

Definition. (Vector Subspace) . $\mathcal{U} = (U, S, +, \cdot)$ with $U \neq \emptyset$ is a vector subspace of vector space $\mathcal{V} = (V, S, +, \cdot)$ over the same field of scalars S if $U \subseteq V$ and $\forall a, b \in S, \forall u, v \in U$, the linear combination $au + bv \in U$.

- 1. Column space, $C(A) = \{ b \in \mathbb{R}^m | \exists x \in \mathbb{R}^n \text{ such that } b = A x \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m reachable by linear combination of columns of A
- 2. Left null space, $N(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = 0 \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m not reachable by linear combination of columns of \mathbf{A}
- 3. Row space, $R(\mathbf{A}) = C(\mathbf{A}^T) = \{ \mathbf{c} \in \mathbb{R}^n | \exists \mathbf{y} \in \mathbb{R}^m \text{ such that } \mathbf{c} = \mathbf{A}^T \mathbf{y} \} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n reachable by linear combination of rows of \mathbf{A}
- 4. Null space, $N(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = 0 \} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n not reachable by linear combination of rows of \mathbf{A}