Least squares

octave] 
m=1000; h=2*pi/m; j=1:m;
octave] 
t(j)=(j-1)*h; t=transpose(t);
octave] 
n=5; A=[];
octave] 
for k=1:n
  A = [A sin(k*t)];
end
octave] 
bt=t.*(pi-t).*(2*pi-t);
octave] 
x=A\bt;
octave] 
b=A*x;
octave] 
s=50; i=1:s:m; 
ts=t(i); bs=bt(i);
plot(ts,bs,'ok',t,b,'r');
octave] 
print -depsc L01Fig02.eps
octave] 
close;
octave] 

Figure 2. Comparison of least sqaures approximation (red line) with samples of exact function b(t).