2+x3 = 2 ={ -S5x+3x3 = -2
3x1—x2—x3 =1 —7x2+2x3 = -5

Now, ask: with what number should the second equation be multiplied to eliminate x, from sum of second and third
equations. The multiplier is in this case —7/5.

X1+2x2-x3 = 2 x_l;x2)j_23_;3 i _22
=5x,4+3x3 = -2 = 121 3= 11
—Tx2+2x3 = =5 —?x3 = -5

Starting from the last equation we can now find x3 =1, replace in the second to obtain —5x, = -5, hence x, =1, and
finally replace in the first equation to obtain x; = 1.

The above operations only involve coefficients. A more compact notation is therefore to work with what is known as
the "bordered matrix"

12 -12 12 -1 2 (1)25‘31 22
2-1 1 2f~[0-53 2(~|07 3 2
3.1 -1 1 0-72-5) (00 4 &

Once the above triangular form has been obtain, the solution is found by back substitution, in which we seek to form
the identity matrix in the first 3 columns, and the solution is obtained in the last column.

(1)25‘31 22 12 -1 2 1001
=3 2o 3 2f~]oto
0o L )1 oo 1 1 0011

5 5

2. LU-factorization

e We have introduced Gaussian elimination as a procedure to solve the linear system A x = b ("find coordinates
of vector b in terms of column vectors of matrix A"), x, be R™, A€ R™"

* We now reinterpret Gaussian elimination as a sequence of matrix multiplications applied to A to obtain a
simpler, upper triangular form.

2.1. Example for m=3



Consider the system A x=b

X1+2x—x3 = 2
2)(?1—)62-1—)(33 =2
3X1—XZ—X3 =1

with

A=

1 2 -1 2
2-11 |,b=|2
3-1-1 1

We ask if there is a matrix L; that could be multiplied with A to produce a result L; A with zeros under the main
diagonal in the first column. First, gain insight by considering multiplication by the identity matrix, which leaves A

unchanged
100Y)(1 2 -1 1 2 -1
010f]12-11 =2—11]
001)\3-1-1 3-1-1

In the first stage of Gaussian multiplication, the first line remains unchanged, so we deduce that L; should have the
same first line as the identity matrix
100
Li=(???
7727

100Y(1 2 -1 1 2 -1
2?727112-11 |={0-53
2?77)13 -1 -1 0-7 2

Next, recall the way Gaussian multipliers were determined: find number to multiply first line so that added to second,
third lines a zero is obtained. This leads to the form
100
Li=1710
701
Finally, identify the missing entries with the Gaussian multipliers to determine

1 00
Li=]-210

-301
Verify by carrying out the matrix multiplication

1 00)(1 2 -1 1 2 -1
LiA=]1-210(l2-11|=]0-53

-301){3-1-1 0-7 2

Repeat the above reasoning to come up with a second matrix L, that forms a zero under the main diagonal in the second

column
1 0 0
L,=10 1 0

0-7/51
1 0 0)(1 2 -1 12 -1
L,LiA=|0 1 O0|/]0-5 3 |=]0-5 3 =U
0-7/51){0-7 2 00 -11/5

We have obtained a matrix with zero entries under the main diagonal (an upper triangular matrix) by a sequence of
matrix multiplications.

2.2. General m case

From the above, we assume that we can form a sequence of multiplier matrices such that the result is an upper trian-
gular matrix U

Ly_1..LobLiA=U
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e Recall the basic operation in row echelon reduction: constructing a linear combination of rows to form zeros
beneath the main diagonal, e.g.

al aln Aim

a a e a azi azi
I~ lm 0 an---an ... ap—7-din

daz; dyp ... Ay 1 11

_ 0 a3 a3
A=|az axn ... az, |~ ap=7-A12 ... A3n=7-Ain

aml Am2 -« Amm : am i
0 amz——al]alz amm——analm

o This can be stated as a matrix multiplication operation, with I;; =a;1/an

1 00...0 ap ayip ... Ay ar apn Aim
—l21 10...0 ajy; az ... Ay 0 Cl22—121a12 Clzm—121a1m
—131 01...0 azy dzy ... Az, | = 0 a32—131a12 a3m—l31a1m
_l.ml O O 1 a;,,l Cl,.nz amm O amz—.lmlalz amm—.lmlalm

DEFINITION. The matrix
1 .. 0 o1
0" 0 .. 0
0. 1 . 0
Lkz 0 ... _lk+1,k ... 0
0 ... ~lsap ... O
0 o ~lpp oo 1

with 1 = af,];{) /a,(c{(k), and A® = (a,{l;)) the matrix obtained after step k of row echelon reduction (or, equivalently,

Gaussian elimination) is called a Gaussian multiplier matrix.

e For A e R™ nonsingular, the successive steps in row echelon reduction (or Gaussian elimination) correspond
to successive multiplications on the left by Gaussian multiplier matrices

L,_\Ly_».. L,L,A=U
e The inverse of a Gaussian multiplier is

0
0
1
lk+1,k
lk+2,k

L;'= =I-(L-1)

Sooo
Sooo

lr;,,k
e From (L,,_{L,,—>...L,L{)A =U obtain
A= Ly Ly_>...L,L)"'U=L7]'L;"-...-.L;} \ U=LU

« Due to the simple form of L' the matrix L is easily obtained as

1 0 0 0 O
Iy 1 0 0 0
L i
bn-11 bn-12 w13 ... 10

lm,l lm,z lm,3 lm,m—l 1



We will show that this indeed possible if A x =5 admits a unique solution. Furthermore, the product of lower triangular
matrices is lower triangular, and the inverse of a lower triangular matrix is lower triangular (same applies for upper
triangular matrices). Introduce the notation

Lt'=L, 1.LL
and obtain
L'A=U
or
A=LU

The above result permits a basic insight into Gaussian elimination: the procedure depends on "factoring" the matrix
A into two "simpler" matrices L, U. The idea of representing a matrix as a product of simpler matrices is fundamental
to linear algebra, and we will come across it repeatedly.

For now, the factorization allows us to devise the following general approach to solving A x=5b

1. Find the factorization LU = A

2. Insert the factorization into A x =b to obtain (L U)x=L (U x) =L y=b, where the notation y= U x has been
introduced. The system

Ly=b
is easy to solve by forward substitution to find y for given b
3. Finally find x by backward substitution solution of

Ux=y

Algorithm Gauss elimination without pivoting

fors=1tom-1
fori=s+1tom
t:_ai‘v/am
for j=s+1tom
aj=aj+t-as
bl'=bl'+l"bs

for s =m downto 1

x‘v:bx/ass
fori=1tos—1
bi=b;—ajs-x
return x

Algorithm Gauss elimination with partial pivoting

p =1:m (initialize row permutation vector)
fors=1tom-1
piv = abs(a,s),s)
fori=s+1tom
mag = abs(apy,s)
if mag > piv then
piv=mag;k=p(s);p(s) =p(i); p(i) =k
if piv < € then break(“Singular matrix”)

t=—ap()s/ ap(s)s
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for j=s+1tom
Ap(ij =Ap(ij t1Aps);
bpiy=bpiy+1-by(s)

for s =m downto 1
Xs= bP(S) /ap(S)s
fori=1tos-1
bpiy = bpiiy = Ap(iys - Xs

return x
Given A € R™"
Singular value decomposition Gram-Schmidt Lower-upper
Transformation of coordinates Ax=b
Urv'=A OR=A LU=A
UEVhHx=b=>Uy=b=>y=U"b (QR)x=b=>Qy=b,y=0"p  (LU)x=b=Ly=>b (forwardsubtofind )y
Yz=y=>z=X%y Rx =y (back subtofind x) Ux =y (back sub to find x)

Vix=z=x=Vz

3. Inverse matrix

By analogy to the simple scalar equation a x = b with solution x =a~' b when a # 0, we are interested in writing the
solution to a linear system A x=5b as x=A~'b for A€ R™™, x € R™. Recall that solving A x=b=1 b corresponds to
expressing the vector b as a linear combination of the columns of A. This can only be done if the columns of A form
a basis for R”, in which case we say that A is non-singular.

DEFINITION 1. For matrix A € R"™™ non-singular the inverse matrix is denoted by A~" and satisfies the properties

AAT' =ATTA=T

3.1. Gauss-Jordan algorithm

Computation of the inverse A~! can be carried out by repeated use of Gauss elimination. Denote the inverse by B=A"!
for a moment and consider the inverse matrix property A B=1. Introducing the column notation for B, I leads to

A(By ... By)=(e| ... ey)
and identification of each column in the equality states
ABk=€k,k= 1,2, ., m

with ey the column unit vector with zero components everywhere except for a 1 in row k. To find the inverse we need
to simultaneously solve the m linear systems given above.

1 2 3
-1 3 1

2 -1 -2

Gauss-Jordan algorithm example. Consider

A=

To find the inverse we solve the systems A By =ej,A B, =e3,A B3=e3. This can be done simultaneously by working
with the matrix A bordered by /

1 0
1

10100
(ADh=-111010
2 4-2001




Carry out now operations involving linear row combinations and permutations to bring the left side to /

110100 110 100 110 1 00
-11 1010 021110 021110
2 4-200 0222 0033—11
11010 0 11013(1) 1101(1)(1)
102111 0 0200 5 = 01005 = |_
00114 ] P P9
3 3 0011§ 0011§—§
1
1001—1§—1€
0100?51
0011§—§
to obtain
1 1
'3
A_1= - —
'3
I

4. Determinants
o A e R™™M a square matrix, det(A) € R is the oriented volume enclosed by the column vectors of A (a paral-

lelipiped)

¢ Geometric interpretation of determinants

¢ Determinant calculation rules

e Algebraic definition of a determinant

DEFINITION. The determinant of a square matrix A= (a, ... a, )€ R™" is a real number
ayy aipp ... Ay
a axy» ... a
det(A)=| "2 2 1 DmieR
aAml A2 ... Aum

giving the (oriented) volume of the parallelepiped spanned by matrix column vectors.

e m=2
an a an a
A:( 1 12) det(A) =| 411 @2
a axy a axn
e m=3
ap dpiz a3 ap dpz as
A=| ax axn ax |,det(A)=|a axn axs
asz| az asz asz| az ass

e Computation of a determinant with m =2

a a

=dajjdxp—dadpndas
az an
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e Computation of a determinant with m =3

aip ap aiz
az) az azz | = ap1axaszz+aziazaiz +aszanans
asy asp ass

—a13a22a31 —A23a3201] —A33a1202]
e Where do these determinant computation rules come from? Two viewpoints
— Geometric viewpoint: determinants express parallelepiped volumes

— Algebraic viewpoint: determinants are computed from all possible products that can be formed from
choosing a factor from each row and each column

e m=2

A2 17 A:(al az):((tn u,z)

ay ax

Figure 1.
+ In two dimensions a ““parallelepiped" becomes a parallelogram with area given as

(Area) = (Length of Base) x (Length of Height)

e Take a; as the base, with length b = |la,||. Vector a; is at angle ¢ to xj-axis, a; is at angle ¢, to x;-axis, and
the angle between a, a; is 6 = ¢, —¢;. The height has length

h=llassin 6 = [las|lsin(@2— ¢1) = llazl (sing>cosp; —sin g cosps)
e Usecosgi=ay/lail, singi=a/llall, cos g2 =az /llazll, sin g =ax/|a:l
(Area) = |la |l |axll(sing2cosg | —sin ¢ 1C08@2) = ar1azn —ainas

o The geometric interpretation of a determinant as an oriented volume is useful in establishing rules for calcula-
tion with determinants:

— Determinant of matrix with repeated columns is zero (since two edges of the parallelepiped are iden-
tical). Example for m =3

A= =abw+bcu+cav-ubc-vca-wab=0

o S
o S
T <<

This is more easily seen using the column notation

A=det(a; a; a3 ... )=0

— Determinant of matrix with linearly dependent columns is zero (since one edge lies in the 'hyperplane’
formed by all the others)

e Separating sums in a column (similar for rows)
det(a,+b; ar ... a,)=det(a, a, ... a,,)+det(b; ar ... a,)
witha;,,b; e R™
e Scalar product in a column (similar for rows)

det(aa; a; ... a, )=adet(a, a, ... a,)



with ¢ € R
e Linear combinations of columns (similar for rows)
det(a, a> ... a,,)=det(a; aa,+a, ... a,)
with ¢ € R.

e A determinant of size m can be expressed as a sum of determinants of size m— 1 by expansion along a row or

column
ap di2 a3z ... dim ar» arn as
m
dz; dz a3 ... Ayp | _ . . . .
. . . . . = dan : : t. : -
: . : . : a a ... a
Aml Am2 Am3 ... Amm m2 Cm3 mm
ajy 4dz3z ... dyy
ap| .|+
aAml Am3 ... Amm
azy 4z a4 ... dom
apy| : : AP e
aml Am2 Am4 .. Amm

az; a3 ... A m-1
+(=D"ay,l 2 e
Aml Am3 -« Amm-1
e The formal definition of a determinant

det A= Z v(0o)ai,azi,- . . Ami,

o€EX
requires mm! operations, a number that rapidly increases with m

¢ A more economical determinant is to use row and column combinations to create zeros and then reduce the
size of the determinant, an algorithm reminiscent of Gauss elimination for systems

Example:
1 23 123 2 4
-1 0 1|=|02 4 =‘3 1O‘=20—12=8
-2 -14 0310

The first equality comes from linear combinations of rows, i.e. row 1 is added to row 2, and row 1 multiplied
by 2 is added to row 3. These linear combinations maintain the value of the determinant. The second equality
comes from expansion along the first column

4.1. Cross product
o Consider u,v€ R>. We've introduced the idea of a scalar product
u-v= MTV =UV1+ Uvr+ U3vs
in which from two vectors one obtains a scalar

 We've also introduced the idea of an exterior product

uy UV Uy U3
wl = uy [(vi va v3)=| uavi uava uavs
us Uzvy Uzvy Uszvis

in which a matrix is obtained from two vectors

¢ Another product of two vectors is also useful, the cross product, most conveniently expressed in determinant-
like form
e €y €3
uxv=|up uy uz|=(uav3—vouz)ey + (uzvi—vsuy)ez+ (uva—viuz)es
Vi V2 V3
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