Overview

- Functions
- Measurements
- Linear mapping composition

Definition. (Relation) . A relation R between two sets X, Y is a subset of the Cartesian product $X \times Y$, $R \subseteq X \times Y$.

Homogeneous relations $H \subseteq A \times A$ are classified according to the following criteria.

Reflection. Relation H is reflexive if $(a, a) \in H$ for any $a \in A$. The equality relation $E \subseteq \mathbb{R} \times \mathbb{R}$ is reflexive, $\forall a \in A, a = a$, the less than relation $L \subseteq \mathbb{R} \times \mathbb{R}$ is not, $1 \in R, 1 \not\leq 1$.

Symmetry. Relation H is symmetric if $(a, b) \in H$ implies that $(b, a) \in H$, $(a, b) \in H \Rightarrow (b, a) \in H$. The equality relation $E \subseteq \mathbb{R} \times \mathbb{R}$ is symmetric, $a = b \Rightarrow b = a$, the less than relation $L \subseteq \mathbb{R} \times \mathbb{R}$ is not, $a < b \Rightarrow b < a$.

- **Anti-symmetry.** Relation H is anti-symmetric if $(a, b) \in H$ for $a \neq b$, then $(b, a) \notin H$. The less than relation $L \subseteq \mathbb{R} \times \mathbb{R}$ is antisymmetric, $a < b \Rightarrow b \not< a$.
- **Transitivity.** Relation H is transitive if $(a, b) \in H$ and $(b, c) \in H$ implies $(a, c) \in H$. for any $a \in A$. The equality relation $E \subseteq \mathbb{R} \times \mathbb{R}$ is transitive, $a = b \wedge b = c \Rightarrow a = c$, as is the less than relation $L \subseteq \mathbb{R} \times \mathbb{R}$, $a < b \wedge b < c \Rightarrow a < c$.

Definition. (Function) . A function from set X to set Y is a relation $F \subseteq X \times Y$, that associates to $x \in X$ a single $y \in Y$.

Definition. (Partition) . A partition of a set is a grouping of its elements into non-empty subsets such that every element is included in exactly one subset.

• Equivalence relations partition a set into equivalence classes

Definition. (Norm) . A norm on the vector space $\mathcal{V} = (V, S, +, \cdot)$ is a function $|| ||: V \to \mathbb{R}_+$ that for $u, v \in V$, $a \in S$ satisfies:

- 1. $\|\boldsymbol{v}\| = 0 \Rightarrow \boldsymbol{v} = \boldsymbol{0};$
- 2. ||au|| = |a| ||u||;
- 3. $\|u+v\| \leq \|u\| + \|v\|$.

Definition. (Inner Product) . An inner product in the vector space $\mathcal{V} = (V, \mathbb{R}, +, \cdot)$ is a function $s: V \times V \to \mathbb{R}$ with properties

Symmetry. For any $a, x \in V$, s(a, x) = s(x, a).

Linearity in second argument. For any $a, x, y \in V$, $\alpha, \beta \in \mathbb{R}$, $s(a, \alpha x + \beta y) = \alpha s(a, x) + \beta s(a, y)$.

Positive definiteness. For any $x \in V \setminus \{0\}$, s(x, x) > 0.

• $f: A \to B$ and $g: B \to C$, a composite function, $h = g \circ f$, $h: A \to C$ is defined by

h(x) = g(f(x)).

• $f(x) = Ax, g(y) = By, A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{p \times m}$

$$h(x) = Cx = BAx. \tag{1}$$

• Matrix-matrix product is a grouping of matrix-vector products