
1. MATH547 HOMEWORK 4
Topic: Math@UNC environment
Post date: May 25, 2020
Due date: May 28, 2020

1.1. Background: modeling binary interaction in science and engineering
Many systems consist of point interactions. The iconic Eiffel Tower can be modeled through the trusses linking two
points with coordinates 𝒙i, 𝒙j ∈ℝ3. The unit vector along direction from point i to point j is

𝒍ij =
𝒙j −𝒙i

‖𝒙j −𝒙i‖
.

Suppose that structure deformation changes the coordinates to 𝒙i+𝒖i, 𝒙j +𝒖j. The most important structural response
is that on point i a force 𝒇ij is exerted that can be approximated as

𝒇ij =𝒍ij 𝒍ijT (𝒖i −𝒖j),

in appropriate physical units. An opposite force 𝒇ji =−𝒇ij acts on point j. Note the projector along the truss direction
𝒍ij 𝒍ijT . Adding forces on a point from all trusses leads to the linear relation

𝒇 =𝑲𝒖 (1)

with 𝒇 ,𝒖∈ℝm, 𝑲 ∈ℝm×m, d=3 the number of dimensions, N the number of points, and m=dN , the number of degrees
of freedom of the structure. Point interactions arise in molecular or social interactions, cellular motility, and economic
exchange much in the same form (1). The techniques in this homework are equally applicable to physical chemistry,
sociology, biology or business management.

Figure 1. Eiffel Tower models
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Load the Eiffel Tower data.

octave] cd /home/student/courses/MATH547ML/data/EiffelTower;
load EiffelPoints; X=Expression1; [NX,ndims]=size(X);
load EiffelLines; L=Expression1; [NL,nseg]=size(L);

octave] m=3*NX; disp([NX NX^2 NL m])

26464 700343296 31463 79392

octave]

Of the possible N 2 ≅7× 108 linkages between points in the structure, only Nl =31462 are present. It is wasteful, and
often impossible, to store the entire matrix of couplings between points 𝑲 ∈ℝm×m (m2 ≅6×109), but storing only the
nonzero elements corresponding to the interacting can be carried out through a sparse matrix. After allocating space
with spalloc, the matrix is initialized with zeros along the truss directions.

octave] K=spalloc(m,m,3*NL);
for k=1:NL
i = L(k,1); j = L(k,2);
p = 3*(i-1)+1; q = 3*(j-1)+1;
for id=1:3

for jd=1:3
K(i+id,j+jd) = 0;

end;
end;

end

octave]

The matrix 𝑲 can be formed by loops over the trusses. The following computation takes a few minutes. The matrix K
has been pre-computed, and can be loaded from a disk file when answering the questions below, rather than executing
the following loops.

octave] for k=1:NL
i = L(k,1); j = L(k,2);
lij = (X(j,:)-X(i,:))'; Pij = lij*lij';
p = 3*(i-1)+1; q = 3*(j-1)+1;
for id=1:3

for jd=1:3
K(i+id,j+jd) = K(i+id,j+jd) + Pij(id,jd);

end;
end;

end

octave] save "K.mat" K

octave]

1.2. Theoretical questions

Provide a proof or counter-example for these true or false questions.

1. If 𝑹 is an upper-triangular matrix, its singular values are the same as the diagonal values rii.
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SOLUTION. Counterexample

octave] R=[1 1;0 1]

R =

1 1
0 1

octave] svd(R)

ans =

1.61803
0.61803

octave]

2. If 𝑨=𝑨T , the singular values of 𝑨 are the same as its eigenvalues.

SOLUTION. Not quite, singular values are positive, while eigenvalues can be negative. Counterexample

octave] A=[1 0;0 -1]

A =

1 0
0 -1

octave] [svd(A) eig(A)]

ans =

1 -1
1 1

octave]

3. If 𝑻 is of full rank, 𝑨 and 𝑩=𝑻−1𝑨𝑻 have the same singular values.

SOLUTION. No, counterexample

octave] A=[1 2;0 1]; T=[0 2; 1 0]; T1=inv(T); B=T1*A*T; disp([A B])

1 2 1 0
0 1 1 1

octave] [svd(A) svd(B)]

ans =

2.41421 1.61803
0.41421 0.61803

octave]

1 MATH547 HOMEWORK 4 3



4. For 𝑨,𝑩∈ℝm×m, the matrices 𝑨𝑩 and 𝑩𝑨 have the same eigenvalues.

SOLUTION. Yes. Consider 𝑨𝑩𝒙=𝜆𝒙, with 𝒙≠𝟎. Compute

𝜆𝑩𝒙=𝑩(𝜆𝒙)=𝑩(𝑨𝑩𝒙)=(𝑩𝑨)(𝑩𝒙).

Set 𝒚=𝑩𝒙, and obtain

(𝑩𝑨)𝒚=𝜆𝒚,

the same eigenvalue as for 𝑨𝑩.

1.3. Reduced order modeling

Load data, and define functions to draw the deformed structure.

octave] cd /home/student/courses/MATH547ML/data/EiffelTower;
load EiffelPoints; X=Expression1; [NX,ndims]=size(X);
load EiffelLines; L=Expression1; [NL,nseg]=size(L);
m=3*NX; load K;

octave] function drawXu(X,u,L,is)
clf; view(-30,45); [NX,nd]=size(X);
[nL,nseg]=size(L); x=[]; y=[]; z=[];
U=reshape(u,3,NX)';
for k=1:is:nL

x=[x X(L(k,1),1)+U(L(k,1),1) X(L(k,2),1)+U(L(k,2),1)];
y=[y X(L(k,1),2)+U(L(k,1),2) X(L(k,2),2)+U(L(k,2),2)];
z=[z X(L(k,1),3)+U(L(k,1),3) X(L(k,2),3)+U(L(k,2),3)];

end;
plot3(x,y,z);

end

octave] drawXu(X,zeros(m,1),L,20)

octave] function drawXU(X,U,L,is)
clf; view(-30,45); [NX,nd]=size(X);
[nL,nseg]=size(L); x=[]; y=[]; z=[];
for k=1:is:nL

x=[x X(L(k,1),1)+U(L(k,1),1) X(L(k,2),1)+U(L(k,2),1)];
y=[y X(L(k,1),2)+U(L(k,1),2) X(L(k,2),2)+U(L(k,2),2)];
z=[z X(L(k,1),3)+U(L(k,1),3) X(L(k,2),3)+U(L(k,2),3)];

end;
plot3(x,y,z);

end

octave] drawXU(X,zeros(NX,3),L,20)

octave]

The following questions only require a few Octave lines to solve correctly. Be careful to not request output of the
large vectors and matrices that arise. Use visualization with the draw function to represent results, and concentrate
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on the mathematical formulation. For example, imposing displacement 𝒖 = (z, 0, 0) at each node, i.e., a horizontal
displacement along the x direction proportional to the z coordinate is accomplished by:

octave] U=zeros(NX,3); U(1:NX,1)=X(1:NX,3);

octave] drawXU(X,U,L,20)

octave]

1.3.1. Least squares solution on singular modes

Find the linear combination 𝒔 of the first 10 singular modes that best approximates a force 𝒇 =(z cos𝜃,z sin𝜃,0) on the
structure. Randomly choose 𝜃. Show the first 3 singular modes and the linear combination you find.

SOLUTION. Construct the force at each node, first as an N × d table, and then as a vector with m = dN components.
Check correct representation of the three components of the force as successive elements in a vector.

octave] theta=rand()*2*pi; F=zeros(NX,3);
F(1:NX,1)=X(1:NX,3)*cos(theta); F(1:NX,2)=X(1:NX,3)*sin(theta);
f=reshape(F',m,1); nN=2000; i0=3*(nN-1); disp([F(nN,:)])

-18.53273 49.60776 0.00000

octave]

From the singular value decomposition 𝑲 = 𝒀𝚺𝒁T ∈ ℝm×m, denote by 𝒀k, 𝒁k ∈ ℝm×k the matrices formed by the first
k columns of 𝒀,𝒁. The matrix 𝒀 is a basis for the codomain, and the matrix 𝒁 is a basis for the domain of the linear
mapping represented by the matrix 𝑲. The matrices 𝒀k, 𝒁k are therefore bases for subspaces within the codomain,
domain, respectively. From the full model 𝒇 =𝑲𝒖, obtain a reduced model

𝒚=𝑹𝒙, 𝒙, 𝒚∈ℝk, 𝑹∈ℝk×k

with the reduced system matrix defined by

𝑹=𝒀k
T 𝑲𝒁k .

(Note: choosing the same reduced basis for approximation, e.g., 𝒈=𝒁k 𝒚, of both forces and displacements is accept-
able but not optimal)

Solution of the reduced model gives an approximation of the solution to the full model

𝒇 ≅𝒈=𝒀k 𝒚, 𝒖≅𝒔=𝒁k 𝒙 .

If given a force on the full model, the approximation of the force on the reduced model is obtained as the solution of
the least squares problem

min
𝒚

‖𝒇 −𝒀k 𝒚‖.

Since 𝒀k has normalized, orthogonal columns, the solution to the least squares problem is 𝒚=𝒀k
T 𝒇 . Carry out the above

steps, through the following five Octave instructions.

octave] [Yk,Sigmak,Zk]=svds(K,10);

octave] y=Yk'*f; R=Yk'*K*Zk; x=R\y; s=Zk*x;
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octave]

Display the requested singular vectors and the approximate solution obtained from the reduced model. The displace-
ments can be scaled to obtain a more comprehensible visualization.

octave] cd /home/student/courses/MATH547ML/homework; mkdir hw04; cd hw04

octave] figure(1); drawXu(X,0*Zk(:,1),L,20); print -depsc Fig1a.eps; figure(2);

octave] drawXu(X,250*Zk(:,1),L,20); print -depsc Fig1b.eps

octave] drawXu(X,250*Zk(:,2),L,20); print -depsc Fig1c.eps

octave] drawXu(X,250*Zk(:,3),L,20); print -depsc Fig1d.eps

octave] drawXu(X,5000*s,L,20); print -depsc Fig1e.eps

octave]
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Figure 2. Representation of deformation of the Eiffel Tower. Top row contains first 3 singular vectors, showing “squeezing” of the
structure along different spatial directions, and the approximation given by the reduced model solution for a force 𝒇 =(zcos𝜃, z sin𝜃, 0).

1.3.2. Least squares solution on eigenmodes

Find the linear combination 𝒕 of the first 10 eigenmodes that best approximates a force 𝒇 = (z cos𝜃, z sin 𝜃, 0) on the
structure. Show the first 3 eigenmodes and the linear combination you find.

SOLUTION. The procedure is similar to the previous case, but with a different choice of bases. The eigenvectors are no
longer guaranteed to be be orthogonal, so a QR procedure is applied to obtain the reduced model bases. In this case
the basis for the domain and codomain are the same.

octave] [Vk,Lambdak]=eigs(K,10); [Rk,Tk]=qr(Vk,0);

octave] y=Rk'*f; R=Rk'*K*Rk; x=R\y; t=Rk*x;

octave]

Display the requested eigenvectors and the approximate solution obtained from the reduced model. Again, the dis-
placements are scaled to obtain a more comprehensible visualization.

octave] cd /home/student/courses/MATH547ML/homework; mkdir hw04; cd hw04

octave] figure(1); drawXu(X,0*Rk(:,1),L,20); print -depsc Fig2a.eps; figure(2);

octave] drawXu(X,250*Rk(:,1),L,20); print -depsc Fig2b.eps
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octave] drawXu(X,250*Rk(:,2),L,20); print -depsc Fig2c.eps

octave] drawXu(X,250*Rk(:,3),L,20); print -depsc Fig2d.eps

octave] drawXu(X,5000*t,L,20); print -depsc Fig2e.eps

octave]

0

20

40

60

100

150

100

80

100

80
6050

120

140

0

-50 -40
-20

40
20

0

-100

30

-50

20

0

30

50

100

150

10

0

-10

20
10

0
-10-20

-20
-30 -30

0

30

50

100

150

20
100

20

10
30

200

0-10
-10-20

-20
-30 -30

-50

40

0

50

100

150

60
40

8020

0

-20

200

20
0-40

-20
-60 -40

0

20

30

40

20

60

80

100

120

140

20
10

30
10

0
0-10

-10-20
-20

-30 -30

0

20

30

40

20

60

80

100

120

140

20
10

30
10

0
0-10

-10-20
-20

-30 -30

0

20

30

40

20

60

80

100

120

140

20
10

30
10

0
0-10

-10-20
-20

-30 -30

0

20

30

40

20

60

80

100

120

140

20
10

30
10

0
0-10

-10-20
-20

-30 -30

Figure 3. Representation of deformation of the Eiffel Tower. Top row contains first 3 eigenvectors, again showing “squeezing” of the
structure along different spatial directions, and the approximation given by the reduced model solution for a force 𝒇 =(zcos𝜃, z sin𝜃, 0).
Note that the eigenmode reduced solution is very different from that obtained from the singular vector model reduction.

1.3.3. Least squares solution on Krylov modes

Replace singular modes or eigenmodes by orthogonal 𝑸, with 𝑸𝑹=� 𝒇 𝑲 𝒇 𝑲2 𝒇 . . . 𝑲9 𝒇 � (known as Krylov modes).
Find the linear combination 𝒘 of the first 10 Krylov modes that best approximates a force 𝒇 = (z cos 𝜃, z sin 𝜃, 0)
on the structure. Show the first 3 Krylov modes and the linear combination you find.

SOLUTION. Again, the procedure is similar, but with a different choice of bases. The Krylov modes must be computed
and then orthogonalized. In this case also the basis for the domain and codomain are the same.

octave] k=10; Kk = [f];
for i=2:k
Kk = [Kk K*Kk(:,i-1)];

end;
[Wk,Tk]=qr(Kk,0);

octave] y=Wk'*f; R=Wk'*K*Wk; x=R\y; w=Wk*x;

octave]

Display the requested eigenvectors and the approximate solution obtained from the reduced model. Again, the dis-
placements are scaled to obtain a more comprehensible visualization.

octave] cd /home/student/courses/MATH547ML/homework; mkdir hw04; cd hw04

octave] figure(1); drawXu(X,0*Wk(:,1),L,20); print -depsc Fig3a.eps; figure(2);

octave] drawXu(X,250*Wk(:,1),L,20); print -depsc Fig3b.eps

octave] drawXu(X,250*Wk(:,2),L,20); print -depsc Fig3c.eps

octave] drawXu(X,250*Wk(:,3),L,20); print -depsc Fig3d.eps
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octave] drawXu(X,250*w,L,20); print -depsc Fig3e.eps

octave]
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Figure 4. Representation of deformation of the Eiffel Tower. Top row contains first 3 Krylov modes, and the approximation given by the
reduced model solution for a force 𝒇 =(z cos𝜃, z sin𝜃,0). Note that the Krylov reduced solution does not seem realistic.
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Figure 5. Comparison of the first 3 singular modes (top row), eigenmodes (middle row), Krylov modes (bottom row).

1.3.4. Reduced-rank singular mode approximation

From the SVD 𝑲 =𝒀𝚺𝒁T construct an approximate matrix

𝑲̃ =�
k=1

n

𝜎k 𝒚k 𝒛k
T

and compare the force 𝒇 with 𝒇 = 𝑲̃ 𝒔, 𝒔 from question 1.3.1.

MATH547 Homework



SOLUTION. The previous problem showed the approximate displacement obtained from the reduced model. Here the
error in force is estimated

𝒇 = 𝑲̃ 𝒔=((((((((((((((�
k=1

n

𝜎k 𝒚k 𝒛k
T ))))))))))))))𝒔=�

k=1

n

𝜎k 𝒚k 𝒛k
T𝒔= �

k=1

n

ck 𝒚k =𝒀k 𝒄,

with ck =𝜎k 𝒛k
T𝒔.

octave] c=diag(Sigmak).*Zk'*s;

octave] ftilde=Yk*c;

octave] norm(f-ftilde)/norm(f)

ans = 0.99999

octave]

1.3.5. Reduced-rank eigenmode approximation

From the eigendecomposition 𝑲𝑹=𝑹𝚲 construct an approximate matrix

𝑲̃ = �
k=1

n

𝜆k 𝒓k 𝒓k
T

and compare the force 𝒇 with 𝒇 = 𝑲̃ 𝒕, 𝒕 from question 1.3.2.
SOLUTION. Repeat the above procedure, now using eigenmodes,

𝒇 =𝑲̃ 𝒔=((((((((((((((�
k=1

n

𝜆k 𝒓k 𝒓k
T ))))))))))))))𝒕 =�

k=1

n

𝜆k 𝒓k 𝒓k
T 𝒕 = �

k=1

n

dk 𝒓k =𝑹k 𝒅,

with ck =𝜎k 𝒛k
T𝒔.

octave] d=diag(Lambdak).*Rk'*t;

octave] ftilde=Rk*d;

octave] norm(f-ftilde)/norm(f)

ans = 0.99997

octave]

1.3.6. Reduced model convergence

Choose one of the reduced models from 1.3.1 to 1.3.4. Repeat the calculations for 15,20,25 modes, and comment on
whether the solutions converge.
SOLUTION. Construct a function to return the error in the force estimation for k modes.

octave] function ferr=SVDreduced(K,f,k)
[Yk,Sigmak,Zk]=svds(K,k);
y=Yk'*f; R=Yk'*K*Zk; x=R\y; s=Zk*x;
c=diag(Sigmak).*Zk'*s;
ftilde=Yk*c;
ferr=norm(f-ftilde)/norm(f);

end

octave] ferr10=SVDreduced(K,f,10);

octave] ferr15=SVDreduced(K,f,15);

octave] ferr20=SVDreduced(K,f,20);

octave] ferr25=SVDreduced(K,f,25);

octave] disp([ferr10 ferr15 ferr20 ferr25])

0.99999 0.99997 0.99996 0.99995
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octave]

Notice that the relative error

𝜀k = ‖𝒇k − 𝒇 ‖
‖𝒇 ‖ ,

is decreasing, albeit slowly. Computation of a larger number of singular values (takes a few minutes to complete) leads
to a plot from that indicates

octave] sig=svds(K,100);

octave] plot(log10(sig),'o'); print -depsc Fig6a.eps

octave] SVDreduced(K,f,40)

ans = 0.99992

octave]
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