
Linear algebra for data science
SORIN MITRAN

Department of Mathematics
University of North Carolina at Chapel Hill

ABSTRACT

This textbook presents the essential concepts from linear algebra of direct utility to analysis
of large data sets. The theoretical foundations of the emerging discipline of Data Science are
still being defined at present, but linear algebra is certainly one the cornerstones. Traditional
presentations of linear algebra reflect its historical roots with a focus on linear systems and
determinants, typically of small size. Presentation of the topic osten links solutions of linear sys-
tems to posible intersections of lines or planes. Such an approach is ill-suited for data science in
which the primary interest is in efficient description of large data sets, and automated extraction
of regularity from the available data. Neither is the essence of solving a linear system presented
as the information-conserving coordinate transformation that it actually represents when the
system matrix is of full rank.

The emphasis in linear algebra presentation suggested by data science is quite different. The
focus naturally shists to the essential problem of efficient description of large data sets using a
small, typically incomplete set of feature vectors. Linear algebra becomes the study of the basic
operation of linear combination and its potential as a descriptor of large data sets. Rather than
concentrate on the basis transformation represented by linear system solution, the focus shists
to maximal information compression. Instead of Gaussian elimination, the crucial algorithm
becomes the singular value decomposition. The typical operation required is not to solve a linear
system, but to construct low-dimensional approximations of the available data through projec-
tion and least squares.

Furthermore, computational exercises based on small matrices obscure the vitality and utility of
linear algebra in data science of describing objects as disparate and information-rich as images,
medical scans or sound recordings. To more faithfully portray the way linear algebra actu-
ally gets used in data science, this textbook is packaged with a complete sostware environment
that contains extensive data sets, code snippets to carry out typical analysis, and procedures
to transform heterogeneous data sources into standard linear algebra representations. Rather
than relegate computational applications to isolated sections, the entire text is interspersed with
practical examples using the Octave language, especially suited for linear algebra, and largely
compatible with Matlab.

This textbook is drasted and meant to be worked through in TeXmacs, a scientific editing plat-
form that features “live documents” with embedded computational examples constructed in
freely available mathematical software systems such as Asymptote, Eukleides, Gnuplot, Maxima,
and Octave. The most convenient method to ensure that these various systems work together
as intended is to utilize this textbook within theMath@UNC virtual machine. A virtual machine
is a program that runs on a physical computer and emulates another computer. Math@UNC
is an Arch Linux environment built under VirtualBox, a freely available emulator that runs on
Windows, OS X, Linux, and Solaris host computers. The main advantage of the Math@UNC
system is pre-configuration of all Arch Linux and mathematical sostware settings, thus allowing
students to learn usage of scientific sostware and mathematical concepts in a standard envi-
ronment.

5

This textbook was developed for an intensive Maymester course that meets in twelve sessions
of three hours each. The content organization reflects a desire to present crucial mathematical
ideas and practical skills to students from various backgrounds who might be interested in data
science. The key concepts required for mathematics students are present: matrix vector spaces,
matrix factorizations, linear systems, eigenvalues. For a more general audience, these mathe-
matical topics are also recast as addressing specific aspects of data: expressiveness, redundancy,
efficiency, compression, partitioning. More than a simple relabeling, this reinterpretation allows
for application of linear algebra operations to data far removed from the physial sciences or
engineering. The text and its associated sostware environment considers data sets from visual
art, music, biology, medicine, social sciences.

6 ABSTRACT

TABLE OF CONTENTS

ABSTRACT . 5

1. LINEAR COMBINATIONS . 11

Vectors and Matrices . 11
1. Quantities . 11

1.1. Numbers . 11
1.2. Quantities described by a single number . 14
1.3. Quantities described by multiple numbers . 14

2. Vectors . 14
2.1. Vector spaces . 14
2.2. Real vector space ℛm . 15

Column vectors. 15
Row vectors. 16
Compatible vectors. 17

2.3. Working with vectors . 17
Ranges. 17
Visualization. 18

3. Matrices . 19
3.1. Forming matrices . 19
3.2. Identity matrix . 20

4. Linear combinations . 20
4.1. Linear combination as a matrix-vector product . 20

Linear combination. 21
Matrix-vector product. 21

4.2. Linear algebra problem examples . 21
Linear combinations in E2. 21
Linear combinations in ℛm and 𝒞 0[0, 2π). 22

5. Vectors and matrice in data science . 23
Linear Mappings . 24

1. Functions . 24
1.1. Relations . 24

Homogeneous relations. 25
1.2. Functions . 26
1.3. Linear functionals . 27
1.4. Linear mappings . 28

2. Measurements . 28
2.1. Equivalence classes . 28
2.2. Norms . 29

7

2.3. Inner product . 31
3. Linear mapping composition . 33

3.1. Matrix-matrix product . 33

2. VECTOR SPACES . 35

Formal Rules . 35
1. Algebraic structures . 35

1.1. Typical structures . 35
Groups. 35
Rings. 35
Fields. 35

1.2. Vector subspaces . 36
2. Vector subspaces of a linear mapping . 38

Data Redundancy . 41
1. Linear dependence . 41
2. Basis and dimension . 42
3. Dimension of matrix spaces . 42

3. FUNDAMENTAL THEOREM OF LINEAR ALGEBRA . 43

Data Information . 43
1. Partition of linear mapping domain and codomain . 43

Data Partitioning . 45
1. Mappings as data . 45

1.1. Vector spaces of mappings and matrix representations 45
1.2. Measurement of mappings . 46

2. The Singular Value Decomposition (SVD) . 48
2.1. Orthogonal matrices . 48
2.2. Intrinsic basis of a linear mapping . 49
2.3. SVD solution of linear algebra problems . 51

Change of coordinates. 51
Best 2-norm approximation. 52
The pseudo-inverse. 52

4. LEAST SQUARES . 53

Data Compression . 53
1. Projection . 53
2. Gram-Schmidt . 55
3. QR solution of linear algebra problems . 57

3.1. Transformation of coordinates . 57
3.2. General orthogonal bases . 58
3.3. Least squares . 59

Model Reduction . 62
1. Projection of mappings . 62
2. Reduced bases . 63

8 TABLE OF CONTENTS

2.1. Correlation matrices . 63
Correlation coefficient. 63
Patterns in data. 64

5. CHANGE OF BASIS . 67

Data Transformation . 67
1. Gaussian elimination and row echelon reduction . 67
2. LU-factorization . 68

2.1. Example for m=3 . 68
2.2. General m case . 69

3. Inverse matrix . 72
3.1. Gauss-Jordan algorithm . 72

4. Determinants . 73
4.1. Cross product . 77

Data Efficiency . 77
1. Krylov bases . 77
2. Greedy approximation . 78

6. EIGENPROBLEMS . 79

Data Stability . 79
1. The eigenvalue problem . 79
2. Computation of the SVD . 84

Data Resonance . 84
1. Bases induced by eigenmodes . 84

TABLE OF CONTENTS 9

CHAPTER 1

LINEAR COMBINATIONS

VECTORS AND MATRICES

1. Quantities

1.1. Numbers

Most scientific disciplines introduce an idea of the amount of some entity or property of interest. Furthermore,
the amount is usually combined with the concept of a number , an abstraction of the observation that the two sets
A = {Mary, Jane, Tom} and B= {apple, plum, cherry} seem quite different, but we can match one distinct person to
one distinct fruit as in {Mary→plum, Jane→apple, Tom→cherry}. In contrast we cannot do the same matching
of distinct persons to a distinct color from the set {red, green}, and one of the colors must be shared between two
persons. Formal definition of the concept of a number from the above observations is surprisingly difficult since it
would be self-referential due to the apperance of the numbers “one” and “two”. Leaving this aside, the key concept
is that of quantity of some property of interest that is expressed through a number. Several types of numbers have
been introduced in mathematics to express different types of quantities, and the following will be used throughout
this text:

ℕ. The set of natural numbers, ℕ= {0, 1,2, 3, . . . }, infinite and countable, ℕ+= {1,2, 3, . . . };

ℤ. The set of integers, ℤ= {0,±1,±2,±3, . . . }, infinite and countable;

ℚ. The set of rational numbers ℚ = {p /q,p ∈ℤ,q ∈ℕ+}, infinite and countable;

ℝ. The set of real numbers, infinite, not countable, can be ordered;

ℂ. The set of complex numbers, ℂ= {x + iy ,x ,y ∈ℝ}, infinite, not countable, cannot be ordered.

A computer has a finite amount of memory, hence cannot represent all numbers, but rather subsets of the above
sets. Furthermore, computers internally use binary numbers composed of binary digits, or bits. Many computer
number types are defined for specific purposes, and are osten encountered in applications such as image represen-
tation or digital data acquisition. Here are the main types.

Subsets of ℕ. The number types uint8, uint16, uint32, uint64 represent subsets of the natural numbers
(unsigned integers) using 8, 16, 32, 64 bits respectively. An unsigned integer with b bits can store a natural
number in the range from 0 to 2b−1. Two arbitrary natural numbers, written as ∀i, j ∈ℕ can be added and
will give another natural number, k = i + j ∈ℕ. In contrast, addition of computer unsigned integers is only
defined within the specific range 0 to 2b−1.

octave] i=uint8(15); j=uint8(10); k=i+j

k = 25

octave] i=uint8(150); j=uint8(200); k=i+j

k = 255

11

octave] k=i-j

k = 0

octave]

Subsets of ℤ. The number types int8, int16, int32, int64 represent subsets of the integers. One bit is used
to store the sign of the number, so the subset of ℤ that can be represented is from 1−2b−1 to 2b−1−1

octave] i=int8(100); j=int8(101); k=i+j

k = 127

octave] k=i-j

k = -1

octave]

Subsets of ℚ,ℝ,ℂ. Computers approximate the real numbers through the set F of floating point numbers.
Floating point numbers that use b = 32 bits are known as single precision, while those that use b = 64 are
double precision. A floating point number x ∈F is stored internally as x =±.B1B2. . .Bm×2±b1b2. . .be where Bi,
i=1,. . . ,m are bits within the mantissa of length m, and bj, j =1,. . . ,e are bits within the exponent, along with
signs ± for each. The default number type is usually double precision, more concisely referred to double.
Common constants such as e, π are predefined as double, can be truncated to single, and the number of
displayed decimal digits is controlled by format. The function disp(x) displays its argument x.

octave] format long; disp([e pi])

2.718281828459045 3.141592653589793

octave] disp([single(e) single(pi)])

2.7182817 3.1415927

octave]

The approximation of the reals ℝ by the floats F is characterized by: realmax, the largest float, realmin
the smallest positive float, and eps known as machine epsilon. Machine epsilon highlights the differences
between floating point and real numbers since it is defined as the largest number ϵ ∈F that satisfies 1+ϵ=1.
If ε ∈ℝ of course 1 + ε = 1 implies ε = 0, but floating points exhibit “granularity”, in the sense that over a
unit interval there are small steps that are indistinguishable from zero due to the finite number of bits
available for a float. Machine epsilon is small, and floating point errors can usually be kept under control.
Keep in mind that perfect accuracy is a mathematical abstraction, not encountered in nature. In fields as
sociology or psychology 3 digits of accuracy are excellent, in mechanical engineering this might increase to
6 digits, or in electronic engineering to 8 digits. The most precisely known physical constant is the Rydberg
constant known to 12 digits. The granularity of double precision expressed by machine epsilon is sufficient
to represent natural phenomena.

octave] format short; disp([realmin realmax eps 1+eps])

2.2251e-308 1.7977e+308 2.2204e-16 1.0000e+00

octave]

Within the reals certain operations are undefined such as 1/0. Special float constants are defined to handle
such situations: Inf is a float meant to represent infinity, and NaN (“not a number”) is meant to represent
an undefinable result of an arithmetic operation.

octave] warning("off"); disp([Inf 1/0 2*realmax NaN Inf-Inf Inf/Inf])

Inf Inf Inf NaN NaN NaN

octave]

12 LINEAR COMBINATIONS

Complex numbers z ∈ℂ are specified by two reals, in Cartesian form as z =x + iy , x ,y ∈ℝ or in polar form as
z =ρe iθ , ρ,θ ∈ℝ, ρ � 0. The computer type complex is similarly defined from two floats and the additional
constant I is defined to represent −1� = i = e iπ /2. Functions are available to obtain the real and imaginary
parts within the Cartesian form, or the absolute value and argument of the polar form.

octave] z1=complex(1,1); z2=complex(1,-1); disp([z1+z2 z1/z2])

2 + 0i 0 + 1i

octave] disp([real(z1) real(z2) real(z1+z2) real(z1/z2)])

1 1 2 0

octave] disp([imag(z1) imag(z2) imag(z1+z2) imag(z1/z2)])

1 -1 0 1

octave] disp([abs(z1) abs(z2) abs(z1+z2) abs(z1/z2)])

1.4142 1.4142 2.0000 1.0000

octave] disp([arg(z1) arg(z2) arg(z1+z2) arg(z1/z2)])

0.78540 -0.78540 0.00000 1.57080

octave] I-sqrt(-1)

ans = 0

octave]

Care should be exercised about the cummulative effect of many floating point errors. For instance, in an “irrational”
numerical investigation of Zeno's paradox, one might want to compare the distance SN traversed by step sizes that
are scaled by 1/π starting from one to TN , traversed by step sizes scaled by π starting from π −N

SN =1+
1
π
+

1
π 2 + ⋅ ⋅ ⋅ +

1
π N ,TN =

1
π N +

1
π N−1 + ⋅ ⋅ ⋅ +1.

In the reals the above two expressions are equal, SN =TN , but this is not verfied for all N when using floating point
numbers. Lists of the values π j, for the two orderings j =0, . . . ,N , and j =N , . . . , 0, can be generated and summed.

octave] N=10; S=pi.^(0:-1:-N); T=pi.^(-N:1:0); sum(S)==sum(T)

ans = 1

octave] N=15; S=pi.^(0:-1:-N); T=pi.^(-N:1:0); sum(S)==sum(T)

ans = 0

octave]

In the above numerical experiment a==b expresses an equality relationship which might evaluate as true denoted
by 1, or false denoted by 0.

octave] disp([1==1 1==2])

1 0

octave]

The above was called an “irrational” investigation since in Zeno's original paradox the scaling factor was 2 rather
than π , and due to the binary representation used by floats equality always holds.

octave] N=30; S=2.^(0:-1:-N); T=2.^(-N:1:0); sum(S)==sum(T)

ans = 1

VECTORS AND MATRICES 13

octave]

1.2. Quantities described by a single number

The above numbers and their computer approximations are sufficient to describe many quantities encountered in
applications. Typical examples include:

• the position x ∈ℝ of a point on the unit line segment [0,1], approximated by the floating point number x̃ ∈F,
to within machine epsilon precision, |x − x̃|� ϵ;

• the measure of resistance to change of the rate of motion known as mass, m ∈ℝ, m >0;

• the population of a large community expressed as a float p ∈F, even though for a community of individuals
the population is a natural number, as in “the population of the United States is p = 328.2E6, i.e., 328.2
million”.

In most disciplines, there is a particular interest in comparison of two quantities, and to facilitate such comparison
a common reference is used known as a standard unit. For measurement of a length L, the meter ℓ=1m is a standard
unit, as in the statement L=10m, that states that L is obtained by taking the standard unit ten times, L=10ℓ. The
rules for carrying out such comparisons are part of the definition of real and rational numbers. These rules are
formalized in the mathematical definition of a field (F , +, ×) presented in the next chapter. Quantities that obey
such rules, i.e., belong to a field, can be used in changes of scale and are called scalars. Not all numbers are scalars
in this sense. For instance, the integers would not allow a scaling of 1:2 (halving the scale) even though 1,2 are
integers.

1.3. Quantities described by multiple numbers

Other quantities require more than a single number. The distribution of population in the year 2000 among the
alphabetically-ordered South American countries (Argentina, Bolivia,..,Venezuela) requires 12 numbers. These are
placed together in a list known in mathematics as a tuple, in this case a 12-tuple P = (p1,p2, . . . ,p12), with p1 the pop-
ulation of Argentina, p2 that of Bolivia, and so on. An analogous 12-tuple can be formed from the South American
populations in the year 2020, sayQ = (q1,q2,...,q12). Note that it is difficult to ascribe meaning to apparently plausible
expressions such as P +Q since, for instance, some people in the 2000 population are also in the 2020 population,
and would be counted twice.

2. Vectors

2.1. Vector spaces

In contrast to the population 12-tuple example above, combining multiple numbers is well defined in operations
such as specifying a position within a three-dimensional Cartesian grid, or determining the resultant of two forces
in space. Both of these lead to the consideration of 3-tuples or triples such as the force (f1, f2, f3). When combined
with another force (g1,g2,g3) the resultant is (f1+g1, f2+g2, f3+g3). If the force (f1, f2, f3) is amplified by the scalar α
and the force (g1,g2,g3) is similarly scaled by β , the resultant becomes

α (f1, f2, f3)+β(g1,g2,g3)= (αf1,αf2,αf3)+ (βg1,βg2,βg3)= (αf1+βg1,αf2+βg2,αf3+βg3).

It is useful to distinguish tuples for which scaling and addition is well defined from simple lists of numbers. In fact,
since the essential difference is the behavior with respect to scaling and addition, the focus should be on these
operations rather than the elements of the tuple.
The above observations underlie the definition of a
vector space 𝒱 by a set V whose elements satisfy certain
scaling and addition properties, denoted all together
by the 4-tuple 𝒱 = (V , S, +, ⋅). The first element of the
4-tuple is a set whose elements are called vectors. The
second element is a set of scalars, and the third is the
vector addition operation. The last is the scaling oper-

ation, seen as multiplication of a vector by a scalar.
The vector addition and scaling operations must satisfy
rules suggested by positions or forces in three-dimen-
sional space, which are listed in Table 1.1. In particular,
a vector space requires definition of two distinguished
elements: the zero vector 0∈V , and the identity scalar
element 1∈S.

14 LINEAR COMBINATIONS

Addition rules for ∀a ,b ,c ∈V
a +b ∈V Closure
a + (b + c)= (a +b)+ c Associativity
a +b =b + a Commutativity
0+ a = a Zero vector
a + (−a)=0 Additive inverse
Scaling rules for ∀a ,b ∈V , ∀x ,y ∈S
xa ∈V Closure
x(a +b)=xa +xb Distributivity
(x +y)a =xa +ya Distributivity
x(ya)= (xy)a Composition
1a = a Scalar identity

Table 1.1. Vector space 𝒱 = (V , S , +, ⋅) properties for arbitrary a , b ,
c ∈V

The definition of a vector space reflects everyday experience with vectors in Euclidean geometry, and it is common
to refer to such vectors by descriptions in a Cartesian coordinate system. For example, a position vector r within
the plane can be referred through the pair of coordinates (x ,y). This intuitive understanding can be made precise
through the definition of a vector space ℛ2= (ℝ2, ℝ, +, ⋅), called the real 2-space. Vectors within ℛ2 are elements
of ℝ2=ℝ×ℝ= {(x ,y)|x ,y ∈ℝ}, meaning that a vector is specified through two real numbers, r↔ (x ,y). Addition of
two vectors, q ↔ (s, t), r↔ (x ,y) is defined by addition of coordinates q + r = (s +x , t +v). Scaling r↔ (x ,y) by scalar
a is defined by ar↔ (ax ,ay). Similarly, consideration of position vectors in three-dimensional space leads to the
definition of the ℛ3= (ℝ3,ℝ,+, ⋅), or more generally a real m-space ℛm= (ℝm,ℝ,+, ⋅), m ∈ℕ, m >0.

Note however that there is no mention of coordinates in the definition of a vector space as can be seen from the
list of properties in Table 1.1. The intent of such a definition is to highlight that besides position vectors, many
other mathematical objects follow the same rules. As an example, consider the set of all continuous functions
C(ℝ) = { f | f : ℝ→ℝ }, with function addition defined by the sum at each argument t, (f + g)(t)= f (t) + g(t), and
scaling by a∈ℝ defined as (a f)(t)=af (t). Read this as: “given two continuous functions f and g , the function f +g
is defined by stating that its value for argument x is the sum of the two real numbers f (t) and g(t)”. Similarly:
“given a continuous function f , the function af is defined by stating that its value for argument t is the product
of the real numbers a and f (t)”. Under such definitions 𝒞 0= (C(ℝ),ℝ,+, ⋅) is a vector space, but quite different from
ℛm. Nonetheless, the fact that both 𝒞 0 and ℛm are vector spaces can be used to obtain insight into the behavior
of continuous functions from Euclidean vectors, and vice versa.

2.2. Real vector space ℛℛℛℛℛℛℛℛℛm

Column vectors. Since the real spaces ℛm= (ℝm,ℝ,+, ⋅) play such an important role in themselves and as a guide
to other vector spaces, familiarity with vector operations in ℛm is necessary to fully appreciate the utility of linear
algebra to a wide range of applications. Following the usage in geometry and physics, the m real numbers that
specify a vector u ∈ℝm are called the components of u . The one-to-one correspondence between a vector and its
components u ↔ (u1, . . . ,um), is by convention taken to define an equality relationship,

u = [[[[[[[[[[[[[[[[
[[[[
[
[u1
⋅⋅⋅
um]]]]]]]]]]]]]]]]

]]]]
]
], (1.1)

with the components arranged vertically and enclosed in square brackets. Given two vectors u ,v ∈ℝm, and a scalar
a∈ℝ, vector addition and scaling are defined in ℛm by real number addition and multiplication of components

u +v = [[[[[[[[[[[[[[[[
[[[[
[
[u1
⋅⋅⋅
um]]]]]]]]]]]]]]]]

]]]]
]
]
+ [[[[[[[[[[[[[[[[

[[[[
[
[v1⋅⋅⋅
vm]]]]]]]]]]]]]]]]

]]]]
]
]
= [[[[[[[[[[[[[[[[

[[[[
[
[u1+v1
⋅⋅⋅
um+vm]]]]]]]]]]]]]]]]

]]]]
]
]
,au =a [[[[[[[[[[[[[[[[

[[[[
[
[u1
⋅⋅⋅
um]]]]]]]]]]]]]]]]

]]]]
]
]
= [[[[[[[[[[[[[[[[

[[[[
[
[au1
⋅⋅⋅
aum]]]]]]]]]]]]]]]]

]]]]
]
]
. (1.2)

The vector space ℛm is defined using the real numbers as the set of scalars, and constructing vectors by grouping
togetherm scalars, but this approach can be extended to any set of scalars S, leading to the definition of the vector

VECTORS AND MATRICES 15

spaces 𝒮n= (Sn,S, +, ⋅). These will osten be referred to as n-vector space of scalars, signifying that the set of vectors
is V =Sn.

To aid in visual recognition of vectors, the following notation conventions are introduced:

• vectors are denoted by lower-case bold Latin letters: u ,v ;

• scalars are denoted by normal face Latin or Greek letters: a,b,α ,β ;

• the components of a vector are denoted by the corresponding normal face with subscripts as in equation
(1.1);

• related sets of vectors are denoted by indexed bold Latin letters: u1,u2, . . . ,un.

In Octave, successive components placed vertically are separated by a semicolon.

octave] [1; 2; -1; 2]

ans =

1
2
-1
2

octave]

The equal sign in mathematics signifies a particular equivalence relationship. In computer systems such as Octave
the equal sign has the different meaning of assignment, that is defining the label on the lest side of the equal sign
to be the expression on the right side. Subsequent invocation of the label returns the assigned object. Components
of a vector are obtained by enclosing the index in parantheses.

octave] u=[1; 2; -1; 2]; u

u =

1
2
-1
2

octave] u(3)

ans = -1

octave]

Row vectors. Instead of the vertical placement or components into one column, the components of could have
been placed horizontally in one row � u1 . . . um �, that contains the same data, differently organized. By conven-
tion vertical placement of vector components is the preferred organization, and u shall denote a column vector
henceforth. A transpose operation denoted by a T superscript is introduced to relate the two representations

uT = � u1 . . . um �,

and uT is the notation used to denote a row vector . In Octave, horizontal placement of successive components in a
row is denoted by a space.

octave] uT=transpose(u)

uT =

1 2 -1 2

16 LINEAR COMBINATIONS

octave] [1 2 -1 2]

ans =

1 2 -1 2

octave] uT(4)

ans = 2

octave]

Compatible vectors. Addition of real vectors u ,v ∈ℝm defines another vector w =u +v ∈ℝm. The components of
w are the sums of the corresponding components of u and v , wi =ui +vi, for i =1, 2, . . . ,m. Addition of vectors with
different number of components is not defined, and attempting to add such vectors produces an error. Such vectors
with different number of components are called incompatible, while vectors with the same number of components
are said to be compatible. Scaling of u by a defines a vector z =au , whose components are zi =aui, for i=1,2, . . . ,m.
Vector addition and scaling in Octave are defined using the + and ∗ operators.

octave] uT=[1 0 1 2]; vT=[2 1 3 -1]; wT=uT+vT; disp(wT)

3 1 4 1

octave] rT=[1 2]; uT+rT

operator +: nonconformant arguments (op1 is 1x4, op2 is 1x2)

octave] a=3; zT=a*uT; disp(zT)

3 6 -3 6

octave]

2.3. Working with vectors

Ranges. The vectors used in applications usually have a large number of components, m≫1, and it is important
to become proficient in their manipulation. Previous examples defined vectors by explicit listing of their m com-
ponents. This is impractical for large m, and support is provided for automated generation for osten-encountered
situations. First, observe that Table 1.1 mentions one distinguished vector, the zero element that is a member of any
vector space 0∈V . The zero vector of a real vector space ℛm is a column vector with m components, all of which
are zero, and a mathematical convention for specifying this vector is 0T =� 0 0 . . . 0 �∈ℝm. This notation specifies
that transpose of the zero vector is the row vector with m zero components, also written through explicit indexing
of each component as 0i =0, for i =1, . . . ,m. Keep in mind that the zero vector 0 and the zero scalar 0 are different
mathematical objects. The ellipsis symbol in the mathematical notation is transcribed in Octave by the notion of a
range, with 1:m denoting all the integers starting from 1 to m, organized as a row vector. The notation is extended
to allow for strides different from one, and the mathematical ellipsis i=m,m−1,...,1 is denoted as m:-1:1. In general
r:s:t denotes the set of numbers {r , r + s, . . . , r +ns} with r +ns � t, and r , s, t real numbers and n a natural number,
r ,s, t ∈ℝ, n∈ℕ. If there is no natural number n such that r +ns � t, an empty vector with no components is returned.

octave] m=4; disp(1:m)

1 2 3 4

octave] disp(m:-1:2)

4 3 2

octave] r=0; s=0.2; t=1; disp(r:s:t)

0.00000 0.20000 0.40000 0.60000 0.80000 1.00000

VECTORS AND MATRICES 17

octave] r=0; s=0.3; t=1; disp(r:s:t)

0.00000 0.30000 0.60000 0.90000

octave] r=0; s= -0.2; t=1; disp(r:s:t)

[](1x0)

octave]

An efficient, expressive feature of many sostware systems including Octave is to use ranges as indices to a vector,
as shown below for the definition of 0 ∈ℝ4. Note that the index range i is organized as a row, and a transpose
operation must be applied to obtain z as a column vector.

octave] m=4; i=1:m; z(i)=i.^i; z=transpose(z); disp(z)

1
4

27
256

octave] i

i =

1 2 3 4

octave] disp(transpose(z))

0 0 0 0

octave]

Visualization. A component-by-component display of a vector becomes increasingly unwieldy as the number
of components m becomes large. For example, the numbers below seem an inefficient way to describe the sine
function.

octave] t=0:0.1:1.5; disp(sin(t))

Columns 1 through 8:

0.00000 0.09983 0.19867 0.29552 0.38942 0.47943 0.56464 0.64422

Columns 9 through 16:

0.71736 0.78333 0.84147 0.89121 0.93204 0.96356 0.98545 0.99749

octave]

Indeed, such a piece-by-piece approach is not the way humans organize large amounts of information, preferring
to conceptualize the data as some other entity: an image, a sound excerpt, a smell, a taste, a touch, a sense of
balance, or relative position. All seven of these human senses will be shown to allow representation by linear
algebra concepts, including representation by vectors.

As a first example consider visualization, the process of transforming data into a sight perception. A familiar
example is constructing a plot of the graph of a function. Recall that in mathematics the graph of a function
f :X→Y relating elements of the domain X to those in codomain Y is a set of ordered pairs Gf = {(x ,y)| y = f (x),
x ∈X}. For a commonly encountered function such as sin: [0, 2π)→ [−1, 1], the graph Gsin= {(x , sin(x))|x ∈ [0, 2π) }
contains an uncountably infinite number of elements, and obviously cannot be explicitly listed. The sine func-
tion is continuous, meaning that no matter how small an open interval (c ,d) within the function codomain [−1,
1] one considers, there exists an interval (a, b) in the function domain [0, 2π] whose image by the sine function

18 LINEAR COMBINATIONS

is contained in (c ,d). In mathematical “δ −ε” notation this is stated as: ∀ε>0,∃δε,|x1−x0|<δε⇒|sin(x1)−sin(x0)|<
ε. This mathematical notation is concise and precise, but perceptive mainly to the professional mathematician.
A more intuitive visualization of continuity is obtained by approximating the graph of a function f : X → Y by
a finite set of samples, Gf

m = {(xi, yi)| xi ∈X , yi = f (xi), i = 1, . . . ,m,m ∈ℕ}. Strictly speaking, the sampled graph Gf
m

would indicate jumps interpretable as discontinuities, but when plotting the points human sight perception con-
veys a sense of continuity for large sample sizes, m≫1. For the sine function example, consider sampling the
domain [0, 2π) with a step size h = 2π /m, m≫1. To obtain a visual representation of the sampled sine function
the Octave plot function can be used to produce a figure that will appear in another window, interactively inves-
tigated, and subsequently closed. For large m one cannot visually distinguish the points in the graph sample,
though this is apparent for smaller sample sizes. This is shown below by displaying a subrange of the sampled
points with stride s. This example also shows the procedure to save a permanent copy of the displayed figure
through the Octave print -deps command that places the currently displayed plot into an Encapsulated Post-
script file. The generated figure file can be linked to a document as shown here in Figure 1.1, in which both plots
render samples of the graph of the sine function, but the one with large m is perceived as being continuous.

octave] m=1000; h=2*pi/m; x=(0:m-1)*h;

octave] y=sin(x); plot(x,y);

octave] close;

octave] s=50; i=1:s:m; xs=x(i); ys=y(i);

octave] plot(x,y,'b',xs,ys,'bo');

octave] print -depsc L01Fig01.eps;

octave] close;

octave]

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

Figure 1.1. Visualization of vectors of sampled function
graphs.

3. Matrices

3.1. Forming matrices

The real numbers themselves form the vector space ℛ1 = (ℝ, ℝ, +, ⋅), as does any field of scalars, 𝒮 1 = (S, S, +, ⋅).
Juxtaposition of m real numbers has been seen to define the new vector space ℛm. This process of juxtaposition
can be continued to form additional mathematical objects. A matrix is defined as a juxtaposition of compatible
vectors. As an example, consider n vectors a1, a2, . . . , an∈V within some vector space 𝒱 = (V ,S, +, ⋅). Form a matrix
by placing the vectors into a row,

A = � a1 a2 . . . an �. (1.3)

To aid in visual recognition of a matrix, upper-case bold Latin letters will be used to denote matrices. The columns
of a matrix will be denoted by the corresponding lower-case bold letter with a subscripted index as in equation (1.3).
Note that the number of columns in a matrix can be different from the number of components in each column, as
would be the case for matrix A from equation (1.3) when choosing vectors from, say, the real space ℛm, a1, a2, . . . ,
an∈ℝm.

Vectors were seen to be useful juxtapositions of scalars that could describe quantities a single scalar could not: a
position in space, a force in physics, or a sampled function graph. The crucial utility of matrices is their central
role in providing a description of new vectors other then their column vectors, and is suggested by experience with
Euclidean spaces.

VECTORS AND MATRICES 19

3.2. Identity matrix
Consider first ℛ1, the vector space of real numbers. A position vector r ∈ ℛ1 on the real axis is specified by a
single scalar component, r = [x], x ∈ℝ. Read this to mean that the position r is obtained by traveling x units from
the origin at position vector 0 = [0]. Look closely at what is meant by “unit” in this context. Since x is a scalar,
the mathematical expression r = 0 + x has no meaning, as addition of a vector to a scalar has not been defined.
Recall that scalars were introduced to capture the concept of scaling of a vector, so in the context of vector spaces
they always appear as multiplying some vector. The correct mathematical description is r =0+x e , where e is the
unit vector e = [1]. Taking the components leads to r1=01+ xe1, where r1, 01, e1 are the first (and in this case only)
components of the r ,0,e vectors. Since r1=x , 01=0, e1=1, one obtains the identity x =0+x ⋅ 1.

Now consider ℛ2, the vector space of positions in the plane. Repeating the above train of thought leads to the
identification of two direction vectors e1 and e2

r = [[[[[[[[[xy]]]]]]]]]=x [[[[[[[[[10]]]]]]]]]+y [[[[[[[[[01]]]]]]]]]=x e1+y e2, e1= [[[[[[[[[10]]]]]]]]],e2= [[[[[[[[[01]]]]]]]]].
octave] x=2; y=4; e1=[1; 0]; e2=[0; 1]; r=x*e1+y*e2

r =

2
4

octave]

Continuing the procees to ℛm gives

x =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[
[
[x1
x2
⋅⋅⋅
xm]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]
]
]
=x1 e1+x2e2+ ⋅ ⋅ ⋅ +xmem, e1=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[1
0
⋅⋅⋅
0
0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
, e2=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[0
1
⋅⋅⋅
0
0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
, . . . ,em=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[0
0
⋅⋅⋅
0
1]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
.

For arbitrary m, the components are now x1, x2, . . . , xm rather than the alphabetically ordered letters common for
m=2 orm=3. It is then consistent with the adopted notation convention to use x ∈ℛm to denote the position vector
whose components are (x1, . . . ,xm). The basic idea is the same as in the previous cases: to obtain a position vector
scale direction e1 by x1, e2 by x2, . . . , em by xm, and add the resulting vectors.

Juxtaposition of the vectors e1, e2, . . . , em leads to the formation of a matrix of special utility known as the identity
matrix

I = � e1 e2 . . . em �.

The identity matrix is an example of a matrix in which the number of column vectors n is equal to the number
of components in each column vector m = n. Such matrices with equal number of columns and rows are said to
be square. Due to entrenched practice an exception to the notation convention is made and the identity matrix
is denoted by I , but its columns are denoted the indexed bold-face of a different lower-case letter, e1, . . . , em. If it
becomes necessary to explicitly state the number of columns in I , the notation Im is used to denote the identity
matrix with m columns, each with m components.

4. Linear combinations

4.1. Linear combination as a matrix-vector product

The expression x =x1e1+x2e2+ ⋅⋅⋅ +xmem expresses the idea of scaling vectors within a set and subsequent addition
to form a new vector x . The matrix I = � e1 e2 . . . em � groups these vectors together in a single entity, and the

20 LINEAR COMBINATIONS

scaling factors are the components of the vector x . To bring all these concepts together it is natural to consider the
notation

x = Ix ,

as a generalization of the scalar expression x =1⋅x . It is clear what the operation Ix should signify: it should capture
the vector scaling and subsequent vector addition x1e1+x2e2+ ⋅ ⋅ ⋅ +xm em. A specific meaning is now ascribed to Ix
by identifying two definitions to one another.

Linear combination. Repeateadly stating “vector scaling and subsequent vector addition” is unwieldy, so a spe-
cial term is introduced for some given set of vectors {a1, . . . ,an}.

DEFINITION. (LINEAR COMBINATION) . The linear combination of vectors a1,a2, . . . ,an∈V with scalars x1,x2, . . . ,xn∈S in
vector space (V ,S, +, ⋅) is the vector b =x1a1+x2a2+ . . .xnan .

Matrix-vector product. Similar to the grouping of unit vectors e1,...,em into the identity matrix I , a more concise
way of referring to arbitrary vectors a1, . . . , an from the same vector space is the matrix A = � a1 a2 . . . an �. Com-
bining these observations leads to the definition of a matrix-vector product.

DEFINITION. (MATRIX-VECTOR PRODUCT) . In the vector space (V , S, +, ⋅), the product of matrix A = � a1 a2 . . . an �
composed of columns a1,a2, . . . , an∈V with the vector x ∈Sn whose components are scalars x1,x2, . . . ,xn∈S is the linear
combination b =x1a1+x2a2+ . . .xnan=Ax ∈V .

4.2. Linear algebra problem examples

Linear combinations in E2. Consider a simple example that leads to a common linear algebra problem: decom-
position of forces in the plane along two directions. Suppose a force is given in terms of components along the
Cartesian x ,y -axes, b =bxex +byey , as expressed by the matrix-vector multiplication b = Ib . Note that the same force
could be obtained by linear combination of other vectors, for instance the normal and tangential components of the
force applied on an inclined plane with angle θ , b =xtet +xnen, as in Figure 1.2. This defines an alternate reference
system for the problem. The unit vectors along these directions are

t = [[[[[[[[[cosθsinθ]]]]]]]]],n = [[[[[[[[[−sinθcosθ]]]]]]]]],

and can be combined into a matrix A = � t n �. The value of the components (xt ,xn) are the scaling factors and can
be combined into a vector x = � xt xn �T . The same force must result irrespective of whether its components are
given along the Cartesian axes or the inclined plane directions leading to the equality

Ib =b =Ax . (1.4)

Interpret equation (1.4) to state that the vector b could be obtained either as a linear combination of I , b = Ib , or as
a linear combination of the columns of A , b =Ax . Of course the simpler description seems to be Ib for which the
components are already known. But this is only due to an arbitrary choice made by a human observer to define the
force in terms of horizontal and vertical components. The problem itself suggests that the tangential and normal
components are more relevant; for instance a friction force would be evaluated as a scaling of the normal force.
The components in this more natural reference system are not known, but can be determined by solving the vector
equality Ax =b , known as a linear system of equations. Procedures to carry this out will be studied in more detail
later, but Octave provides an instruction for this common problem, the backslash operator, as in x=A\b.

VECTORS AND MATRICES 21

octave] ex=[1; 0]; ey=[0; 1];

octave] b=[0.2; 0.4]; I=[ex ey]; I*b

ans =

0.20000
0.40000

octave] th=pi/6; c=cos(th); s=sin(th);

octave] tvec=[c; s]; nvec=[-s; c];

octave] A=[tvec nvec];

octave] x=A\b

x =

0.37321
0.24641

octave] [x(1)*tvec x(2)*nvec]

ans =

0.32321 -0.12321
0.18660 0.21340

octave]

Figure 1.2. Alternative decompositions of force on inclined plane.

Linear combinations in ℛℛℛℛℛℛℛℛℛm and 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 0[0,2π). Linear combinations in a real space can suggest properties or approx-
imations of more complex objects such as continuous functions. Let 𝒞 0[0, 2π)= (C[0, 2π),ℝ,+, ⋅) denote the vector
space of continuous functions that are periodic on the interval [0, 2π), C[0, π) = { f | f : ℝ→ℝ, f (t) = f (t + 2π)}.
Recall that vector addition is defined by (f + g)(t) = f (t) + g(t), and scaling by (af)(t) = af (t), for f , g ∈C[0, 2π),
a ∈ ℝ. Familiar functions within this vector space are sin(kt), cos(kt) with k ∈ℕ, and these can be recognized
to intrinsically represent periodicity on [0, 2π), a role analogous to the normal and tangential directions in the
inclined plane example.

Define now another periodic function b(t +2π)=b(t) by repeating the values b(t)= t(π − t)(2π − t) from the interval
[0, 2π) on all intervals [2pπ , 2(p + 1)π], for p ∈ℤ. The function b is not given in terms of the “naturally” periodic
functions sin(kt), cos(kt), but could it thus be expressed? This can be stated as seeking a linear combination b(t)=
∑k=1

∞ xk sin(kt), as studied in Fourier analysis. The coefficients xk could be determined from an analytical formula
involving calculus operations xk =

1
π∫0

2π b(t) sin(kt)dt, but we'll seek an approximation using a linear combination
of n terms

b(t)≅�
k=1

n

xk sin(kt),A(t)= � sin(t) sin(2t) . . . sin(nt) �,A:ℝ→ℝn.

Organize this as a matrix vector product b(t)≅A(t)x , with

A(t)= � sin (t) sin (2t) . . . sin (nt) �,x = � x1 x2 . . . xn �T ∈ℝn.

The idea is to sample the column vectors of A(t) at the components of the vector t =� t1 t2 . . . tm �T ∈ℝm, tj= (j −1)h,
j =1,2, . . . ,m, h=π /m. Let b =b(t), and A =A(t), denote the so-sampled b,A functions leading to the definition of a
vector b ∈ℝm and a matrix A ∈ℝm×n. There are n coefficients available to scale the column vectors of A, and b has m
components. Form>n it is generally not possible to find x such that Ax would exactly equal b , but as seen later the
condition to be as close as possible to b leads to a well defined solution procedure. This is known as a least squares
problem and is automatically applied in the Octave x=A\b instruction when the matrix A is not square. As seen
in the following numerical experiment and Figure 1.3, the approximation is excellent even though the information

22 LINEAR COMBINATIONS

conveyed by m=1000 samples of b(t) is now much more efficiently stored in the form chosen for the columns of A
and the n=11 scaling coefficients that are the components of x .

octave] m=1000; h=2*pi/m; j=1:m;

octave] t(j)=(j-1)*h; t=transpose(t);

octave] n=5; A=[];

octave] for k=1:n
A = [A sin(k*t)];

end

octave] bt=t.*(pi-t).*(2*pi-t);

octave] x=A\bt;

octave] b=A*x;

octave] s=50; i=1:s:m;
ts=t(i); bs=bt(i);
plot(ts,bs,'ok',t,b,'r');

octave] print -depsc L01Fig02.eps

octave] close;

octave]

0 1 2 3 4 5 6 7
-15

-10

-5

0

5

10

15

Figure 1.3. Comparison of least squares approximation
(red line) with samples of exact function b(t).

5. Vectors and matrice in data science

The above examples highlight some essential aspects of linear algebra in the context of data science applications.

• Vectors organize information that cannot be expressed as a single number and for which there exists a
concept of scaling and addition.

• Matrices group together multiple vectors.

• The matrix-vector product expresses a linear combination of the column vectors of the matrix.

• Solving a linear system Ax =b = Ib , to find x ∈ℝm for given b ∈ℝm, re-expresses the linear combination

b =b1e1+ ⋅ ⋅ ⋅ +bmem, I = � e1 e2 . . . em �,

as another linear combination

b =x1a1+x2a2+ . . .xnan, A = � a1 a2 . . . an �.

For certain problems the linear combination Ax might be more insightful, but the above transformation is
information-preserving, with b ,x both having the same number of components.

• Finding the best approximation of some given b ∈ℝm by a linear combination Ax of the n column vectors
of A ∈ℝm×n is known as a least squares problem and transforms the information from the m components of
b into n components of x , and knowledge of the form of the column vectors. If m >n and the form of the
columns of A can be succintly stated, the transformation compresses information.

VECTORS AND MATRICES 23

Data science seeks to extract regularity directly from available data, not necessarily invoking any additional
hypotheses. The typical scenario is that immense amounts of data are available, with limited capability of human
analysis. In this context it is apparent that the least squares problem is of greater interest than solving a linear
system with a square matrix. It should also be clear that while computation by hand of small examples is useful
to solidify theroretical concepts, it is essential to become proficient in the use of sostware that can deal with large
data sets, such as Octave.

LINEAR MAPPINGS

1. Functions

1.1. Relations

The previous chapter focused on mathematical expression of the concept of quantification, the act of associating
human observation with measurements, as a first step of scientific inquiry. Consideration of different types of
quantities led to various types of numbers, vectors as groupings of numbers, and matrices as groupings of vectors.
Symbols were introduced for these quantities along with some intial rules for manipulating such objects, laying
the foundation for an algebra of vectors and matrices. Science seeks to not only observe, but to also explain, which
now leads to additional operations for working with vectors and matrices that will define the framework of linear
algebra.

Explanations within scientific inquiry are formulated as hypotheses, from which predictions are derived and tested.
A widely applied mathematical transcription of this process is to organize hypotheses and predictions as two sets
X and Y , and then construct another set R of all of the instances in which an element of X is associated with an
element in Y . The set of all possible instances of x ∈X and y ∈Y , is the Cartesian product of X with Y , denoted as
X ×Y = {(x , y)| x ∈X , y ∈Y }, a construct already encountered in the definition of the real 2-space ℛ2= (ℝ2, ℝ, +, ⋅)
where ℝ2=ℝ×ℝ. Typically, not all possible tuples (x ,y)∈X ×Y are relevant leading to the following definition.

DEFINITION. (RELATION) . A relation R between two sets X ,Y is a subset of the Cartesian product X ×Y, R⊂−X ×Y.

Similar to the difficulties encountered in attempting rigorous definition of a natural number, careful parsing of the
above definition also would reveal self-references since the member of symbol ∈, and the subset of symbol ⊂− are
both themselves examples of relations. As before, this is set aside to concetrate on the key concept of associating
an input x ∈X with an output y ∈Y . Associating an output to an input is also useful, leading to the definition of an
inverse relation as R−1⊂−Y ×X , R−1= {(y ,x) | (x ,y)∈R}. Note that an inverse exists for any relation, and the inverse
of an inverse is the original relation, (R−1)−1=R. From the above, a relation is a triplet (a tuple with three elements),
(X ,Y ,R), that will osten be referred to by just its last member R.

Computers can be programmed to work not only with numbers as Octave does, but also with general symbols as
exemplified by another freely available sostware package called Maxima. Most data science applications involve
numerical computation, but some knowledge of symbolic computation is also useful, as when working with sets
that osten arises in data classification. The colon symbol denotes assignment in Maxima, and sets can be defined
using curly braces with automatic elimination of repeated elements. All common set manipulations are provided,
such as the Cartesian product ×, and element of ∈. operations.

%i1] X: {a,b,c,b,a}

(%o1) {a,b,c}

24 LINEAR COMBINATIONS

%i2] Y: {alpha,beta,gamma}

(%o2) {α ,β ,γ }

%i3] XxY: cartesian_product(X,Y)

(%o3) {[a,α], [a,β], [a,γ], [b,α], [b,β], [b,γ], [c ,α], [c ,β], [c ,γ]}

%i4] [elementp([a,alpha],XxY), elementp([alpha,a],XxY)]

(%o4) [true, false]

%i5]

Associate the first three Latin and Greek letters by defining R = {(a, α), (b, β), (c , γ)}. This is a relation between
X = {a,b, c} and Y = {α ,β ,γ } since it is a subset of X ×Y , which can be checked by defining a function that checks
whether some r ∈R is also an element of X ×Y . Maxima functions are defined using the := operator, and map
applies a function to all elements of a set.

%i10] R: {[a,alpha],[b,beta],[c,gamma]}$
verifyXxY(r):= elementp(r,XxY)$
map(verifyXxY,R)

(%o12) {true}

%i13]

Suppose that the Greek alphabet ordering is not known, and a might conceivably be associated to any of α ,β ,γ .
This defines another relation S = {(a,α), (a,β), (a,γ)}. Finally consider possible reorderings of the Greek alphabet,
formulated as relationships between Y and itself, with P = {(α ,β), (β ,γ), (γ ,α)} and I = {(α ,α), (β ,β), (γ ,γ)} two such
possible reorderings. The relations R,S,P , I defined here will be used to exemplify various properties below.

%i13] S: {[a,alpha],[a,beta],[a,gamma]}$
YxY: cartesian_product(Y,Y)$ verifyYxY(r):= elementp(r,YxY)$
P: {[alpha,beta], [beta,gamma], [gamma,alpha]}$
I: {[alpha,alpha], [beta,beta], [gamma,gamma]}$
[map(verifyXxY,S), map(verifyYxY,P), map(verifyYxY,I)]

(%o18) [{true}, {true}, {true}]

Homogeneous relations. Many types of relations are defined in mathematics and encountered in linear algebra,
and establishing properties of specific relations is an important task within data science. A commonly encountered
type of relationship is from a set onto itself, known as a homogeneous relation. Among the above-defined relations
P , I ⊂−Y ×Y are homogeneous, while R, S ⊂−X ×Y are not. For homogeneous relations H ⊂−A ×A, it is common to
replace the set membership notation (a, b) ∈H to state that a ∈A is in relationship H with b ∈A, with a binary

operator notation a ∼∼∼
H
b. Familiar examples include the equality and less than relationships between reals, E , L⊂−

ℝ×ℝ, in which (a,b)∈E is replaced by a=b, and (a,b)∈L is replaced by a<b. The equality relationship is its own
inverse, and the inverse of the less than relationship is the greater than relation G ⊂−ℝ×ℝ, G = L−1, a < b⇒ b > a.
Homogeneous relations H⊂−A×A are classified according to the following criteria.

Reflection. Relation H is reflexive if (a,a)∈H for any a∈A. The equality relation E ⊂−ℝ×ℝ is reflexive, ∀a∈A,
a=a, the less than relation L⊂−ℝ×ℝ is not, 1 ∈R, 1≮1.

Symmetry. Relation H is symmetric if (a, b) ∈H implies that (b, a) ∈H, (a, b) ∈H⇒ (b, a) ∈H. The equality
relation E ⊂−ℝ×ℝ is symmetric, a=b⇒b =a, the less than relation L⊂−ℝ×ℝ is not, a<b⇏b <a.

Anti-symmetry. Relation H is anti-symmetric if (a, b) ∈H for a ≠ b, then (b, a) ∉H. The less than relation
L⊂−ℝ×ℝ is antisymmetric, a<b⇒b ≮a.

Transitivity. Relation H is transitive if (a, b) ∈H and (b, c) ∈H implies (a, c) ∈H. for any a ∈A. The equality
relation E ⊂−ℝ×ℝ is transitive, a=b ∧b = c⇒a= c , as is the less than relation L⊂−ℝ×ℝ, a<b ∧b < c⇒a< c .

LINEAR MAPPINGS 25

Certain combinations of properties osten arise. A homogeneous relation that is reflexive, symmetric, and transitive
is said to be an equivalence relation. Equivalence relations include equality among the reals, or congruence among
triangles. A homogeneous relation that is reflexive, anti-symmetric and transitive is a partial order relation, such as
the less than or equal relation between reals. Finally, a homogeneous relation that is anti-symmetric and transitive
is an order relation, such as the less than relation between reals.

1.2. Functions

Functions between sets X and Y are a specific type of relationship that osten arise in science. For a given input
x ∈X , theories that predict a single possible output y ∈Y are of particular scientific interest.

DEFINITION. (FUNCTION) . A function from set X to set Y is a relation F ⊂−X ×Y, that associates to x ∈X a single y ∈Y.

The above intuitive definition can be transcribed in precise mathematical terms as F ⊂−X ×Y is a function if (x ,y)∈F
and (x , z)∈F implies y = z. Since it's a particular kind of relation, a function is a triplet of sets (X ,Y ,F), but with a
special, common notation to denote the triplet by f :X→Y , with F = {(x , f (x))|x ∈X , f (x)∈Y } and the property that
(x ,y)∈F ⇒y = f (x). The set X is the domain and the set Y is the codomain of the function f . The value from the
domain x ∈X is the argument of the function associated with the function value y = f (x). The function value y is said
to be returned by evaluation y = f (x). The previously defined relations R,P , I are functions but S = {(a,α), (a,β), (a,γ)}
is not. All relations can be inverted, and inversion of a function defines a new relation, but which might not itself
be a function. For example the relation S−1= {(α ,a), (β ,a), (γ ,a)} is a function, but its inverse (S−1)−1=S is not.

Familiar functions include:

• the trigonometric functions cos: ℝ→ [−1, 1], sin: ℝ→ [−1, 1] that for argument θ ∈ℝ return the function
values cos(θ),sin(θ) giving the Cartesian coordinates (x ,y)∈ℝ2 of a point on the unit circle at angular extent
θ from the x-axis;

• the exponential and logarithm functions exp:ℝ→ℝ, log: (0,∞)→ℝ, as well as power and logarithm func-
tions in some other base a;

• polynomial functions pn:ℝ→ℝ, defined by a succession of additions and multiplications

pn(x)=anx n+an−1x n−1+ ⋅ ⋅ ⋅ +a1x +a0=�
i=0

n

aix i = ((anx +an−1)x + ⋅ ⋅ ⋅ +a1)x +a0.

Simple functions such as sin, cos, exp, log, are predefined in Octave, and when given a vector argument return the
function applied to each vector component.

octave] disp(cos(0:pi/4:pi))

1.0000e+00 7.0711e-01 6.1232e-17 -7.0711e-01 -1.0000e+00

octave] y=log2(1:8); disp(y)

0.00000 1.00000 1.58496 2.00000 2.32193 2.58496 2.80735 3.00000

octave] disp(pow2(y))

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

octave] a=[1 0 -1]; x=-2:2; y=polyval(a,x); disp(y)

3 0 -1 0 3

octave]

As seen previously, a Euclidean space Em= (ℝm, ℝ, +, ⋅) can be used to suggest properties of more complex spaces
such as the vector space of continuous functions 𝒞 0(ℝ). A construct that will be osten used is to interpret a vector
within Em as a function, since v ∈ℝm with components v =� v1 v2 . . . vm �T also defines a function v :{1,2,...,m}→ℝ,
with values v (i)=vi. As the number of components grows the function v can provide better approximations of some
continuous function f ∈𝒞 0(ℝ) through the function values vi = v (i)= f (xi) at distinct sample points x1,x2, . . . ,xm.

26 LINEAR COMBINATIONS

The above function examples are all defined on a domain of scalars or naturals and returned scalar values. Within
linear algebra the particular interest is on functions defined on sets of vectors from some vector space 𝒱 = (V ,S,
+, ⋅) that return either scalars f :V →S, or vectors from some other vector space 𝒲 = (W , S, +, ⋅), g :V →W . The
codomain of a vector-valued function might be the same set of vectors as its domain, h :V →V . The fundamental
operation within linear algebra is the linear combination au + bv with a, b ∈ S, u , v ∈V . A key aspect is to char-
acterize how a function behaves when given a linear combination as its argument, for instance f (au + bv) or
g (au +bv).

1.3. Linear functionals

Consider first the case of a function defined on a set of vectors that returns a scalar value. These can be interpreted
as labels attached to a vector, and are very osten encountered in applications from natural phenomena or data
analysis.

DEFINITION. (FUNCTIONAL) . A functional on vector space 𝒱 = (V ,S,+, ⋅) is a function from the set of vectors V to the set
of scalars S of the vector space 𝒱.

DEFINITION. (LINEAR FUNCTIONAL) . The functional f :V →S on vector space 𝒱 = (V ,S, +, ⋅) is a linear functional if for
any two vectors u ,v ∈V and any two scalars a,b

f (au +bv)=af (u)+bf (v). (1.5)

Many different functionals may be defined on a vector space 𝒱 = (V ,S,+, ⋅), and an insightful alternative description
is provided by considering the set of all linear functionals, that will be denoted as V ∗= { f | f :V→S}. These can be
organized into another vector space 𝒱 ∗= (V ∗,S, +, ⋅) with vector addition of linear functionals f , g ∈V ∗ and scaling
by a∈S defined by

(f +g)(u)= f (u)+g(u), (af)(u)=af (u), u ∈V . (1.6)

DEFINITION. (DUAL VECTOR SPACE) . For some vector space 𝒱, the vector space of linear functionals 𝒱 ∗ is called the dual
vector space.

As is osten the case, the above abstract definition can better be understood by reference to the familiar case of
Euclidean space. Consider ℛ2= (ℝ2,ℝ,+, ⋅), the set of vectors in the plane with x ∈ℝ2 the position vector from the
origin (0,0) to point X in the plane with coordinates (x1,x2). One functional from the dual space ℛ2

∗ is f2(x)=x2, i.e.,
taking the second coordinate of the position vector. The linearity property is readily verified. For x , y ∈ℛ2, a,b ∈ℝ,

f2(ax +by)=ax2+by2=af2(x)+bf2(y).

Given some constant value h∈ℝ, the curves within the plane defined by f2(x)=h are called the contour lines or level
sets of f2. Several contour lines and position vectors are shown in Figure 1.4. The utility of functionals and dual
spaces can be shown by considering a simple example from physics. Assume that x2 is the height above ground
level and a vector x is the displacement of a body of mass m in a gravitational field. The mechanical work done
to list the body from ground level to height h is W =mgh with g the gravitational acceleration. The mechanical
work is the same for all displacements x that satisfy the equation f2(x)=h. The work expressed in units mgΔh can
be interpreted as the number of contour lines f2(x)=nΔh intersected by the displacement vector x . This concept
of duality between vectors and scalar-valued functionals arises throughout mathematics, the physical and social
sciences and in data science. The term “duality” itself comes from geometry. A point X in ℝ2 with coordinates
(x1,x2) can be defined either as the end-point of the position vector x , or as the intersection of the contour lines of
two funtionals f1(x)=x1 and f2(x)=x2. Either geometric description works equally well in specifying the position of
X , so it might seem redundant to have two such procedures. It turns out though that many quantities of interest
in applications can be defined through use of both descriptions, as shown in the computation of mechanical work
in a gravitational field.

LINEAR MAPPINGS 27

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.4. Vectors in E2 and contour lines of the functional f (x)=x2

1.4. Linear mappings

Consider now functions f :V→W from vector space 𝒱 = (V ,S,+, ⋅) to another vector space 𝒲 = (W ,T ,+, ⋅). As before,
the action of such functions on linear combinations is of special interest.

DEFINITION. (LINEAR MAPPING) . A function f :V→W, from vector space 𝒱 = (V ,S, +, ⋅) to vector space 𝒲 = (W ,S,⊕,F.)
is called a linear mapping if for any two vectors u ,v ∈V and any two scalars a,b ∈S

f (au +bv)=af (u)+bf (v). (1.7)

The image of a linear combination au +bv through a linear mapping is another linear combination af (u)+bf (v),
and linear mappings are said to preserve the structure of a vector space, and called homomorphisms in mathe-
matics. The codomain of a linear mapping might be the same as the domain in which case the mapping is said to
be an endomorphism.

Matrix-vector multiplication has been introduced as a concise way to specify a linear combination

f (x)=Ax =x1 a1+ ⋅ ⋅ ⋅ +xnan,

with a1, . . . ,an the columns of the matrix, A = � a1 a2 . . . an �. This is a linear mapping between the real spaces ℛm,
ℛn, f :ℝm→ℝn, and indeed any linear mapping between real spaces can be given as a matrix-vector product.

2. Measurements
Vectors within the real space ℛm can be completely specified by m real numbers, even though m is large in many
realistic applications. A vector within 𝒞 0(ℝ), i.e., a continuous function defined on the reals, cannot be so specified
since it would require an infinite, non-countable listing of function values. In either case, the task of describing the
elements of a vector space 𝒱 = (V ,S, +, ⋅) by simpler means arises. Within data science this leads to classification
problems in accordance with some relevant criteria.

2.1. Equivalence classes

Many classification criteria are scalars, defined as a scalar-valued function f :𝒱 →S on a vector space, 𝒱 = (V ,S,+, ⋅).
The most common criteria are inspired by experience with Euclidean space. In a Euclidean-Cartesian model (ℝ2,ℝ,
+, ⋅) of the geometry of a plane Π, a point O ∈Π is arbitrarily chosen to correspond to the zero vector 0= � 0 0 �T ,
along with two preferred vectors e1, e2 grouped together into the identity matrix I . The position of a point X ∈Π
with respect to O is given by the linear combination

x = Ix +0= � e1 e2 �[[[[[[[[[x1x2]]]]]]]]]=x1e1+x2 e2 .

28 LINEAR COMBINATIONS

Several possible classifications of points in the plane are depicted in Figure 1.5: lines, squares, circles. Intuitively,
each choice separates the plane into subsets, and a given point in the plane belongs to just one in the chosen family
of subsets. A more precise characterization is given by the concept of a partition of a set.

DEFINITION. (PARTITION) . A partition of a set is a grouping of its elements into non-empty subsets such that every
element is included in exactly one subset.

In precise mathematical terms, a partition of set S is P = {Si |Si ⊂P ,Si ≠∅, i∈ I} such that ∀x ∈S, ∃! j ∈ I for which x ∈Sj.
Since there is only one set (∃! signifies “exists and is unique”) to which some given x ∈S belongs, the subsets Si of
the partition P are disjoint, i≠ j⇒Si ∩Sj =∅. The subsets Si are labeled by i within some index set I . The index set
might be a subset of the naturals, I ⊂ℕ in which case the partition is countable, possibly finite. The partitions of
the plane suggested by Figure 1.5 are however indexed by a real-valued label, i ∈ℝ with I ⊂ℝ.

A technique which is osten used to generate a partition of a vector space 𝒱 = (V ,S, +, ⋅) is to define an equivalence
relation between vectors, H ⊂−V ×V . For some element u ∈V , the equivalence class of u is defined as all vectors v
that are equivalent to u , {v| (u ,v)∈H }. The set of equivalence classes of is called the quotient set and denoted as
V /H, and the quotient set is a partition of V . Figure 1.5 depicts four different partitions of the plane. These can
be interpreted geometrically, such as parallel lines or distance from the origin. With wider implications for linear
algebra, the partitions can also be given in terms of classification criteria specified by functions.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1.5. Equivalence classes within the plane

2.2. Norms
The partition of ℝ2 by circles from Figure 1.5 is familiar; the equivalence classes are sets of points whose position
vector has the same size, �x = � x1 x2 �T | (x12 + x22)1/2 = r�, or is at the same distance from the origin. Note that
familiarity with Euclidean geometry should not obscure the fact that some other concept of distance might be
induced by the data. A simple example is statement of walking distance in terms of city blocks, in which the
distance from a starting point to an address x1=3 blocks east and x2=4 blocks north is x1+x2=7 city blocks, not the
Euclidean distance (x12+x22)1/2=5 since one cannot walk through the buildings occupying a city block.

The above observations lead to the mathematical concept of a norm as a tool to evaluate vector magnitude. Recall
that a vector space is specified by two sets and two operations, 𝒱 = (V , S, +, ⋅), and the behavior of a norm with
respect to each of these components must be defined. The desired behavior includes the following properties and
formal definition.

Unique value. The magnitude of a vector v ∈V should be a unique scalar, requiring the definition of a func-
tion. The scalar could have irrational values and should allow ordering of vectors by size, so the function
should be from V to ℝ, f :V →ℝ. On the real line the point at coordinate x is at distance |x| from the
origin, and to mimic this usage the norm of v ∈V is denoted as ‖v‖, leading to the definition of a function
‖ ‖:V →ℝ+, ℝ+= {a|a∈ℝ,a�0}.

Null vector case. Provision must be made for the only distinguished element of V , the null vector 0. It is
natural to associate the null vector with the null scalar element, ‖0‖=0. A crucial additional property is also
imposed namely that the null vector is the only vector whose norm is zero, ‖v‖=0⇒v =0. From knowledge
of a single scalar value, an entire vector can be determined. This property arises at key junctures in linear
algebra, notably in providing a link to another branch of mathematics known as analysis, and is needed to
establish the fundamental theorem of linear algbera or the singular value decomposition encountered later.

LINEAR MAPPINGS 29

Scaling. Transfer of the scaling operation v = au property leads to imposing ‖v‖ = |a| ‖u‖. This property
ensures commensurability of vectors, meaning that the magnitude of vector v can be expressed as a mul-
tiple of some standard vector magnitude ‖u‖.

Vector addition. Position vectors from the origin to coordinates x , y > 0 on the real line can be added and
|x + y| = |x| + |y|. If however the position vectors point in different directions, x > 0, y < 0, then |x +
y| < |x| + |y|. For a general vector space the analogous property is known as the triangle inequality ,
‖u +v‖�‖u‖+‖v‖ for u ,v ∈V .

DEFINITION. (NORM) . A norm on the vector space 𝒱 = (V ,S,+, ⋅) is a function ‖ ‖:V→ℝ+ that for u ,v ∈V, a∈S satisfies:

1. ‖v‖=0⇒v =0;

2. ‖au‖=|a| ‖u‖;

3. ‖u +v‖�‖u‖+‖v‖.

Note that the norm is a functional, but the triangle inequality implies that it is not generally a linear functional.
Returning to Figure 1.5, consider the functions fi:ℝ2→ℝ+ defined for x = � x1 x2 �T through values

f1(x)=|x1|, f2(x)=|x2|, f3(x)=|x1|+|x2|, f4(x)= (|x1|2+|x2|2)1/2.

Sets of constant value of the above functions are also equivalence classes induced by the equivalence relations Ei

for i=1,2, 3, 4.

1. f1(x)= c⇒|x1|= c , E1= {(x , y)| f1(x)= f1(y)⇔|x1|=|y1| }⊂−ℝ2×ℝ2;

2. f2(x)= c⇒|x2|= c , E2= {(x , y)| f2(x)= f2(y)⇔|x2|=|y2| }⊂−ℝ2×ℝ2;

3. f3(x)= c⇒|x1|+|x2|= c , E3= {(x , y)| f3(x)= f3(y)⇔|x1|+|x2|=|y1|+|y2|}⊂−ℝ2×ℝ2;

4. f4(x)= c⇒ (|x1|2+|x2|2)1/2= c , E4= {(x , y)| f4(x)= f4(y)⇔ (|x1|2+|x2|2)1/2= (|y1|2+|y2|2)1/2 }⊂−ℝ2×ℝ2.

These equivalence classes correspond to the vertical lines, horizontal lines, squares, and circles of Figure 1.5. Not
all of the functions fi are norms since f1(x) is zero for the non-null vector x =� 0 1 �T , and f2(x)is zero for the non-
null vector x =� 1 0 �T . The functions f3 and f4 are indeed norms, and specific cases of the following general norm.

DEFINITION. (p-NORM IN ℛm) . The p-norm on the real vector space ℛm= (ℝm, ℝ, +, ⋅) for p � 1 is the function ‖ ‖p:
V→ℝ+ with values ‖x‖p= (|x1|p+|x2|p+ ⋅ ⋅ ⋅ +|xm|p)1/p, or

‖x‖p=(((((((((((((�
i=1

m

|xi|p)))))))))))))
1/p

for x ∈ℝm. (1.8)

Denote by xi the largest component in absolute value of x ∈ℝm. As p increases, |xi|p becomes dominant with
respect to all other terms in the sum suggesting the definition of an inf-norm by

‖x‖∞=max
1�i�m

|xi| .

This also works for vectors with equal components, since the fact that the number of components is finite while
p→∞ can be used as exemplified for x = � a a . . . a �T , by ‖x‖p= (m|a|p)1/p=m1/p|a|, with m1/p→1.

Note that the Euclidean norm corresponds to p =2, and is osten called the 2-norm. The analogy between vectors
and functions can be exploited to also define a p-norm for 𝒞 0[a,b]= (C([a,b]),ℝ,+, ⋅) , the vector space of continuous
functions defined on [a,b].

DEFINITION. (p-NORM IN 𝒞 0[a, b]) . The p-norm on the vector space of continuous functions 𝒞 0[a, b] for p � 1 is the
function ‖ ‖p:V →ℝ+ with values

‖ f ‖p=��
a

b
| f (x)|pdx�1/p

, for f ∈C[a,b]. (1.9)

30 LINEAR COMBINATIONS

The integration operation ∫a
b can be intuitively interpreted as the value of the sum ∑i=1

m from equation (1.8) for
very large m and very closely spaced evaluation points of the function f (xi), for instance |xi+1−xi|= (b −a)/m. An
inf-norm can also be define for continuous functions by

‖ f ‖∞= sup
x ∈[a,b]

| f (x)|,

where sup, the supremum operation can be intuitively understood as the generalization of the max operation over
the countable set {1, 2, . . . ,m} to the uncountable set [a,b].

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1.6. Regions within ℝ2 for which ‖x‖p�1, for p=1, 2, 3,∞.

Vector norms arise very osten in applications, especially in data science since they can be used to classify data, and
are implemented in sostware systems such as Octave in which the norm function with a single argument computes
the most commonly encountered norm, the 2-norm. If a second argument p is specified the p-norm is computed.

octave] x=[1; 1; 1]; disp([norm(x) sqrt(3)])

1.7321 1.7321

octave] m=9; x=ones(m,1); disp([norm(x) sqrt(m)])

3 3

octave] m=4; x=ones(m,1); disp([norm(x,1) m])

4 4

octave] disp([norm(x,1) norm(x,2) norm(x,4) norm(x,8) norm(x,16) norm(x,inf)])

4.0000 2.0000 1.4142 1.1892 1.0905 1.0000

octave]

2.3. Inner product
Norms are functionals that define what is meant by the size of a vector, but are not linear. Even in the simplest case
of the real line, the linearity relation |x +y|=|x|+|y| is not verified for x >0, y <0. Nor do norms characterize
the familiar geometric concept of orientation of a vector. A particularly important orientation from Euclidean
geometry is orthogonality between two vectors. Another function is required, but before a formal definition some
intuitive understanding is sought by considering vectors and functionals in the plane, as depicted in Figure 1.7.
Consider a position vector x = � x1 x2 �T ∈ℝ2 and the previously-encountered linear functionals

f1, f2:ℝ2→ℝ, f1(x)=x1, f2(x)=x2.

The x1 component of the vector x can be thought of as the number of level sets of f1 times it crosses; similarly for
the x2 component. A convenient labeling of level sets is by their normal vectors. The level sets of f1 have normal
e1T = � 1 0 �, and those of f2 have normal vector e2T = � 0 1 �. Both of these can be thought of as matrices with two
columns, each containing a single component. The products of these matrices with the vector x gives the value of
the functionals f1, f2

e1Tx = � 1 0 �[[[[[[[[[x1x2]]]]]]]]]=1 ⋅x1+0 ⋅x2=x1= f1(x),

e2T x = � 0 1 �[[[[[[[[[x1x2]]]]]]]]]=0 ⋅x1+1 ⋅x2=x1= f2(x).

LINEAR MAPPINGS 31

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.7. Euclidean space E2 and its dual E2∗.

In general, any linear functional f defined on the real space ℛm can be labeled by a vector

aT = � a1 a2 . . . am �,

and evaluated through the matrix-vector product f (x) = aT x . This suggests the definition of another function s:
ℝm×ℝm→ℝ,

s(a ,x)= aT x .

The function s is called an inner product, has two vector arguments from which a matrix-vector product is formed
and returns a scalar value, hence is also called a scalar product. The definition from an Euclidean space can be
extended to general vector spaces. For now, consider the field of scalars to be the reals S =ℝ.

DEFINITION. (INNER PRODUCT) . An inner product in the vector space 𝒱 = (V , ℝ, +, ⋅) is a function s:V ×V →ℝ with
properties

Symmetry. For any a ,x ∈V, s(a ,x)= s(x ,a).
Linearity in second argument. For any a ,x , y ∈V, α ,β ∈ℝ, s(a ,αx +βy)=αs(a ,x)+βs(a , y).
Positive definiteness. For any x ∈V \{0}, s(x ,x)>0.

The inner product s(a ,x) returns the number of level sets of the functional labeled by a crossed by the vector x , and
this interpretation underlies many applications in the sciences as in the gravitational field example above. Inner
products also provide a procedure to evaluate geometrical quantities and relationships.

Vector norm. In ℛm the number of level sets of the functional labeled by x crossed by x itself is identical to
the square of the 2-norm

s(x ,x)=xTx =‖x‖2
2 .

In general, the square root of s(x ,x) satisfies the properties of a norm, and is called the norm induced by an
inner product

‖ x‖= s(x ,x)1/2.

A real space together with the scalar product s(x , y) = xTy and induced norm ‖x‖ = s(x , x)1/2 defines an
Euclidean vector space ℰm.

Orientation. In ℰ2 the point specified by polar coordinates (r , θ) has the Cartesian coordinates x1 = r cos θ ,
x2= r sinθ , and position vector x = � x1 x2 �T . The inner product

e1T x = � 1 0 � [x1x2
]=1 ⋅x1+0 ⋅x2= r cosθ ,

is seen to contain information on the relative orientation of x with respect to e1. In general, the angle θ
between two vectors x , y with any vector space with a scalar product can be defined by

cosθ =
s(x , y)

[s(x ,x) s(y , y)]1/2 =
s(x , y)

‖x‖ ‖y‖ ,

32 LINEAR COMBINATIONS

which becomes

cosθ =
xTy

‖x‖‖y‖ ,

in a Euclidean space, x , y ∈ℝm.

Orthogonality. In ℰ2 two vectors are orthogonal if the angle between them is such that cos θ = 0, and this
can be extended to an arbitrary vector space 𝒱 = (V ,ℝ,+, ⋅) with a scalar product by stating that x , y ∈V are
orthogonal if s(x , y)=0. In ℰm vectors x , y ∈ℝm are orthogonal if xT y =0.

3. Linear mapping composition

3.1. Matrix-matrix product

From two functions f :A→B and g :B→C , a composite function, h=g ∘ f , h:A→C is defined by

h(x)=g(f (x)).

Consider linear mappings between Euclidean spaces f :ℝn→ℝm, g :ℝm→ℝp. Recall that linear mappings between
Euclidean spaces are expressed as matrix vector multiplication

f (x)=Ax , g (y)=By ,A ∈ℝm×n,B ∈ℝp×m.

The composite function h = g ∘ f is h :ℝn→ℝp, defined by

h (x)= g (f (x))= g (Ax)=BAx .

Note that the intemediate vector u =Ax is subsequently multiplied by the matrix B . The composite function h is
itself a linear mapping

h (ax +by)=BA(ax +by)=B (aAx +bAy)=B (au +bv)=aBu +bBv =aBAx +bBAy =ah (x)+bh (y),

so it also can be expressed a matrix-vector multiplication

h (x)=Cx =BAx . (1.10)

Using the above, C is defined as the product of matrix B with matrix A

C =BA.

The columns of C can be determined from those of A by considering the action of h on the the column vectors of
the identity matrix I = � e1 e2 . . . en �∈ℝn×n. First, note that

Aej = � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[1
0
⋅⋅⋅
⋅⋅⋅
0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
= a1, . . . , Aej = � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[0
⋅⋅⋅
1
⋅⋅⋅
0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
= aj,Aen= � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[0
⋅⋅⋅
⋅⋅⋅
0
1]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
= an. (1.11)

The above can be repeated for the matrix C = � c1 c2 . . . cn � giving

h (e1)=Ce1= c1, . . . ,h (ej)=Cej = cj, . . . ,h (en)=Cen= cn. (1.12)

Combining the above equations leads to cj =Baj, or

C = � c1 c2 . . . cn �=B � a1 a2 . . . an �.

From the above the matrix-matrix product C =BA is seen to simply be a grouping of all the products of B with the
column vectors of A,

C = � c1 c2 . . . cn �= �B a1 Ba2 . . . Ban �

Matrix-vector and matrix-matrix products are implemented in Octave, the above results can readily be verified.

LINEAR MAPPINGS 33

octave] a1=[1; 2]; a2=[3; 4]; A=[a1 a2]

A =

1 3
2 4

octave] b1=[-1; 1; 3]; b2=[2; -2; 3]; B=[b1 b2]

B =

-1 2
1 -2
3 3

octave] C=B*A

C =

3 5
-3 -5
9 21

octave] c1=B*a1; c2=B*a2; [c1 c2]

ans =

3 5
-3 -5
9 21

octave]

34 LINEAR COMBINATIONS

CHAPTER 2

VECTOR SPACES

FORMAL RULES

1. Algebraic structures

1.1. Typical structures

A vector space has been introduced as a 4-tuple 𝒱 = (V , S, +, ⋅) with specific behavior of the vector addition and
scaling operations. Arithmetic operations between scalars were implicitly assumed to be similar to those of the
real numbers, but also must be specified to obtain a complete definition of a vector space. Algebra defines various
structures that specify the behavior operations with objects. Knowledge of these structures is useful not only in
linear algebra, but also in other mathematical approaches to data analysis such as topology or geometry.

Groups. A group is a 2-tuple 𝒢 = (G,+) containing a set
G and an operation + with properties from Table 2.2.
If ∀a,b ∈G, a+b =b +a, the group is said to be commu-
tative. Besides the familiar example of integers under
addition (ℤ, +), symmetry groups that specify spatial
or functional relations are of particular interest. The
rotations by 0, π2 , π ,

3π
2 or vertices of a square form a

group.
Addition rules
a+b ∈G Closure
a+ (b + c)= (a+b)+ c Associativity
0+a=a Identity element
a+ (−a)=0 Inverse element

Table 2.1. Group 𝒢 = (G , +) properties, for ∀a,b, c ∈G

Rings. A ring is a 3-tuple ℛ= (R, +, ⋅) containing a set
R and two operations +, ⋅ with properties from Table
2.1. As is osten the case, a ring is more complex struc-
ture built up from simpler algebraic structures. With
respect to addition a ring has the properties of a com-
mutative group. Only associativity and existence of an
identity element is imposed for multiplication. Matrix
addition and multiplication has the structure of ring
(ℝm×m, +, ⋅).

Addition rules
(R, +) is a commutative (Abelian) group
Multiplication rules
a ⋅b ∈R Closure
(a ⋅b) ⋅ c =a ⋅ (b ⋅ c) Associativity
a ⋅ 1=1 ⋅a=a Identity element
Distributivity
a ⋅ (b + c)= (a ⋅b)+ (a ⋅ c) on the lest
(a+b) ⋅ c = (a ⋅ c)+ (b ⋅ c) on the right

Table 2.2. Ring ℛ= (R, +, ⋅) properties, for ∀a,b, c ∈R.

Fields. A ring is a 3-tuple ℱ= (F , +, ⋅) containing a set
F and two operations +, ⋅, each with properties of a
commutative group, but with special behavior for the
inverse of the null element. The multiplicative inverse
is denoted as a−1. Scalars S in the definition of a vector

space must satisfy the properties of a field. Since the
operations are osten understood from context a field
might be referred to as the full 3− tuple, or, more con-
cisely just through the set of elements as in the defini-
tion of a vector space.

35

Addition rules
(F , +) is a commutative (Abelian) group
Multiplication rules
(F , ⋅) is a commutative group except
that 0−1 does not exist
Distributivity
a ⋅ (b + c)= (a ⋅b)+ (a ⋅ c)

Table 2.3. Field ℛ= (F , +, ⋅) properties, for ∀a,b, c ∈F .

Using the above definitions, a vector space 𝒱 = (V ,S, +, ⋅) can be described as a commutative group (V , +) combined
with a field S that satisfies the scaling properties au ∈V , a(u +v)=au +bv , (a+b)u =au +bu , a(bu)= (ab)u , 1u =u ,
for ∀a,b ∈S, ∀u ,v ∈V .

1.2. Vector subspaces

A central interest in data science is to seek simple description of complex objects. A typical situation is that many
instances of some object of interest are initially given as an m-tuple v ∈ℝm with large m. Assuming that addition
and scaling of such objects can cogently be defined, a vector space is obtained, say over the field of reals with an
Euclidean distance, Em. Examples include for instance recordings of medical data (electroencephalograms, elec-
trocardiograms), sound recordings, or images, for which m can easily reach in to the millions. A natural question
to ask is whether all the m real numbers are actually needed to describe the observed objects, or perhaps there is
some intrinsic description that requires a much smaller number of descriptive parameters, that still preserves the
useful idea of linear combination. The mathematical transcription of this idea is a vector subspace.

DEFINITION. (VECTOR SUBSPACE) . 𝒰 = (U ,S, +, ⋅), U ≠∅, is a vector subspace of vector space 𝒱 = (V ,S, +, ⋅) over the same
field of scalars S, denoted by 𝒰 ≤𝒱, if U ⊂−V and ∀a,b ∈S, ∀u ,v ∈U, the linear combination au +bv ∈U.

The above states a vector subspace must be closed under linear combination, and have the same vector addition
and scaling operations as the enclosing vector space. The simplest vector subspace of a vector space is the null
subspace that only contains the null element, U = {0}. In fact any subspace must contain the null element 0, or
otherwise closure would not be verified for the particular linear combination u + (−u)=0. If U ⊂V , then 𝒰 is said to
be a proper subspace of 𝒱 , denoted by 𝒰 <𝒱 .

Setting n −m components equal to zero in the real space ℛm defines a proper subspace whose elements can be
placed into a one-to-one correspondence with the vectors within ℛn. For example, setting component m of x ∈ℝm

equal to zero gives x = � x1 x2 . . . xm−1 0 �T that while not a member of ℝm−1, is in a one-to-one relation with
x ʹ = � x1 x2 . . . xm−1 �T ∈ℝm−1. Dropping the last component of y ∈ℝm, y = � y1 y2 . . . ym−1 ym �T gives vector y ʹ =
� y1 y2 . . . ym−1 �∈ℝm−1, but this is no longer a one-to-one correspondence since for some given y ʹ, the last com-
ponent ym could take any value.

octave] m=3; x=[1; 2; 0]; xp=x(1:2); disp(xp)

1
2

36 VECTOR SPACES

octave] y=[1; 2; 3]; yp=y(1:2); disp(yp)

1
2

octave]

Vector subspaces arise in decomposition of a vector space. The converse, composition of vector spaces 𝒰 = (U ,S,+, ⋅)
𝒱 = (V ,S,+, ⋅) is also defined in terms of linear combination. A vector x ∈ℝ3 can be obtained as the linear combination

x = [[[[[[[[[[[[[[[[
[[[[
[
[x1
x2
x3]]]]]]]]]]]]]]]]

]]]]
]
]= [[[[[[[[[[[[[[[[

[[[[
[
[x10
0]]]]]]]]]]]]]]]]

]]]]
]
]+ [[[[[[[[[[[[[[[[

[[[[
[
[0
x2
x3]]]]]]]]]]]]]]]]

]]]]
]
],

but also as

x = [[[[[[[[[[[[[[[[
[[[[
[
[x1
x2
x3]]]]]]]]]]]]]]]]

]]]]
]
]= [[[[[[[[[[[[[[[[

[[[[
[
[x1
x2−a
0]]]]]]]]]]]]]]]]

]]]]
]
]+ [[[[[[[[[[[[[[[[

[[[[
[
[0
a
x3]]]]]]]]]]]]]]]]

]]]]
]
],

for some arbitrary a ∈ℝ. In the first case, x is obtained as a unique linear combination of a vector from the set
U = �� x1 0 0 �T| x1 ∈ℝ� with a vector from V = �� 0 x2 x3 �T| x2, x3 ∈ℝ�. In the second case, there is an infinity
of linear combinations of a vector from V with another from W = �� x1 x2 0 �T|x1,x2∈ℝ� to the vector x . This is
captured by a pair of definitions to describe vector space composition.

DEFINITION. Given two vector subspaces 𝒰 = (U ,S, +, ⋅), 𝒱 = (V ,S, +, ⋅) of the space 𝒲 = (W ,S, +, ⋅), the sum is the vector
space 𝒰 +𝒱 = (U +V ,S, +, ⋅), where the sum of the two sets of vectors U ,V is U +V = {u +v| u ∈U ,v ∈V }.

DEFINITION. Given two vector subspaces 𝒰 = (U ,S, +, ⋅), 𝒱 = (V ,S, +, ⋅) of the space 𝒲 = (W ,S, +, ⋅), the direct sum is the
vector space 𝒰 ⊕𝒱 = (U ⊕V ,S, +, ⋅), where the direct sum of the two sets of vectors U ,V is U ⊕V = {u +v| ∃!u ∈U , ∃!v ∈V }.
(unique decomposition)

Since the same scalar field, vector addition, and scaling is used , it is more convenient to refer to vector space sums
simply by the sum of the vector sets U +V , or U ⊕V , instead of specifying the full tuplet for each space. This shall
be adopted henceforth to simplify the notation.

octave] u=[1; 0; 0]; v=[0; 2; 3]; vp=[0; 1; 3]; w=[1; 1; 0]; disp([u+v vp+w])

1 1
2 2
3 3

octave]

FORMAL RULES 37

In the previous example, the essential difference between the two ways to express x ∈ℝ3 is that U ∩V = {0}, but
V ∩W =�� 0 a 0 �T|a∈ℝ�≠ {0}, and in general if the zero vector is the only common element of two vector spaces
then the sum of the vector spaces becomes a direct sum. In practice, the most important procedure to construct
direct sums or check when an intersection of two vector subspaces reduces to the zero vector is through an inner
product.

DEFINITION. Two vector subspaces U ,V of the real vector space ℝm are orthogonal, denoted as U⊥V if uTv =0 for any
u ∈U ,v ∈V.

DEFINITION. Two vector subspaces U,V of U +V are orthogonal complements, denoted U =V ⊥, V =U⊥ if they are orthog-
onal subspaces, U⊥V, and U ∩V = {0}, i.e., the null vector is the only common element of both subspaces.

octave] disp([u'*v vp'*w])

0 1

octave]

The above concept of orthogonality can be extended to other vector subspaces, such as spaces of functions. It can
also be extended to other choices of an inner product, in which case the term conjugate vector spaces is sometimes
used.

The concepts of sum and direct sum of vector spaces used linear combinations of the form u + v . This notion can
be extended to arbitrary linear combinations.

DEFINITION. In vector space 𝒱 = (V ,S, +, ⋅), the span of vectors a1, a2, . . . , an∈V , is the set of vectors reachable by linear
combination

span{a1,a2, . . . ,an}= {b ∈V| ∃x1, . . . ,xn∈S such that b =x1a1+ . . . +xnan}.

Note that for real vector spaces a member of the span of the vectors {a1,a2, . . . ,an} is the vector b obtained from the
matrix vector multiplication

b =Ax = � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[
[
[x1
x2
⋅⋅⋅
xn]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]
]
]
.

From the above, the span is a subset of the co-domain of the linear mapping f (x)=Ax .

2. Vector subspaces of a linear mapping

38 VECTOR SPACES

The wide-ranging utility of linear algebra essentially results a complete characterization of the behavior of a linear
mapping between vector spaces f :U→V , f (au +bv)=af (u)+bf (v). For some given linear mapping the questions
that arise are:

1. Can any vector within V be obtained by evaluation of f ?

2. Is there a single way that a vector within V can be obtained by evaluation of f ?

Linear mappings between real vector spaces f : ℝn→ℝm, have been seen to be completely specified by a matrix
A ∈ℝm×n. It is common to frame the above questions about the behavior of the linear mapping f (x)=Ax through
sets associated with the matrix A. To frame an answer to the first question, a set of reachable vectors is first defined.

DEFINITION. The column space (or range) of matrix A ∈ℝm×n is the set of vectors reachable by linear combination of the
matrix column vectors

C(A)=range(A)= {b ∈ℝm| ∃x ∈ℝn such thatb =Ax }.

By definition, the column space is included in the co-domain of the function f (x) =Ax , C(A)⊂−ℝm, and is readily
seen to be a vector subspace of ℝm. The question that arises is whether the column space is the entire co-domain
C(A)=ℝm that would signify that any vector can be reached by linear combination. If this is not the case then the
column space would be a proper subset, C(A)⊂ℝm, and the question is to determine what part of the co-domain
cannot be reached by linear combination of columns of A. Consider the orthogonal complement of C(A) defined
as the set vectors orthogonal to all of the column vectors of A, expressed through inner products as

a1T y =0,a2T y =0, . . . ,anT y =0.

This can be expressed more concisely through the transpose operation

A = � a1 a2 . . . an �,ATy =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[a1T

a2T

⋅⋅⋅
anT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]
]]]]]]]]

]

]
=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[a1T y
a2Ty
⋅⋅⋅

anTy]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]
]]]]]]]]

]

]
,

and leads to the definition of a set of vectors for which ATy =0

DEFINITION. The lest null space (or cokernel) of a matrix A ∈ℝm×n is the set

N(AT)=null(AT)= {y ∈ℝm|AT y =0}.

Note that the lest null space is also a vector subspace of the co-domain of f (x)=Ax , N(AT)⊂−ℝm. The above defini-
tions suggest that both the matrix and its transpose play a role in characterizing the behavior of the linear mapping
f =Ax , so analagous sets are define for the transpose AT .

DEFINITION. The row space (or corange) of a matrix A ∈ℝm×n is the set

R(A)=C(AT)= range(AT)= {c ∈ℝn| ∃y ∈ℝm c =AT y }⊂−ℝn

FORMAL RULES 39

DEFINITION. The null space of a matrix A ∈ℝm×n is the set

N(A)=null(A)= {x ∈ℝn|Ax =0}⊂−ℝn

Examples. Consider a linear mapping between real spaces f :ℝn→ℝm, defined by y = f (x)=Ax =� y1 . . . yn �T , with
A ∈ℝm×n.

1. For n =1, m =3,

A = [[[[[[[[[[[[[[[[
[[[[
[
[10
0]]]]]]]]]]]]]]]]

]]]]
]
],AT = � 1 0 0 �,

the column space C(A) is the y1-axis, and the left
null space N(AT) is the y2y3-plane. Vectors that
span these spaces are returned by the Octave
orth and null functions.

octave] A=[1; 0; 0]; disp(orth(A));
disp('-----');
disp(null(A'))

-1
-0
-0

0 0
1 0
0 1

octave]

2. For n =2, m =3,

A = [[[[[[[[[[[[[[[[
[[[[
[
[1 −1
0 0
0 0]]]]]]]]]]]]]]]]

]]]]
]
]= � a1 a2 �, AT = [[[[[[[[[1 0 0

−1 0 0]]]]]]]]],

the columns of A are colinear, a2=−a1, and the
column space C(A) is the y1-axis, and the lest
null space N(AT) is the y2y3-plane, as before.

octave] A=[1 -1; 0 0; 0 0];
disp(orth(A));
disp('-----');
disp(null(A'))

-1.00000
-0.00000
-0.00000

0 0
1 0
0 1

octave]

3. For n =2, m =3,

A = [[[[[[[[[[[[[[[[
[[[[
[
[1 0
0 1
0 0]]]]]]]]]]]]]]]]

]]]]
]
], AT = [[[[[[[[[1 0 0

0 1 0]]]]]]]]],

the column space C(A) is the y1y2-plane, and
the lest null space N(AT) is the y3-axis.

octave] A=[1 0; 0 1; 0 0];
disp(orth(A));
disp('-----');
disp(null(A'))

-1 -0
-0 -1
-0 -0

0
0
1

octave]

4. For n =2, m =3,

A = [[[[[[[[[[[[[[[[
[[[[
[
[1 1
1 −1
0 0]]]]]]]]]]]]]]]]

]]]]
]
], AT = [[[[[[[[[1 1 0

1 −1 0]]]]]]]]],

the same C(A), N(AT) are obtained, albeit with
a different set of spanning vectors returned by
orth.

octave] A=[1 1; 1 -1; 0 0];
disp(orth(A));
disp('-----');
disp(null(A'))

0.70711 0.70711
0.70711 -0.70711
-0.00000 -0.00000

0
0
1

octave]

40 VECTOR SPACES

5. For n =3, m =3,

A = [[[[[[[[[[[[[[[[
[[[[
[
[1 1 3
1 −1 −1
1 1 3]]]]]]]]]]]]]]]]

]]]]
]
]= � a1 a2 a3 �,

AT = [[[[[[[[[[[[[[[[
[[[[
[
[1 1 1
1 −1 1
3 −1 3]]]]]]]]]]]]]]]]

]]]]
]
]
=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[
[
[a1T

a2T

a3T]]]]]]]]]]]]]]]]
]]]]]]]]]]
]
]
,ATy =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[
[
[a1T y
a2T y
a3T y]]]]]]]]]]]]]]]]

]]]]]]]]]]
]
]

since a3 = a1 + 2a2, the orthogonality condi-
tion AT y = 0 is satisfied by vectors of form y =
� a 0 −a �, a∈ℝ.

octave] A=[1 1 3; 1 -1 -1; 1 1 3];
disp(orth(A));
disp('-----');
disp(null(A'))

0.69157 0.14741
-0.20847 0.97803
0.69157 0.14741

0.70711
0.00000
-0.70711

octave]

The above low dimensional examples are useful to gain initial insight into the significance of the spacesC(A),N(AT).
Further appreciation can be gained by applying the same concepts to processing of images. A gray-scale image
of size px by py pixels can be represented as a vector with m =px py components, b ∈ [0, 1]m ⊂ℝm. Even for a small
image with px =py =128=27 pixels along each direction, the vector b would havem=214 components. An image can
be specified as a linear combination of the columns of the identity matrix

b = Ib = � e1 e2 . . . em �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[
[
[b1
b2
⋅⋅⋅
bm]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]
]
]
,

with bi the gray-level intensity in pixel i. Similar to the inclined plane example from §1, an alternative description
as a linear combination of another set of vectors a1, . . . ,am might be more relevant. One choice of greater utility for
image processing mimics the behavior of the set {1, cos t, cos2t, . . . , sin t, sin 2t, . . .} that extends the second example
in §1, would be for m=4

A = � a1 a2 a3 a4 �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[
[
[1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]
]
]
.

DATA REDUNDANCY

1. Linear dependence
For the simple scalar mapping f :ℝ→ℝ, f (x)=ax , the condition f (x)=0 implies either that a=0 or x =0. Note that
a=0 can be understood as defining a zero mapping f (x)=0. Linear mappings between vector spaces, f :U→V , can
exhibit different behavior, and the condtion f (x)=Ax =0, might be satisfied for both x ≠0, and A ≠0. Analogous to
the scalar case, A =0 can be understood as defining a zero mapping, f (x)=0.

In vector space 𝒱 = (V ,S, +, ⋅), vectors u , v ∈V related by a scaling operation, v = au , a ∈S, are said to be colinear,
and are considered to contain redundant data. This can be restated as v ∈ span{u }, from which it results that
span{u }= span{u , v }. Colinearity can be expressed only in terms of vector scaling, but other types of redundancy
arise when also considering vector addition as expressed by the span of a vector set. Assuming that v ∉ span{u },
then the strict inclusion relation span{u }⊂span{u ,v } holds. This strict inclusion expressed in terms of set concepts
can be transcribed into an algebraic condition.

DATA REDUNDANCY 41

DEFINITION. The vectors a1,a2, . . . ,an∈V ,are linearly dependent if there exist n scalars, x1, . . . ,xn∈S, at least one of which
is different from zero such that

x1 a1+ . . . +xnan=0.

Introducing a matrix representation of the vectors

A = � a1 a2 . . . an �;x =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[
[
[x1
x2
⋅⋅⋅
xn]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]
]
]

allows restating linear dependence as the existence of a non-zero vector, ∃x ≠0, such that Ax =0. Linear dependence
can also be written as Ax =0⇏ x = 0, or that one cannot deduce from the fact that the linear mapping f (x)=Ax
attains a zero value that the argument itself is zero. The converse of this statement would be that the only way to
ensure Ax =0 is for x =0, or Ax =0⇒x =0, leading to the concept of linear independence.

DEFINITION. The vectors a1,a2, . . . ,an∈V ,are linearly independent if the only n scalars, x1, . . . ,xn∈S, that satisfy

x1a1+ . . . +xnan=0, (2.1)
are x1=0, x2=0,...,xn=0.

2. Basis and dimension

Vector spaces are closed under linear combination, and the span of a vector set ℬ= {a1, a2, . . . } defines a vector
subspace. If the entire set of vectors can be obtained by a spanning set, V =spanℬ, extending ℬ by an additional
element 𝒞 =ℬ∪{b } would be redundant since spanℬ=span𝒞 . This is recognized by the concept of a basis, and also
allows leads to a characterization of the size of a vector space by the cardinality of a basis set.

DEFINITION. A set of vectors u1, . . . ,un∈V is a basis for vector space 𝒱 = (V ,S, +, ⋅) if

1. u1, . . . ,un are linearly independent;

2. span{u1, . . . ,un}=V.

DEFINITION. The number of vectors u1, . . . ,un∈V within a basis is the dimension of the vector space 𝒱 = (V ,S, +, ⋅).

3. Dimension of matrix spaces

The domain and co-domain of the linear mapping f :U→V , f (x)=Ax , are decomposed by the spaces associated
with the matrix A. When U =ℝn, V =ℝm, the following vector subspaces associated with the matrix A ∈ℝm×n have
been defined:

• C(A) the column space of A

• C(AT) the row space of A

• N(A) the null space of A

• N(AT) the lest null space of A , or null space of AT

DEFINITION. The rank of a matrix A ∈ℝm×n is the dimension of its column space and is equal to the dimension of its row
space.

DEFINITION. The nullity of a matrix A ∈ℝm×n is the dimension of its null space.

42 VECTOR SPACES

CHAPTER 3
FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

DATA INFORMATION

1. Partition of linear mapping domain and codomain
A partition of a set S has been introduced as a collection of subsets P = {Si|Si⊂P ,Si ≠∅} such that any given element
x ∈S belongs to only one set in the partition. This is modified when applied to subspaces of a vector space, and a
partition of a set of vectors is understood as a collection of subsets such that any vector except 0 belongs to only
one member of the partition.

Linear mappings between vector spaces f :U→V can be represented by matrices A with columns that are images
of the columns of a basis {u1,u2, . . . } of U

A = � f (u1) f (u2) . . . �.

Consider the case of real finite-dimensional domain and co-domain, f :ℝn→ℝm, in which case A ∈ℝm×n,

A = � f (e1) f (e2) . . . f (en) �= � a1 a2 . . . an �.

The column space of A is a vector subspace of the codomain,C(A)≤ℝm, but according to the definition of dimension
if n <m there remain non-zero vectors within the codomain that are outside the range of A,

n <m⇒∃v ∈ℝm,v ≠0,v ∉C(A).

All of the non-zero vectors in N(AT), namely the set of vectors orthogonal to all columns in A fall into this category.
The above considerations can be stated as

C(A)≤ℝm, N(AT)≤ℝm, C(A)⊥N(AT) C(A)+N(AT)≤ℝm .

The question that arises is whether there remain any non-zero vectors in the codomain that are not part of C(A)
or N(AT). The fundamental theorem of linear algebra states that there no such vectors, that C(A) is the orthogonal
complement of N(AT), and their direct sum covers the entire codomain C(A)⊕N(AT)=ℝm.

LEMMA 3.1. Let 𝒰 ,𝒱, be subspaces of vector space 𝒲. Then 𝒲 =𝒰 ⊕𝒱 if and only if

i. 𝒲 =𝒰 +𝒱, and
ii. 𝒰 ∩𝒱 = {0}.

Proof. 𝒲 =𝒰 ⊕𝒱 ⇒𝒲 =𝒰 +𝒱 by definition of direct sum, sum of vector subspaces. To prove that 𝒲 =𝒰 ⊕𝒱 ⇒𝒰 ∩𝒱 = {0},
consider w ∈𝒰 ∩𝒱. Since w ∈𝒰 and w ∈𝒱 write

w =w +0 (w ∈𝒰 ,0∈𝒱), w =0+w (0∈𝒰 ,w ∈𝒱),

and since expression w =u +v is unique, it results that w =0. Now assume (i),(ii) and establish an unique decomposition.
Assume there might be two decompositions of w ∈𝒲, w =u1+ v1, w =u2+v2, with u1,u2∈𝒰, v1,v2∈𝒱 . Obtain u1+v1=
u2+ v2, or x = u1− u2= v2− v1. Since x ∈𝒰 and x ∈𝒱 it results that x = 0, and u1= u2, v1= v2, i.e., the decomposition is
unique. □

In the vector space U +V the subspaces U ,V are said to be orthogonal complements is U⊥V , and U ∩V = {0}. When
U ≤ℝm, the orthogonal complement of U is denoted as U⊥, U ⊕U⊥ =ℝm.

THEOREM. Given the linear mapping associated with matrix A ∈ℝm×n we have:

1. C(A)⊕N(AT)=ℝm, the direct sum of the column space and lest null space is the codomain of the mapping

2. C(AT)⊕N(A)=ℝn, the direct sum of the row space and null space is the domain of the mapping

3. C(A)⊥N(AT) and C(A)∩N(AT)= {0}, the column space is orthogonal to the lest null space, and they are orthog-
onal complements of one another,

C(A)=N(AT)⊥, N(AT)=C(A)⊥ .

43

4. C(AT)⊥N(A) and C(AT) ∩N(A) = {0}, the row space is orthogonal to the null space, and they are orthogonal
complements of one another,

C(AT)=N(A)⊥, N(A)=C(AT)⊥ .

Figure 3.1. Graphical represenation of the Fundamental Theorem of Linear Algebra, Gil Strang, Amer. Math. Monthly 100, 848-855,
1993.

Consideration of equality between sets arises in proving the above theorem. A standard technique to show set
equality A=B, is by double inclusion, A⊂−B∧B⊂−A⇒A=B. This is shown for the statements giving the decomposi-
tion of the codomain ℝm. A similar approach can be used to decomposition of ℝn.

i. C(A)⊥N(AT) (column space is orthogonal to lest null space).

Proof. Consider arbitrary u ∈C(A),v ∈N(AT). By definition of C(A), ∃x ∈ℝn such that u =Ax , and by defin-
ition of N(AT), ATv =0. Compute uTv = (Ax)Tv =xTATv =xT (ATv)=xT 0=0, hence u⊥v for arbitrary u ,v , and
C(A)⊥N(AT). □

ii. C(A)∩N(AT)= {0} (0 is the only vector both in C(A) and N(AT)).

Proof. (By contradiction, reductio ad absurdum). Assume there might be b ∈C(A) and b ∈N(AT) and b ≠0.
Since b ∈C(A), ∃x ∈ℝn such that b =Ax . Since b ∈N(AT), ATb =AT (Ax)=0. Note that x ≠0 since x =0⇒b =0,
contradicting assumptions. Multiply equality ATAx =0 on lest by xT ,

xTATAx =0⇒ (Ax)T (Ax)=bTb =‖b‖2=0,

thereby obtaining b =0, using norm property 3. Contradiction.

□

iii. C(A)⊕N(AT)=ℝm

Proof. (iii) and (iv) have established that C(A),N(AT) are orthogonal complements

C(A)=N(AT)⊥,N(AT)=C(A)⊥.

44 FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

By Lemma 2 it results that C(A)⊕N(AT)=ℝm. □

The remainder of the FTLA is established by considering B =AT , e.g., since it has been established in (v) that C(B)⊕
N(AT)=ℝn, replacing B =AT yields C(AT)⊕N(A)=ℝm, etc.

DATA PARTITIONING

1. Mappings as data

1.1. Vector spaces of mappings and matrix representations

A vector space ℒ can be formed from all linear mappings from the vector space 𝒰 = (U , S, +, ⋅) to another vector
space 𝒱 = (V ,S, +, ⋅)

ℒ= {L,S, +, ⋅}, L= {f | f :U→V , f (au +bv)=af (u)+bf (v)},

with addition and scaling of linear mappings defined by (f + g)(u)= f (u)+ g (u) and (af)(u)=af (u). Let B= {u1,u2,...}
denote a basis for the domain U of linear mappings within ℒ, such that the linear mapping f ∈ℒ is represented
by the matrix

A = � f (u1) f (u2) . . . �.

When the domain and codomain are the real vector spaces U =ℝn, V =ℝm, the above is a standard matrix of real
numbers, A ∈ℝm×n. For linear mappings between infinite dimensional vector spaces the matrix is understood in a
generalized sense to contain an infinite number of columns that are elements of the codomain V . For example, the
indefinite integral is a linear mapping between the vector space of functions that allow differentiation to any order,

�:𝒞∞→𝒞∞ v (x)=� u(x)dx

and for the monomial basis B= {1,x ,x 2, . . . }, is represented by the generalized matrix

A =� x 1
2 x

2 1
3 x

3 . . . �.

Truncation of the basis expansion u(x)=∑j=1
∞ ujx j where uj ∈ℝ to n terms, and sampling of u ∈𝒞∞ at points x1, . . . ,

xm, forms a standard matrix of real numbers

A =� x 1
2x

2 1
3x

3 . . . �∈ℝm×n, x j =
[[[[[[[[[[[[[[[[
[[[[[[[[[[[
[
[x1

j

⋅⋅⋅
xm
j]]]]]]]]]]]]]]]]

]]]]]]]]]]
]
]
.

As to be expected, matrices can also be organized as vector space ℳ, which is essentially the representation of the
associated vector space of linear mappings,

ℳ = (M,S, +, ⋅) M=�A �A = � f (u1) f (u2) . . . �� .

DATA PARTITIONING 45

The addition C =A +B and scaling S =aR of matrices is given in terms of the matrix components by

cij =aij +bij, sij =arij .

1.2. Measurement of mappings

From the above it is apparent that linear mappings and matrices can also be considered as data, and a first step in
analysis of such data is definition of functionals that would attach a single scalar label to each linear mapping of
matrix. Of particular interest is the definition of a norm functional that characterizes in an appropriate sense the
size of a linear mapping.

Consider first the case of finite matrices with real components A ∈ℝm×n that represent linear mappings between
real vector spaces f :ℝm→ℝn. The columns a1, . . . ,an of A ∈ℝm×n could be placed into a single column vector c with
mn components

c = [[[[[[[[[[[[[[[[
[[[[
[
[a1
⋅⋅⋅
an]]]]]]]]]]]]]]]]

]]]]
]
].

Subsequently the norm of the matrix A could be defined as the norm of the vector c . An example of this approach
is the Frobenius norm

‖A‖F =‖c‖2=((((((((((((((((
(�
i=1

m

�
j=1

n

|aij|2))))))))))))))))
)1/2.

A drawback of the above approach is that the structure of the matrix and its close relationship to a linear mapping
is lost. A more useful characterization of the size of a mapping is to consider the amplification behavior of linear
mapping. The motivation is readily understood starting from linear mappings between the reals f :ℝ→ℝ, that are
of the form f (x)=ax . When given an argument of unit magnitude |x|=1, the mapping returns a real number with
magnitude |a|. For mappings f : ℝ2→ℝ2 within the plane, arguments that satisfy ‖x‖2=1 are on the unit circle
with components x = � cosθ sinθ � have images through f given analytically by

f (x)=Ax = � a1 a2 �[[[[[[[[[cosθsinθ]]]]]]]]]=cosθa1+sinθa2,
and correspond to ellipses.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

46 FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

Figure 1. Mapping of unit circle by f (x)=Ax , A = [[[[[[[[[2 3
−1 −3]]]]]]]]].

From the above the mapping associated A amplifies some directions more than others. This suggests a definition
of the size of a matrix or a mapping by the maximal amplification unit norm vectors within the domain.

DEFINITION. For vector spaces U ,V with norms ‖ ‖U :U→ℝ+, ‖ ‖V :V→ℝ+, the induced norm of f :U→V is

‖f ‖= sup
‖x‖U=1

‖f (x)‖V .

DEFINITION. For vector spaces ℝn,ℝm with norms ‖‖(n):U→ℝ+, ‖‖(m):V→ℝ+, the induced norm of matrix A ∈ℝm×n is

‖A‖= sup
‖x‖(n)=1

‖Ax‖(m).

In the above, any vector norm can be used within the domain and codomain.

2. The Singular Value Decomposition (SVD)

The fundamental theorem of linear algebra partitions the domain and codomain of a linear mapping f :U→V . For
real vectors spaces U =ℝn, V =ℝm the partition properties are stated in terms of spaces of the associated matrix A as

C(A)⊕N(AT)=ℝm C(A)⊥N(AT) C(AT)⊕N(A)=ℝn C(AT)⊥N(A) .

The dimension of the column and row spaces r =dimC(A)=dimC(AT) is the rank of the matrix, n − r is the nullity
of A, and m− r is the nullity of AT . A infinite number of bases could be defined for the domain and codomain. It is
of great theoretical and practical interest bases with properties that faciliatate insight or computation.

2.1. Orthogonal matrices

The above partitions of the domain and codomain are orthogonal, and suggest searching for orthogonal bases
within these subspaces. Introduce a matrix representation for the bases

U = � u1 u2 . . . um �∈ℝm×m,V = � v1 v2 . . . vn �∈ℝn×n,

with C(U)=ℝm and C(V)=ℝn. Orthogonality between columns ui, uj for i≠ j is expressed as ui
Tuj =0. For i= j , the

inner product is positive ui
Tui >0, and since scaling of the columns of U preserves the spanning property C(U)=ℝm,

it is convenient to impose ui
Tui =1. Such behavior is concisely expressed as a matrix product

U TU = Im,

with Im the identity matrix in ℝm. Expanded in terms of the column vectors of U the first equality is

� u1 u2 . . . um �T� u1 u2 . . . um �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[u1
T

u2
T

⋅⋅⋅
umT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
� u1 u2 . . . um �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[u1
Tu1 u1

Tu2 . . . u1
Tum

u2
Tu1 u2

Tu2 . . . u2
Tum

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
umTu1 umTu2 . . . umTum]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
= Im.

DATA PARTITIONING 47

It is useful to determine if a matrix X exists such that UX = Im, or

UX =U � x1 x2 . . . xm �= � e1 e2 . . . em �.

The columns of X are the coordinates of the column vectors of Im in the basis U , and can readily be determined

Uxj = ej⇒U TUxj =U T ej⇒ Imxj =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[u1
T

u2
T

⋅⋅⋅
umT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
ej⇒ xj = (U T)j,

where (U T)j is the j th column of U T , hence X =U T , leading to

U TU = I =UU T .

Note that the second equality

� u1 u2 . . . um �� u1 u2 . . . um �T = � u1 u2 . . . um �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[u1
T

u2
T

⋅⋅⋅
um
T]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
=u1u1

T +u2u2
T + ⋅ ⋅ ⋅ +umumT = I

acts as normalization condition on the matrices Uj =ujuj
T .

DEFINITION. A square matrix U is said to be orthogonal if U TU =UU T = I.

2.2. Intrinsic basis of a linear mapping

Given a linear mapping f :U→V , expressed as y = f (x) =Ax , the simplest description of the action of A would
be a simple scaling, as exemplified by g (x)=ax that has as its associated matrix aI . Recall that specification of a
vector is typically done in terms of the identity matrix b = Ib , but may be more insightfully given in some other
basis Ax = Ib . This suggests that especially useful bases for the domain and codomain would reduce the action of a
linear mapping to scaling along orthogonal directions, and evaluate y =Ax by first re-expressing y in another basis
U , Us = Iy and re-expressing x in another basis V , Vr = Ix . The condition that the linear operator reduces to simple
scaling in these new bases is expressed as si =σi ri for i=1, . . . ,min (m,n), with σi the scaling coefficients along each
direction which can be expressed as a matrix vector product s =Σr , where Σ∈ℝm×n is of the same dimensions as A
and given by

Σ=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[

[

[σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ 0 ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . 0 0 . . . 0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]

]

]
.

Imposing the condition that U ,V are orthogonal leads to

Us = y ⇒ s =U T y ,Vr =x ⇒ r =V Tx ,

48 FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

which can be replaced into s =Σr to obtain

U T y =ΣV Tx ⇒ y =U ΣV Tx .

From the above the orthogonal bases U ,V and scaling coefficients Σ that are sought must satisfy A =U ΣV T .

THEOREM. Every matrix A ∈ℝm×n has a singular value decomposition (SVD)

A =U ΣV T ,

with properties:

1. U ∈ℝm×m is an orthogonal matrix, U TU = Im;

2. V ∈ℝm×m is an orthogonal matrix, V TV = In;

3. Σ∈ℝm×n is diagonal, Σ=diag(σ1, . . . ,σp), p =min (m,n), and σ1�σ2� ⋅ ⋅ ⋅ �σp�0.

Proof. The proof of the SVD makes use of properties of the norm, concepts from analysis and complete induction.
Adopting the 2-norm set σ1=‖A‖2,

σ1= sup
‖x‖2=1

‖Ax‖2 .

The domain ‖x‖2= 1 is compact (closed and bounded), and the extreme value theorem implies that f (x)=Ax attains
its maxima and minima, hence there must exist some vectors u1, v1 of unit norm such that σ1 u1=Av1⇒σ1= u1

TAv1 .
Introduce orthogonal bases U1, V1 for ℝm,ℝn whose first column vectors are u1,v1, and compute

U1
TAV1= [[[[[[[[[[[[[[[[

[[[[[[[[
[
[u1

T

⋅⋅⋅
umT]]]]]]]]]]]]]]]]

]]]]]]]]
]
]
� Av1 . . . Avn �= [[[[[[[[[[[σ1 wT

0 B]]]]]]]]]]]=C .

In the above wT is a row vector with n−1 components u1
TAv j, j =2,...,n, and ui

TAv1must be zero for u1 to be the direction
along which the maximum norm ‖Av1‖ is obtained. Introduce vectors

y = [[[[[[[[[σ1
w]]]]]]]]], z =Cy = [[[[[[[[[[[σ1

2+wTw
Bw]]]]]]]]]]],

and note that ‖z‖2�‖y‖2
2=σ1

2+wTw. From ‖U1
TAV1‖=‖A‖=σ1=‖C‖�σ1

2+wTw it results that w =0. By induction,
assume that B has a singular value decomposition, B =U2Σ2V2

T, such that

U1
TAV1= [[[[[[[[[[[[[

σ1 0T

0 U2Σ2V2
T]]]]]]]]]]]]]= [[[[[[[[[[[1 0T

0 U2]]]]]]]]]]][[[[[[[[[[[σ1 0T
0 Σ2]]]]]]]]]]][[[[[[[[[[[[[

1 0T

0 V2
T]]]]]]]]]]]]],

and the orthogonal matrices arising in the singular value decomposition of A are

U =U1[[[[[[[[[[[1 0T
0 U2]]]]]]]]]]],V T = [[[[[[[[[[[[[

1 0T

0 V2
T]]]]]]]]]]]]]V1

T .

DATA PARTITIONING 49

□

The scaling coefficients σj are called the singular values of A. The columns of U are called the lest singular vectors,
and those of V are called the right singular vectors.

The fact that the scaling coefficients are norms of A and submatrices of A, σ1 = ‖A‖, is crucial importance in
applications. Carrying out computation of the matrix products

A = � u1 u2 . . . ur ur+1 . . . um �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[

[

[σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ 0 ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . 0 0 . . . 0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]

]

]

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[

[

[v1
T

v2
T

⋅⋅⋅
vrT

⋅⋅⋅
vnT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]

]

]
= � u1 u2 . . . ur ur+1 . . . um �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[

[

[σ1v1
T

σ2v2
T

⋅⋅⋅
σrvrT

⋅⋅⋅
0]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]

]

]

leads to a representation of A as a sum

A =�
i=1

r

σiuiv i
T , r �min (m,n).

Each product uiviT is a matrix of rank one, and is called a rank-one update. Truncation of the above sum to p terms
leads to an approximation of A

A ≅Ap=�
i=1

p

σiuivi
T .

In very many cases the singular values exhibit rapid, exponential decay, σ1≫σ2≫ ⋅⋅ ⋅, such that the approximation
above is an accurate representation of the matrix A.

50 100 150 200 250 300

100

200

300

400

50 100 150 200 250 300

100

200

300

400

50 100 150 200 250 300

100

200

300

400

Figure 3.2. Successive SVD approximations of Frida Kahlo's (1907-1954) painting, Portrait of a Lady in White (1929), with k =10, 20, 40
rank-one updates.

2.3. SVD solution of linear algebra problems

The SVD can be used to solve common problems within linear algebra.

50 FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

Change of coordinates. To change from vector coordinates b in the canonical basis I ∈ℝm×m to coordinates x in
some other basis A ∈ℝm×m, a solution to the equation Ib =Ax can be found by the following steps.

1. Compute the SVD, U ΣV T =A;

2. Find the coordinates of b in the orthogonal basis U , c =U Tb ;

3. Scale the coordinates of c by the inverse of the singular values yi = ci /σi, i = 1, . . . ,m, such that Σ y = c is
satisfied;

4. Find the coordinates of y in basis V T , x =Vy .

Best 2-norm approximation. In the above A was assumed to be a basis, hence r =rank(A)=m. If columns of A do
not form a basis, r <m, then b ∈ℝm might not be reachable by linear combinations within C(A). The closest vector
to b in the norm is however found by the same steps, with the simple modification that in Step 3, the scaling is
carried out only for non-zero singular values, yi = ci /σi, i =1, . . . , r .

The pseudo-inverse. From the above, finding either the solution of Ax = Ib or the best approximation possible if
A is not of full rank, can be written as a sequence of matrix multiplications using the SVD

(U ΣV T) x =b⇒U (ΣV Tx)=b ⇒ (ΣV T x)=U Tb⇒V T x =Σ+U Tb⇒ x =VΣ+U Tb ,

where the matrix Σ+ ∈ℝn×m (notice the inversion of dimensions) is defined as a matrix with elements σi
−1 on the

diagonal, and is called the pseudo-inverse of Σ. Similarly the matrix

A+=VΣ+U T

that allows stating the solution of Ax =b simply as x =A+b is called the pseudo-inverse of A. Note that in practice
A+ is not explicitly formed. Rather the notation A+ is simply a concise reference to carrying out steps 1-4 above.

DATA PARTITIONING 51

CHAPTER 4
LEAST SQUARES

DATA COMPRESSION

A typical scenario in many sciences is acquisition of m numbers to describe some object that is understood to
actually require only n≪m parameters. For example, m voltage measurements ui of an alternating current could
readily be reduced to three parameters, the amplitude, phase and frequency u(t)=asin(ωt +φ). Very osten a simple
first-degree polynomial approximation y = ax +b is sought for a large data set D = {(xi,yi), i =1, . . . ,m}. All of these
are instances of data compression, a problem that can be solved in a linear algebra framework.

1. Projection

Consider a partition of a vector space U into orthogonal subspaces U =V ⊕W , V =W⊥,W =V ⊥. Within the typical
scenario described above U =ℝm, V ⊂ℝm,W ⊂ℝm, dimV =n, dimW =m−n. If V =� v1 . . . vn �∈ℝm×n is a basis for V
andW =� w1 . . . wm−n �∈ℝm×(m−n) is a basis for W, then U =� v1 . . . vn w1 . . . wm−n � is a basis for U . Even though
the matrices V ,W are not necessarily square, they are said to be orthogonal, in the sense that all columns are of
unit norm and orthogonal to one another. Computation of the matrix product V TV leads to the formation of the
identity matrix within ℝn

V TV =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[v1T

v2T

⋅⋅⋅
vnT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
� v1 v2 . . . vn �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[v1
Tv1 v1Tv2 . . . v1Tvn

v2
Tv1 v2Tv2 . . . v2Tvn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

vnTv1 vnTv2 . . . vnTvn]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]

]

]
= In.

Similarly, W TW = Im−n. Whereas for the square orthogonal matrix U multiplication both on the lest and the right
by its transpose leads to the formation of the identity matrix

U TU =UU T = Im,

the same operations applied to rectangular orthogonal matrices lead to different results

V TV = In,VV T = � v1 v2 . . . vn �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[v1T

v2T

⋅⋅⋅
vnT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
=�

i=1

n

vivi
T , rank(v iv iT)=1

A simple example is provided by taking V = Im,n, the first n columns of the identity matrix in which case

VV T =�
i=1

n

ei ei
T = [[[[[[[[[In 0

0 0]]]]]]]]]∈ℝm×m.

53

Applying P =VV T to some vector b ∈ℝm leads to a vector r =Pb whose first n components are those of b , and the
remainingm−n are zero. The subtraction b − r leads to a new vector s = (I −P)b that has the first components equal
to zero, and the remaining m − n the same as those of b . Such operations are referred to as projections, and for
V = Im,n correspond to projection onto the span{e1, . . . , en}.

octave] I4=eye(5); V=I4(:,1:2); P=V*V'; Q=I4-P;
b=rand(5,1); r=P*b; s=Q*b; disp([P b r s])

1.00000 0.00000 0.00000 0.00000 0.00000 0.42253 0.42253 0.00000
0.00000 1.00000 0.00000 0.00000 0.00000 0.95900 0.95900 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.41781 0.00000 0.41781
0.00000 0.00000 0.00000 0.00000 0.00000 0.45744 0.00000 0.45744
0.00000 0.00000 0.00000 0.00000 0.00000 0.49784 0.00000 0.49784

octave]

U =ℝ2

W = {{{{{{{{{{{{{{{{{{[[[[[[[[[0y]]]]]]]]]|y ∈ℝ}}}}}}}}}}}}}}}}}}

V = {{{{{{{{{{{{{{{{{{[[[[[[[[[x0]]]]]]]]]| x ∈ℝ}}}}}}}}}}}}}}}}}}

b

r =Pb

s = (I −P)b

Figure 4.1. Projection in ℝ2. The vectors r , s ∈ℝ2 have two components, but could be expressed through scaling of e1,e2.

Returning to the general case, the orthogonal matrices U ∈ℝm×m, V ∈ℝm×n, W ∈ℝm×(m−n) are associated with linear
mappings b = f (x)=Ux , r = g (b)=Pb , s =h (b)= (I −P) b . The mapping f gives the components in the I basis of a
vector whose components in the U basis are x . The mappings g ,h project a vector onto span{v1, . . . ,vn}, span{w1, . . . ,
wm−n}, respectively. When V ,W are orthogonal matrices the projections are also orthogonal r⊥ s . Projection can
also be carried out onto nonorthogonal spanning sets, but the process is fraught with possible error, especially
when the angle between basis vectors is small, and will be avoided henceforth.

Notice that projection of a vector already in the spanning set simply returns the same vector, which leads to a
general definition.

DEFINITION. The mapping is called a projection if f ∘f = f, or if for any u ∈U, f (f (u))= f (u). With P the matrix associated
f, a projection matrix satisfies P 2=P.

P =VV T

P 2=PP =VV TVV T =V (V TV)V T =VIV T =VV T =P

54 LEAST SQUARES

2. Gram-Schmidt

Orthonormal vector sets {q1,..., qn} are of the greatest practical utility, leading to the question of whether some such
a set can be obtained from an arbitrary set of vectors {a1, . . . ,an}. This is possible for independent vectors, through
what is known as the Gram-Schmidt algorithm

1. Start with an arbitrary direction a1

2. Divide by its norm to obtain a unit-norm vector q1= a1/‖a1‖

3. Choose another direction a2

4. Subtract off its component along previous direction(s) a2− (q1
Ta2)q1

5. Divide by norm q2= (a2− (q1
Ta2)q1)/‖a2− (q1

Ta2)q1‖

6. Repeat the above

a1

a2

q1

q2

a2− (q1
Ta2)q1

P1a2= (q1 q1
T)a2= q1 (q1

Ta2)= (q1
Ta2) q1

The above geometrical description can be expressed in terms of matrix operations as

A = (a1 a2 . . . an)= (q1 q2 . . . qn)

((((((((((((((((
(((((((((((((((
(((((((((((((((
(

(

(r11 r12 r13 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 rmn))))))))))))))))

)))))))))))))))
)))))))))))))))
)

)

)
=QR ,

equivalent to the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{
{
{ a1= r11q1
a2= r12q1+ r22q2
⋅⋅⋅
an= r1nq1+ r2nq2+ . . . + rnnqn

.

DATA COMPRESSION 55

The system is easily solved by forward substitution resulting in what is known as the (modified) Gram-Schmidt
algorithm, transcribed below both in pseudo-code and in Octave.

Algorithm (Gram-Schmidt)

Given n vectors a1, . . . ,an
Initialize q1= a1,..,qn= an, R = In
for i =1 to n
rii = (q i

Tqi)1/2
if rii <ϵ break;
q i = qi /rii
for j = i+1 to n
rij = q i

T aj; qj = qj − rijq i

end
end
return Q ,R

octave] function [Q,R] = mgs(A)
[m,n]=size(A); Q=A; R=eye(n);
for i=1:n
R(i,i) = sqrt(Q(:,i)'*Q(:,i));
if (R(i,i)<eps) break;
Q(:,i) = Q(:,i)/R(i,i);
for j=i+1:n

R(i,j) = Q(:,i)'*A(:,j);
Q(:,j) = Q(:,j) - R(i,j)*Q(:,i);

end;
end;

end

octave]

Note that the normalization condition ‖qii‖ = 1 is satisifed by two values ±rii, so results from the above imple-
mentation might give orthogonal vectors q1, . . . , qn of different orientations than those returned by the Octave qr
function. The implementation provided by computational packages such as Octave contain many refinements of
the basic algorithm and it's usually preferable to use these in applications.

octave] A=rand(4); [Q,R]=mgs(A); disp([Q R])

0.82757 -0.25921 -0.49326 0.06802 0.83553 0.64827 1.24651 1.05301
0.19408 0.53127 0.15805 0.80939 0.00000 0.93177 0.82700 0.87551
0.22006 0.79553 -0.12477 -0.55058 0.00000 0.00000 0.38433 -0.20336
0.47857 -0.13302 0.84625 -0.19270 0.00000 0.00000 0.00000 0.42469

octave] [Q1,R1]=qr(A); disp([Q1 R1])

-0.82757 0.25921 -0.49326 -0.06802 -0.83553 -0.64827 -1.24651 -1.05301
-0.19408 -0.53127 0.15805 -0.80939 0.00000 -0.93177 -0.82700 -0.87551
-0.22006 -0.79553 -0.12477 0.55058 0.00000 0.00000 0.38433 -0.20336
-0.47857 0.13302 0.84625 0.19270 0.00000 0.00000 0.00000 -0.42469

octave] disp([norm(A-Q*R) norm(A-Q1*R1)])

1.1102e-16 8.0390e-16

octave]

By analogy to arithmetic and polynomial algebra, the Gram-Schmidt algorithm furnishes a factorization

QR =A

with Q ∈ℝm×n with orthonormal columns and R ∈ℝn×n an upper triangular matrix, known as the QR-factorization.
Since the column vectors within Q were obtained through linear combinations of the column vectors of A we have

C(A)=C(Q)≠C(R)

AX =B ,A� x1 . . . xn �= � Ax1 . . . Axn �.

56 LEAST SQUARES

The QR-factorization can be used to solve basic problems within linear algebra.

3. QR solution of linear algebra problems

3.1. Transformation of coordinates

Recall that when given a vector b ∈ℝm, an implicit basis is assumed, the canonical basis given by the column vectors
of the identity matrix I ∈ℝm×m. The coordinates x in another basis A ∈ℝm×m can be found by solving the equation

Ib =b =Ax ,

by an intermediate change of coordinates to the orthogonal basis Q . Since the basis Q is orthogonal the relation
Q TQ = I holds, and changes of coordinates from I to Q , Qc =b , are easily computed c =Q Tb . Since matrix multi-
plication is associative

b =Ax = (QR)x =Q (Rx),

the relations Rx =Q Tb = c are obtained, stating that x also contains the coordinates of c in the basis R . The three
steps are:

1. Compute the QR-factorization, QR =A ;

2. Find the coordinates of b in the orthogonal basis Q , c =Q Tb ;

3. Find the coordinates of x in basis R , Rx = c .

Since R is upper-triangular,

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

(r11 r12 r13 . . . r1m
0 r22 r23 . . . r2m
0 0 r33 . . . r3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 rmm)))))))))))))))

)))))))))))))))
)))))))))))))))
))

)

)

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[x1
x2
⋅⋅⋅

xm−1
xm]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[c1
c2
⋅⋅⋅

cm−1
cm]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]

the coordinates of c in the R basis are easily found by back substitution.

Algorithm (Back substitution)

Given R upper-triangular, vectors c
for i =m down to 1
if rii <ϵ break;
xi = ci /rii
for j = i-1 down to 1
cj = cj − rji xi

end
end
return x

octave] function x=bcks(R,c)
[m,n]=size(R); x=zeros(m,1);
for i=m:-1:1
x(i) = c(i)/R(i,i);
for j=i-1:-1:1

c(j) = c(j) - R(j,i)*x(i);
end;

end;
end

octave]

DATA COMPRESSION 57

The above operations are carried out in the background by the Octave backslash operation A\b to solve A*x=b,
inspired by the scalar mnemonic ax =b⇒ x = (1/a) b. Again, many additional refinements of the basic algorithm
argue for using the built-in Octave functions, even though the above implementations can be verified as correct.

octave] xex=rand(4,1); b=A*xex; [Q,R]=mgs(A); c=Q'*b; x=bcks(R,c); xO=A\b;

octave] disp([xex x xO])

0.96838 0.96838 0.96838
0.31829 0.31829 0.31829
0.58529 0.58529 0.58529
0.38250 0.38250 0.38250

octave]

3.2. General orthogonal bases

The above approch for the real vector space ℛm can be used to determine orthogonal bases for any other vector
space by appropriate modification of the scalar product. For example, within the space of smooth functions 𝒞∞[−1,
1] that can differentiated an arbitrary number of times, the Taylor series

f (x)= f (0) ⋅ 1+ f ʹ(0) ⋅x + 1
2 f ʹʹ(0) ⋅x 2+ ⋅ ⋅ ⋅ + 1

n! f
(n)(0) ⋅x n+ ⋅ ⋅ ⋅ +

is seen to be a linear combination of the monomial basis M = � 1 x x 2 . . . � with scaling coefficients � f (0), f ʹ(0),
1
2 f ʹʹ(0), . . .�. The scalar product

(f ,g)=�
−1

1
f (x)g(x)dx

can be seen as the extension to the [−1, 1] continuum of a the vector dot product. Orthogonalization of the mono-
mial basis with the above scalar product leads to the definition of another family of polynomials, known as the
Legendre polynomials

Q0(x)=�1
2�1/2 ⋅ 1,Q1(x)=� 3

2�1/2 ⋅x ,Q2(x)=� 5
8�1/2 ⋅ (3x 2−1),Q4(x)=� 7

8�1/2 ⋅ (5x 3−3x),

The Legendre polynomials are usually given with a different scaling such that Pk(1)=1, rather than the unit norm
condition ‖Qk‖ = (Qk,Qk)1/2 = 1. The above results can be recovered by sampling of the interval [−1, 1] at points
xi = (i−1)h−1, h=2/(m−1), i =1, . . . ,m, by approximation of the integral by a Riemann sum

�
−1

1
f (x)Lj(x)dx ≅h�

i=1

m

f (xi)Lj(xi)=hf TLj.

octave] m=50; h=2/(m-1); x=(-1:h:1)'; M=[x.^0 x.^1 x.^2 x.^3 x.^4]; [Q,R]=mgs(M);
S=diag(1./Q(m,:)); P=Q*S; sc=[-1 1 -1 1];
figure(1); plot(x,M(:,1),x,M(:,2),x,M(:,3),x,M(:,4)); axis(sc); grid on;
figure(2); plot(x,P(:,1),x,P(:,2),x,P(:,3),x,P(:,4)); axis(sc); grid on;

octave]

58 LEAST SQUARES

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 4.2. Comparison of monomial basis (lest) to Legendre polynomial basis (right). The “resolution” of P3(x) can be interpreted as
the number of crossings of the y =0 ordinate axis, and is greater than that of the corresponding monomial x 3.

3.3. Least squares

The approach to compressing data D = {(xi,yi)| i = 1, . . . ,m} suggested by calculus concepts is to form the sum of
squared differences between y (xi) and yi, for example for y (x)=a0+a1x when carrying out linear regression,

S(a0,a1)=�
i=1

m

(y (xi)−yi)2=�
i=1

m

(a0+a1xi −yi)2

and seek (a0,a1) that minimize S(a0,a1). The function S(a0,a1)�0 can be thought of as the height of a surface above
the a0a1 plane, and the gradient ∇S is defined as a vector in the direction of steepest slope. When at some point
on the surface if the gradient is different from the zero vector ∇S ≠0, travel in the direction of the gradient would
increase the height, and travel in the opposite direction would decrease the height. The minimal value of S would
be attained when no local travel could decrease the function value, which is known as stationarity condition, stated
as ∇S =0. Applying this to determining the coefficients (a0,a1) of a linear regression leads to the equations

∂S
∂a0

=0⇒2�
i=1

m

(a0+a1xi −yi)=0⇔ma0+ (((((((((((((�
i=1

m

xi)))))))))))))a1=�
i=1

m

yi,

∂S
∂a1

=0⇒2�
i=1

m

(a0+a1xi −yi)xi =0⇔(((((((((((((�
i=1

m

xi)))))))))))))a0+ (((((((((((((�
i=1

m

xi
2)))))))))))))a1=�

i=1

m

xi yi.

The above calculations can become tedious, and do not illuminate the geometrical essence of the calculation, which
can be brought out by reformulation in terms of a matrix-vector product that highlights the particular linear com-
bination that is sought in a liner regression. Form a vector of errors with components ei =y (xi)−yi, which for linear
regression is y (x)= a0+ a1x . Recognize that y (xi) is a linear combination of 1 and xi with coefficients a0, a1, or in
vector form

e = ((((((((((((((((
((((
(
(1 x1
⋅⋅⋅ ⋅⋅⋅
1 xm))))))))))))))))

))))
)
)(((((((((a0a1)))))))))− y = (1 x)a − y =Aa − y

DATA COMPRESSION 59

The norm of the error vector ‖e‖ is smallest when Aa is as close as possible to y . Since Aa is within the column
space of C(A), Aa ∈C(A), the required condition is for e to be orthogonal to the column space

e⊥C(A)⇒ATe = (((((((((((((
1T

xT)))))))))))))e = (((((((((((((
1Te
xTe)))))))))))))= (((((((((0

0)))))))))=0

ATe =0⇔AT (Aa − y)=0⇔ (ATA)a =ATy =b .

The above is known as the normal system, with N =ATA is the normal matrix. The system Na =b can be interpreted
as seeking the coordinates in the N =ATA basis of the vector b =ATy . An example can be constructed by randomly
perturbing a known function y (x) = a0+ a1 x to simulate measurement noise and compare to the approximate ã
obtained by solving the normal system.

1. Generate some data on a line and perturb it by some random quantities

octave] m=100; x=(0:m-1)/m; a=[2; 3];
a0=a(1); a1=a(2); yex=a0+a1*x; y=(yex+rand(1,m)-0.5)';

octave]

2. Form the matrices A, N =ATA, vector b =ATy

octave] A=ones(m,2); A(:,2)=x(:); N=A'*A; b=A'*y;

octave]

3. Solve the system Na =b , and form the linear combination ỹ =Aa closest to y

octave] atilde=N\b; disp([a atilde]);

2.0000 2.0302
3.0000 2.9628

octave]

The normal matrix basis N =ATA can however be an ill-advised choice. Consider A ∈ℝ2×2 given by

A = � a1 a2 �= [[[[[[[[[1 cosθ
0 sinθ]]]]]]]]],

where the first column vector is taken from the identity matrix a1=e1, and second is the one obtained by rotating it
with angle θ . If θ =π /2, the normal matrix is orthogonal, ATA= I , but for small θ , A and N =ATA are approximated as

A ≅ [[[[[[[[[1 1
0 θ]]]]]]]]],N = � n1 n2 �= [[[[[[[[[[[1 1

0 θ 2]]]]]]]]]]].

When θ is small a1, a2 are almost colinear, and n1,n2 even more so. This can lead to amplification of small errors,
but can be avoided by recognizing that the best approximation in the 2-norm is identical to the Euclidean concept
of orthogonal projection. The orthogonal projector onto C(A) is readily found by QR-factorization, and the steps
to solve least squares become

1. Compute QR =A

60 LEAST SQUARES

2. The projection of y onto the column space of A is z =QQ Ty , and has coordinates c =Q Ty in the orthogonal
basis Q .

3. The same z can also obtained by linear combination of the columns of A, z =Aa =QQ T y , and replacing A
with its QR-factorization gives QRa =Qc , that leads to the system Ra = c , solved by back-substitution.

octave] [Q,R]=qr(A); c=Q'*y; aQR=R\c; disp([a atilde aQR])

2.0000 2.0302 2.0302
3.0000 2.9628 2.9628

octave]

The above procedure carried over to approximation by higher degree polynomials.

octave] m=100; n=6; x=(0:m-1)/m; x=x'; a=randi(10,n,1); A=[];
for j=1:n

A = [A x.^(j-1)];
end;
yex=A*a; y=yex+(rand(m,1)-0.5);

octave] N=A'*A; b=A'*y; atilde=inv(N)*b;
[Q,R]=qr(A); c=Q'*y; aQR=R\c;
disp([a atilde aQR]);

8.0000 8.0847 8.0847
8.0000 7.1480 7.1480
4.0000 4.2264 4.2264
4.0000 8.7568 8.7568

10.0000 2.7420 2.7420
6.0000 9.0386 9.0386

octave]

y

e
Aa C(A)

Givendata y , formA ,finda , suchthat‖e‖=‖Aa − y‖ isminimized

DATA COMPRESSION 61

MODEL REDUCTION

1. Projection of mappings

The least-squares problem

min
x∈ℝn

‖y −Ax‖ (4.1)

focuses on a simpler representation of a data vector y ∈ℝm as a linear combination of column vectors of A ∈ℝm×n.
Consider some phenomenonmodeled as a function between vector spaces f :X→Y , such that for input parameters
x ∈X , the state of the system is y = f (x). For most models f is differentiable, a transcription of the condition that
the system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice
of units and origin, a linearized model

y =Ax ,A ∈ℝm×n,

is obtained if y ∈C(A), expressed as (1) if y ∉C(A).

A simpler description is osten sought, typically based on recognition that the inputs and outputs of the model
can themselves be obtained as linear combinations x =Bu , y =C v , involving a smaller set of parameters u ∈ℝq,
v ∈ℝp, p <m, q <n. The column spaces of the matrices B ∈ℝn×q, C ∈ℝm×p are vector subspaces of the original set
of inputs and outputs, C(B)≤ℝn, C(C)≤ℝm. The sets of column vectors of B ,C each form a reduced basis for the
system inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been
orthonormalized through the Gram-Schmidt procedure such that BTB = Iq, and CTC = Ip. Expressing the model
inputs and outputs in terms of the reduced basis leads to

Cv =ABu ⇒v =CTABu ⇒v =Ru .

The matrix R =CT AB is called the reduced system matrix and is associated with a mapping g :U→V , that is a
restriction to the U ,V vector subspaces of the mapping f . When f is an endomorphism, f :X→X , m =n, the same
reduced basis is used for both inputs and outputs, x =Bu , y =Bv , and the reduced system is

v =Ru ,R =BTAB .

Since B is assumed to be orthogonal, the projector onto C(B) is PB =BBT . Applying the projector on the inital model

PBy =PBAx

62 LEAST SQUARES

leads to BBT y =BBTAx , and since v =BT y the relation Bv =BBTABu is obtained, and conveniently grouped as

Bv =B (BTAB)u ⇒Bv =B (Ru),

again leading to the reduced model v =Bu . The above calculation highlights that the reduced model is a projection
of the full model y =Ax on C(B).

2. Reduced bases

2.1. Correlation matrices

Correlation coefficient. Consider two functions x1,x2:ℝ→ℝ, that represent data streams in time of inputs x1(t)
and outputs x2(t) of some system. A basic question arising in modeling and data science is whether the inputs
and outputs are themselves in a functional relationship. This usually is a consequence of incomplete knowledge
of the system, such that while x1, x2 might be assumed to be the most relevant input, output quantities, this is
not yet fully established. A typical approach is to then carry out repeated measurements leading to a data set
D = {(x1(ti),x2(ti))| i=1,...,N}, thus defining a relation. Let x1,x2∈ℝN denote vectors containing the input and output
values. The mean values μ1,μ2 of the input and output are estimated by the statistics

μ1≅ x̄1=
1
N

�
i=1

N

x1(ti)=E [x1],μ2≅ x̄2=
1
N

�
i=1

N

x2(ti)=E [x2],

where E is the expectation seen to be a linear mapping, E :ℝN →ℝ whose associated matrix is

E =
1
N

� 1 1 . . . 1 �,

and the means are also obtained by matrix vector multiplication (linear combination),

x̄1=Ex1, x̄2=Ex2.

Deviation from the mean is measured by the standard deviation defined for x1,x2 by

σ1= E[(x1−μ1)2]� , σ2= E[(x2−μ2)2]� .

Note that the standard deviations are no longer linear mappings of the data.

Assume that the origin is chosen such that x̄1= x̄2=0. One tool to estalish whether the relation D is also a function
is to compute the correlation coefficient

ρ(x1,x2)=
E[x1x2]
σ1σ2

=
E[x1x2]
E[x12]E[x22]�

,

that can be expressed in terms of a scalar product and 2-norm as

ρ(x1,x2)=
x1T x2

‖x1‖‖x2‖
.

MODEL REDUCTION 63

Squaring each side of the norm property ‖x1+x2‖�‖x1‖+‖x2‖, leads to

(x1+x2)T (x1+x2)�x1Tx1+x2T x2+2‖ x1‖ ‖x2‖⇒ x1T x2�‖x1‖ ‖x2‖,

known as the Cauchy-Schwarz inequality, which implies −1�ρ(x1,x2)�1. Depending on the value of ρ, the variables
x1(t),x2(t) are said to be:

1. uncorrelated , if ρ=0;

2. correlated , if ρ=1;

3. anti-correlated , if ρ=−1.

The numerator of the correlation coefficient is known as the covariance of x1,x2

cov(x1,x2)=E[x1x2].

The correlation coefficient can be interpreted as a normalization of the covariance, and the relation

cov(x1,x2)=x1T x2=ρ(x1,x2)‖x1‖‖x2‖,

is the two-variable version of a more general relationship encountered when the system inputs and outputs become
vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters x ∈ℝn, y ∈ℝm thought
to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful
description is furnished by u ∈ℝq, v ∈ℝp with fewer components p <m, q < n. Applying the same ideas as in the
correlation coefficient, a sequence of N measurements is made leading to data sets

X = � x1 x2 . . . xn �∈ℝN×n,Y = � y1 y2 . . . yn �∈ℝN×m.

Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero

E[x]=0,E[y]=0.

Covariance matrices can be constructed by

CX =X TX =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[x1T

x2T

⋅⋅⋅
xnT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
� x1 x2 . . . xn �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[x1T x1 x1Tx2 . . . x1Txn
x2T x1 x2Tx2 . . . x2Txn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

xnT x1 xnTx2 . . . xnTxn]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]

]

]
∈ℝn×n.

Consider now the SVDs of CX =N ΛN T , X =U ΣS T , and from

CX =X TX = (U ΣS T)TU ΣS T =S ΣTU TU ΣS T =S ΣT ΣS T =N ΛN T ,

identify N =S , and Λ =ΣT Σ.

64 LEAST SQUARES

Recall that the SVD returns an order set of singular values σ1�σ2� ⋅ ⋅ ⋅ � , and associated singular vectors. In many
applications the singular values decrease quickly, osten exponentially fast. Taking the first q singular modes then
gives a basis set suitable for mode reduction

x =Sq u = � s1 s2 . . . sq �u .

MODEL REDUCTION 65

CHAPTER 5
CHANGE OF BASIS

DATA TRANSFORMATION

1. Gaussian elimination and row echelon reduction

Suppose now that A x =b admits a unique solution. How to find it? We are especially interested in constructing
a general procedure, that will work no matter what the size of A might be. This means we seek an algorithm that
precisely specifies the steps that lead to the solution, and that we can program a computing device to carry out
automatically. One such algorithm is Gaussian elimination.

Consider the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
x1+2 x2−x3 = 2
2x1−x2+x3 = 2
3x1−x2−x3 = 1

The idea is to combine equations such that we have one fewer unknown in each equation. Ask: with what number
should the first equation be multiplied in order to eliminate x1 from sum of equation 1 and equation 2? This number
is called a Gaussian multiplier, and is in this case −2. Repeat the question for eliminating x1 from third equation,
with multiplier −3.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
x1+2x2−x3 = 2
2 x1−x2+x3 = 2
3x1−x2−x3 = 1

⇒{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
x1+2 x2−x3 = 2
−5x2+3x3 = −2
−7x2+2 x3 = −5

Now, ask: with what number should the second equation be multiplied to eliminate x2 from sum of second and
third equations. The multiplier is in this case −7/5.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
x1+2x2−x3 = 2
−5x2+3x3 = −2
−7x2+2x3 = −5

⇒

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{ x1+2 x2−x3 = 2

−5x2+3x3 = −2

−
11
5
x3 = −

11
5

Starting from the last equation we can now find x3=1, replace in the second to obtain −5x2=−5, hence x2=1, and
finally replace in the first equation to obtain x1=1.

The above operations only involve coefficients. A more compact notation is therefore to work with what is known
as the "bordered matrix"

((((((((((((((((
((((
(
(1 2 −1 2
2 −1 1 2
3 −1 −1 1))))))))))))))))

))))
)
)
∼((((((((((((((((
((((
(
(1 2 −1 2
0 −5 3 −2
0 −7 2 −5))))))))))))))))

))))
)
)
∼

(((((((((((((((
(((((((((((((((
(
(1 2 −1 2
0 −5 3 −2

0 0 −
11
5

−
11
5)))))))))))))))

)))))))))))))))
)
)

67

Once the above triangular form has been obtain, the solution is found by back substitution, in which we seek to
form the identity matrix in the first 3 columns, and the solution is obtained in the last column.

(((((((((((((((
(((((((((((((((
(
(1 2 −1 2
0 −5 3 −2

0 0 −
11
5

−
11
5)))))))))))))))

)))))))))))))))
)
)
∼ ((((((((((((((((
((((
(
(1 2 −1 2
0 −5 3 −2
0 0 1 1))))))))))))))))

))))
)
)
∼ ((((((((((((((((
((((
(
(1 0 0 1
0 1 0 1
0 0 1 1))))))))))))))))

))))
)
)

2. LU -factorization

• We have introduced Gaussian elimination as a procedure to solve the linear system A x =b ("find coordi-
nates of vector b in terms of column vectors of matrix A"), x ,b ∈ℝm,A ∈ℝm×m

• We now reinterpret Gaussian elimination as a sequence of matrix multiplications applied to A to obtain a
simpler, upper triangular form.

2.1. Example for m =3

Consider the system A x =b

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
x1+2 x2−x3 = 2
2x1−x2+x3 = 2
3x1−x2−x3 = 1

with

A =((((((((((((((((
((((
(
(1 2 −1
2 −1 1
3 −1 −1))))))))))))))))

))))
)
)
,b = ((((((((((((((((

((((
(
(2
2
1))))))))))))))))
))))
)
)

We ask if there is a matrix L1 that could be multiplied with A to produce a result L1A with zeros under the main
diagonal in the first column. First, gain insight by considering multiplication by the identity matrix, which leaves
A unchanged

((((((((((((((((
((((
(
(1 0 0
0 1 0
0 0 1))))))))))))))))

))))
)
)
((((((((((((((((
((((
(
(1 2 −1
2 −1 1
3 −1 −1))))))))))))))))

))))
)
)
=((((((((((((((((
((((
(
(1 2 −1
2 −1 1
3 −1 −1))))))))))))))))

))))
)
)

In the first stage of Gaussian multiplication, the first line remains unchanged, so we deduce that L1 should have
the same first line as the identity matrix

L1=((((((((((((((((
((((
(
(1 0 0
? ? ?
? ? ?))))))))))))))))

))))
)
)

((((((((((((((((
((((
(
(1 0 0
? ? ?
? ? ?))))))))))))))))

))))
)
)
((((((((((((((((
((((
(
(1 2 −1
2 −1 1
3 −1 −1))))))))))))))))

))))
)
)
=((((((((((((((((
((((
(
(1 2 −1
0 −5 3
0 −7 2))))))))))))))))

))))
)
)

68 CHANGE OF BASIS

Next, recall the way Gaussian multipliers were determined: find number to multiply first line so that added to
second, third lines a zero is obtained. This leads to the form

L1=((((((((((((((((
((((
(
(1 0 0
? 1 0
? 0 1))))))))))))))))

))))
)
)

Finally, identify the missing entries with the Gaussian multipliers to determine

L1=((((((((((((((((
((((
(
(1 0 0
−2 1 0
−3 0 1))))))))))))))))

))))
)
)

Verify by carrying out the matrix multiplication

L1A= ((((((((((((((((
((((
(
(1 0 0
−2 1 0
−3 0 1))))))))))))))))

))))
)
)
((((((((((((((((
((((
(
(1 2 −1
2 −1 1
3 −1 −1))))))))))))))))

))))
)
)
= ((((((((((((((((
((((
(
(1 2 −1
0 −5 3
0 −7 2))))))))))))))))

))))
)
)

Repeat the above reasoning to come up with a second matrix L2 that forms a zero under the main diagonal in the
second column

L2=((((((((((((((((
((((
(
(1 0 0
0 1 0
0 −7/5 1))))))))))))))))

))))
)
)

L2L1A= ((((((((((((((((
((((
(
(1 0 0
0 1 0
0 −7/5 1))))))))))))))))

))))
)
)
((((((((((((((((
((((
(
(1 2 −1
0 −5 3
0 −7 2))))))))))))))))

))))
)
)
= ((((((((((((((((
((((
(
(1 2 −1
0 −5 3
0 0 −11/5))))))))))))))))

))))
)
)
=U

We have obtained a matrix with zero entries under the main diagonal (an upper triangular matrix) by a sequence
of matrix multiplications.

2.2. General m case

From the above, we assume that we can form a sequence of multiplier matrices such that the result is an upper
triangular matrix U

Lm−1...L2L1A=U

• Recall the basic operation in row echelon reduction: constructing a linear combination of rows to form zeros
beneath the main diagonal, e.g.

A =

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

(a11 a12 . . . a1m
a21 a22 . . . a2m
a31 a32 . . . a3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm)))))))))))))))
)))))))))))))))
)))))))))))))))
))

)

)
∼

(((((((((((((((
(((((((((((((((
(((((((((((((((
(((((((((((((((
((((

(

(a11 a12 . . . a1m
0 a22−

a21
a11
a12 . . . a2m−

a21
a11
a1m

0 a32−
a31
a11
a12 . . . a3m−

a31
a11
a1m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 am2−

am1

a11
a12 . . . amm−

am1

a11
a1m)))))))))))))))

)))))))))))))))
)))))))))))))))
)))))))))))))))
))))

)

)

DATA TRANSFORMATION 69

• This can be stated as a matrix multiplication operation, with li1=ai1/a11

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

(1 0 0 . . . 0
−l21 1 0 . . . 0
−l31 0 1 . . . 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

−lm1 0 0 . . . 1)))))))))))))))
)))))))))))))))
)))))))))))))))
))

)

)

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

(a11 a12 . . . a1m
a21 a22 . . . a2m
a31 a32 . . . a3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm)))))))))))))))
)))))))))))))))
)))))))))))))))
))

)

)
=

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

(a11 a12 . . . a1m
0 a22− l21a12 . . . a2m− l21a1m
0 a32− l31a12 . . . a3m− l31a1m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 am2− lm1a12 . . . amm− lm1a1m)))))))))))))))

)))))))))))))))
)))))))))))))))
))

)

)

DEFINITION. The matrix

Lk=

(((((((((((((((
((((((((((((((((
(((((((((((((((
((((((((((((((((
(((((((((((

(

(1 . . . 0 . . . 1
0 ⋅⋅ ⋅ 0 . . . 0
0 . . . 1 . . . 0
0 . . . −lk+1,k . . . 0
0 . . . −lk+2,k . . . 0
⋅⋅⋅ . . . ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 . . . −lm,k . . . 1)))))))))))))))

))))))))))))))))
)))))))))))))))
))))))))))))))))
)))))))))))

)

)

with li ,k=ai ,k
(k)/ak,k

(k), and A(k)=�ai ,j
(k)� the matrix obtained aster step k of row echelon reduction (or, equivalently, Gaussian

elimination) is called a Gaussian multiplier matrix.

• For A ∈ℝm×m nonsingular, the successive steps in row echelon reduction (or Gaussian elimination) corre-
spond to successive multiplications on the lest by Gaussian multiplier matrices

Lm−1Lm−2. . .L2L1A =U

• The inverse of a Gaussian multiplier is

Lk
−1=

((((((((((((((((
(((((((((((((((
((((((((((((((((
(((((((((((((((
(((((((((((

(

(1 . . . 0 . . . 1
0 ⋅⋅ ⋅ 0 . . . 0
0 . . . 1 . . . 0
0 . . . lk+1,k . . . 0
0 . . . lk+2,k . . . 0
⋅⋅⋅ . . . ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 . . . lm,k . . . 1))))))))))))))))

)))))))))))))))
))))))))))))))))
)))))))))))))))
)))))))))))

)

)
= I − (Lk− I)

• From (Lm−1Lm−2. . .L2L1)A =U obtain

A = (Lm−1Lm−2. . .L2L1)−1U =L1−1L2−1 ⋅ . . . ⋅Lm−1
−1 U =LU

• Due to the simple form of Lk
−1 the matrix L is easily obtained as

L=

(((((((((((((((
((((((((((((((((
(((((((((((((((
((((((((((((((

(

(1 0 0 . . . 0 0
l2,1 1 0 . . . 0 0
l3,1 l3,2 1 . . . 0 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅

lm−1,1 lm−1,2 lm−1,3 . . . 1 0
lm,1 lm,2 lm,3 . . . lm,m−1 1)))))))))))))))

))))))))))))))))
)))))))))))))))
))))))))))))))

)

)

70 CHANGE OF BASIS

We will show that this indeed possible if A x = b admits a unique solution. Furthermore, the product of lower
triangular matrices is lower triangular, and the inverse of a lower triangular matrix is lower triangular (same applies
for upper triangular matrices). Introduce the notation

L−1=Lm−1...L2L1

and obtain

L−1A=U

or

A =LU

The above result permits a basic insight into Gaussian elimination: the procedure depends on "factoring" the matrix
A into two "simpler" matrices L,U . The idea of representing a matrix as a product of simpler matrices is funda-
mental to linear algebra, and we will come across it repeatedly.

For now, the factorization allows us to devise the following general approach to solving A x =b

1. Find the factorization LU =A

2. Insert the factorization into A x =b to obtain (L U) x =L (U x)=L y =b, where the notation y =U x has been
introduced. The system

Ly =b

is easy to solve by forward substitution to find y for given b

3. Finally find x by backward substitution solution of

Ux =y

Algorithm Gauss elimination without pivoting

for s =1 to m −1
for i = s +1 to m
t =−a is /ass
for j = s +1 to m
a ij =aij + t ⋅asj

bi =bi + t ⋅bs

for s =m downto 1
xs =bs /ass
for i =1 to s −1
bi =bi −ais ⋅xs

DATA TRANSFORMATION 71

return x

Algorithm Gauss elimination with partial pivoting

p =1:m (initialize row permutation vector)
for s =1 to m −1
piv = abs(ap(s),s)
for i = s +1 to m
mag = abs(ap(i),s)
if mag>piv then
piv=mag;k =p(s);p(s)=p(i);p(i)=k

if piv <ϵ then break(“Singular matrix”)
t =−ap(i)s /ap(s)s
for j = s +1 to m
ap(i)j =ap(i)j + t ⋅ap(s)j

bp(i)=bp(i)+ t ⋅bp(s)

for s =m downto 1
xs =bp(s)/ap(s)s
for i =1 to s −1
bp(i)=bp(i)−ap(i)s ⋅xs

return x

Given A ∈ℝm×n

Singular value decomposition Gram-Schmidt Lower-upper
Transformation of coordinates Ax =b
U ΣV T =A QR =A LU =A
(U ΣV T)x =b⇒Uy =b ⇒ y =U Tb (QR)x =b ⇒Qy =b , y =Q Tb (LU)x =b⇒Ly =b (forwardsubtofind)y
Σz = y ⇒ z =Σ+y Rx = y (back subtofind x) Ux = y (back sub to find x)
V Tx = z ⇒ x =Vz

3. Inverse matrix

By analogy to the simple scalar equation a x =b with solution x =a−1b when a≠0, we are interested in writing the
solution to a linear system A x =b as x =A−1b for A ∈ℝm×m, x ∈ℝm. Recall that solving A x =b = I b corresponds to
expressing the vector b as a linear combination of the columns of A. This can only be done if the columns of A form
a basis for ℝm, in which case we say that A is non-singular .

DEFINITION 5.1. For matrix A∈ℝm×m non-singular the inverse matrix is denoted by A−1 and satisfies the properties

AA−1=A−1A = I

72 CHANGE OF BASIS

3.1. Gauss-Jordan algorithm

Computation of the inverse A−1 can be carried out by repeated use of Gauss elimination. Denote the inverse by
B=A−1 for a moment and consider the inverse matrix property A B = I . Introducing the column notation for B, I
leads to

A(B1 ... Bm)= (e1 ... em)

and identification of each column in the equality states

ABk= ek,k =1,2, ..,m

with ek the column unit vector with zero components everywhere except for a 1 in row k . To find the inverse we
need to simultaneously solve the m linear systems given above.

Gauss-Jordan algorithm example. Consider

A =((((((((((((((((
((((
(
(1 2 3
−1 3 1
2 −1 −2))))))))))))))))

))))
)
)

To find the inverse we solve the systems A B1= e1,A B2=e2,A B3= e3. This can be done simultaneously by working
with the matrix A bordered by I

(A|I)=((((((((((((((((
((((
(
(1 1 0 1 0 0
−1 1 1 0 1 0
2 4 −2 0 0 1))))))))))))))))

))))
)
)

Carry out now operations involving linear row combinations and permutations to bring the lest side to I

((((((((((((((((
((((
(
(1 1 0 1 0 0
−1 1 1 0 1 0
2 4 −2 0 0 1))))))))))))))))

))))
)
)
∼((((((((((((((((
((((
(
(1 1 0 1 0 0
0 2 1 1 1 0
0 2 −2 −2 0 1))))))))))))))))

))))
)
)
∼ ((((((((((((((((
((((
(
(1 1 0 1 0 0
0 2 1 1 1 0
0 0 −3 −3 −1 1))))))))))))))))

))))
)
)
∼

∼

(((((((((((((((
(((((((((((((((
(
(1 1 0 1 0 0
0 2 1 1 1 0

0 0 1 1
1
3

−
1
3)))))))))))))))

)))))))))))))))
)
)
∼

((((((((((((((((
((((((((((((((((
(((((((((

(

(1 1 0 1 0 0

0 2 0 0
2
3

1
3

0 0 1 1
1
3

−
1
3))))))))))))))))

))))))))))))))))
)))))))))

)

)
∼

((((((((((((((((
((((((((((((((((
(((((((((

(

(1 1 0 1 0 0

0 1 0 0
1
3

1
6

0 0 1 1
1
3

−
1
3))))))))))))))))

))))))))))))))))
)))))))))

)

)
∼

(((((((((((((((
(((((((((((((((
(((((((((((((((
((((((

(

(1 0 0 1 −
1
3

−
1
6

0 1 0 0
1
3

1
6

0 0 1 1
1
3

−
1
3)))))))))))))))

)))))))))))))))
)))))))))))))))
))))))

)

)

to obtain

A−1=

(((((((((((((((
(((((((((((((((
(((((((((((((((
((((((

(

(1 −
1
3

−
1
6

0
1
3

1
6

1
1
3

−
1
3)))))))))))))))

)))))))))))))))
)))))))))))))))
))))))

)

)

DATA TRANSFORMATION 73

4. Determinants

• A ∈ℝm×m a square matrix, det(A)∈ℝ is the oriented volume enclosed by the column vectors of A (a paral-
lelipiped)

• Geometric interpretation of determinants

• Determinant calculation rules

• Algebraic definition of a determinant

DEFINITION. The determinant of a square matrix A = (a1 . . . am)∈ℝm×m is a real number

det(A)=

a11 a12 . . . a1m														

a21 a22 . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm ||||||||||||||||
||||||||||||||||
||||
|
|
∈ℝ

giving the (oriented) volume of the parallelepiped spanned by matrix column vectors.

• m =2

A = (((((((((a11 a12
a21 a22))))))))), det(A)= � a11 a12

a21 a22
�

• m =3

A =((((((((((((((((
((((
(
(a11 a12 a13
a21 a22 a23
a31 a32 a33))))))))))))))))

))))
)
)
, det(A)=|||||||||||||||||

||||||
|
| a11 a12 a13
a21 a22 a23
a31 a32 a33 |||||||||||||||||

||||||
|
|

• Computation of a determinant with m =2

� a11 a12
a21 a22

�=a11a22−a12a21

• Computation of a determinant with m =3

|||||||||||||||||
||||||
|
| a11 a12 a13
a21 a22 a23
a31 a32 a33 |||||||||||||||||

||||||
|
|

= a11a22a33+a21a32a13+a31a12a23

−a13a22a31−a23a32a11−a33a12a21

74 CHANGE OF BASIS

• Where do these determinant computation rules come from? Two viewpoints

− Geometric viewpoint: determinants express parallelepiped volumes

− Algebraic viewpoint: determinants are computed from all possible products that can be formed from
choosing a factor from each row and each column

• m =2

A1

A2
A = (a1 a2)= (((((((((a11 a12

a21 a22)))))))))

Figure 5.1.

• In two dimensions a ``parallelepiped'' becomes a parallelogram with area given as

(Area)= (LengthofBase)× (LengthofHeight)

• Take a1 as the base, with length b =‖a1‖. Vector a1 is at angle φ1 to x1-axis, a2 is at angle φ2 to x2-axis, and
the angle between a1, a2 is θ =φ2−φ1. The height has length

h=‖a2‖ sinθ =‖a2‖sin(φ2−φ1)=‖a2‖(sinφ2cosφ1−sinφ1cosφ2)

• Use cosφ1=a11/‖a1‖, sinφ1=a12/‖a1‖, cosφ2=a21/‖a2‖, sinφ2=a22/‖a2‖

(Area)=‖a1‖‖a2‖(sinφ2 cosφ1−sinφ1cosφ2)=a11a22−a12a21

• The geometric interpretation of a determinant as an oriented volume is useful in establishing rules for
calculation with determinants:

− Determinant of matrix with repeated columns is zero (since two edges of the parallelepiped are
identical). Example for m =3

Δ=|||||||||||||||||
||||||
|
| a a u
b b v
c c w |||||||||||||||||

||||||
|
|
=abw +bcu+ cav −ubc −vca−wab =0

This is more easily seen using the column notation

Δ=det(a1 a1 a3 . . .)=0

DATA TRANSFORMATION 75

− Determinant of matrix with linearly dependent columns is zero (since one edge lies in the 'hyper-
plane' formed by all the others)

• Separating sums in a column (similar for rows)

det(a1+b1 a2 . . . am)=det(a1 a2 . . . am)+det(b1 a2 . . . am)

with ai,b1∈ℝm

• Scalar product in a column (similar for rows)

det(αa1 a2 . . . am)=α det(a1 a2 . . . am)

with α ∈ℝ

• Linear combinations of columns (similar for rows)

det(a1 a2 . . . am)=det(a1 αa1+ a2 . . . am)

with α ∈ℝ.

• A determinant of size m can be expressed as a sum of determinants of size m −1 by expansion along a row
or column

a11 a12 a13 . . . a1m														

a21 a22 a23 . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 am3 . . . amm ||||||||||||||||
||||||||||||||||
||||
|
|

= a11|||||||||||||||||
||||||
|
| a22 a23 . . . a2m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am2 am3 . . . amm |||||||||||||||||

||||||
|
|
−

a12|||||||||||||||||
||||||
|
| a21 a23 . . . a2m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am1 am3 . . . amm |||||||||||||||||

||||||
|
|
+

a13|||||||||||||||||
||||||
|
| a21 a22 a24 . . . a2m

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am1 am2 am4 . . . amm |||||||||||||||||

||||||
|
|
−

. . .

+(−1)m+1a1m|||||||||||||||||
||||||
|
| a21 a23 . . . a2,m−1

⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
am1 am3 . . . am,m−1 |||||||||||||||||

||||||
|
|

• The formal definition of a determinant

detA= �
σ ∈Σ

ν(σ)a1i1a2i2. . .amim

requires mm! operations, a number that rapidly increases with m

• A more economical determinant is to use row and column combinations to create zeros and then reduce the
size of the determinant, an algorithm reminiscent of Gauss elimination for systems

76 CHANGE OF BASIS

Example:

|||||||||||||||||
||||||
|
| 1 2 3
−1 0 1
−2 −1 4 |||||||||||||||||

||||||
|
|
=|||||||||||||||||

||||||
|
| 1 2 3
0 2 4
0 3 10 |||||||||||||||||

||||||
|
|
= � 2 4

3 10 �=20−12=8

The first equality comes from linear combinations of rows, i.e. row 1 is added to row 2, and row 1 multiplied
by 2 is added to row 3. These linear combinations maintain the value of the determinant. The second
equality comes from expansion along the first column

4.1. Cross product

• Consider u, v ∈ℝ3. We've introduced the idea of a scalar product

u ⋅ v =uTv =u1v1+u2v2+u3v3

in which from two vectors one obtains a scalar

• We've also introduced the idea of an exterior product

uv T =((((((((((((((((
((((
(
(u1
u2
u3))))))))))))))))

))))
)
)(v1 v2 v3)=((((((((((((((((

((((
(
(u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3))))))))))))))))

))))
)
)

in which a matrix is obtained from two vectors

• Another product of two vectors is also useful, the cross product, most conveniently expressed in determi-
nant-like form

u× v =||||||||||||||||
|||||||
|
| e1 e2 e3
u1 u2 u3
v1 v2 v3 ||||||||||||||||

|||||||
|
|
= (u2v3−v2u3)e1+ (u3v1− v3u1)e2+ (u1v2− v1u2)e3

DATA EFFICIENCY

1. Krylov bases

In reduction of the model

Ax = y ,A ∈ℝm×n,ℝn→→→→
A

ℝm

by restriction to a subspaces spanned by the orthogonal column vectors of B ,C , x =Bu , y =Cv , the reduced model

v =Ru

DATA EFFICIENCY 77

is obtained with R =CTAB , the reduced system matrix. The choice of the basis sets B ,C is not yet specified. One
common choice is to use the singular value decomposition A =SΣQ T and choose the dominant k singular vectors
to span the subspaces,

B =Qk,C =Sk.

This assumes that an SVD is available, and that ordering of vectors by the 2-norm is relevant to the problem. This
is osten the case in problems in which the matrix A somewhow expresses the energy of a system. For example in
deformation of a structure a relationship between forces f and displacements u is approximated linearly by f =Ku ,
with the stiffness matrix K expressing the potential energy stored in the deformation.

However in many cases, the model might not express an energy so the 2-norm is not an appropriate functional, or
even if it is the size of the problem might render the computation of the singular value decomposition impractical.
In such situations alternative procedures to construct reduced bases must be devised.

Consider that the only information available about the problem are the matrix A ∈ℝm×m and a vector y ∈ℝm. From
these two a sequence of vectors can be gather into what is known as a Krylov matrix

Kn= � y Ay A2y . . . An−1y �.

The Krylov matrix Kn is generally not orthogonal, but an orthogonal basis can readily be extracted through the QR
factorization

QnR =Kn.

The basis Qn can then be adopted, both for the domain and the codomain

B =C =Qn.

2. Greedy approximation

The Krylov procedure has the virtue of simplicity, but does not have the desirable property of the SVD of ordering
of the singular vectors. Suppose that the system matrix A ∈ℝm×m is applied to k vectors x1, . . . ,xk, leading to forma-
tion of the vector set S = {Ax1, . . . ,Axk}. Denote by B the first n members of the set ordered in some arbitrary norm

B = � b1 b2 . . . bn �,n≪k

b1=Axσ (1), . . . ,bk=Axσ (k),

where σ denotes the permutation that orders the vectors in accordance with the chosen norm. The above is called a
greedy approximation, and furnishes an alternative to the SVD that exhibits an ordering property. As in the Krylov
case, it is usually more efficient to use an orthogonal set obtained through QR factorization

QnR =Bn.

78 CHANGE OF BASIS

CHAPTER 6
EIGENPROBLEMS

DATA STABILITY

A =UΣV T A =QR A =LU

1. The eigenvalue problem

• Consider square matrix A ∈ℝm×m. The eigenvalue problem asks for vectors x ∈ℂm, x ≠0, scalars λ ∈ℂ such
that

Ax =λx (6.1)

• Eigenvectors are those special vectors whose direction is not modified by the matrix A

• Rewrite (1): (A − λI)x = 0, and deduce that A − λI must be singular in order to have non-trivial solutions
det(A −λI)=0

• Consider the determinant

det(A−λI)=

a11−λ a12 . . . a1m														

a21 a22−λ . . . a2m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

am1 am2 . . . amm−λ ||||||||||||||||
||||||||||||||||
||||
|
|

• From determinant definition ``sum of all products choosing an element from row/column''

det(A−λI)= (−1)mλm+ c1λm−1+ . . . + cm−1λ+ cm=pA(λ)

is the characteristic polynomial associated with the matrix A, and is of degree m

• A ∈ ℝm×m has characteristic polynomial pA(λ) of degree m, which has m roots (Fundamental theorem of
algebra)

• Example

octave] theta=pi/3.; A=[cos(theta) -sin(theta); sin(theta) cos(theta)]

A =

0.50000 -0.86603
0.86603 0.50000

79

octave] eig(A)

ans =

0.50000 + 0.86603i
0.50000 - 0.86603i

octave] [R,lambda]=eig(A);

octave] disp(R);

0.70711 + 0.00000i 0.70711 - 0.00000i
0.00000 - 0.70711i 0.00000 + 0.70711i

octave] disp(lambda)

Diagonal Matrix

0.50000 + 0.86603i 0
0 0.50000 - 0.86603i

octave] A=[-2 1 0 0 0 0; 1 -2 1 0 0 0; 0 1 -2 1 0 0; 0 0 1 -2 1 0; 0 0 0 1 -2 1; 0 0 0 0
1 -2];

octave] disp(A)

-2 1 0 0 0 0
1 -2 1 0 0 0
0 1 -2 1 0 0
0 0 1 -2 1 0
0 0 0 1 -2 1
0 0 0 0 1 -2

octave] lambda=eig(A);

octave] disp(lambda);

-3.80194
-3.24698
-2.44504
-1.55496
-0.75302
-0.19806

octave]

• For A ∈ℝm×m, the eigenvalue problem 5 (x ≠0) can be written in matrix form as

AX =XΛ,X = (x1. . .xm) eigenvector,Λ=diag(λ1, . . . ,λm)eigenvaluematrices

• If the column vectors of X are linearly independent, then X is invertible and A can be reduced to diagonal
form

A =XΛX−1,A =UΣVT

80 EIGENPROBLEMS

• Diagonal forms are useful in solving linear ODE systems

y ʹ =Ay⇔ (X−1y)=Λ (X−1y)

• Also useful in repeatedly applying A

uk =Aku0=AA. . .Au0= (XΛX−1)(XΛX−1). . .(XΛX−1)u0=XΛkX−1u0

• When can a matrix be reduced to diagonal form? When eigenvectors are linearly independent such that the
inverse of X exists

• Matrices with distinct eigenvalues are diagonalizable. Consider A ∈ℝm×m with eigenvalues λj ≠λk for j ≠k ,
j ,k ∈ {1, . . . ,m}

Proof . By contradiction. Take any two eigenvalues λj ≠λk and assume that xj would depend linearly on xk,
xk= cxj for some c ≠0. Then

Ax1=λ1x1 ⇒ Ax1=λ1x1
Ax2=λ2x2 ⇒ Acx1=λ2 cx1

and subtracting would give 0= (λ1−λ2)x1. Since x1 is an eigenvector, hence x1≠0 we obtain a contradiction
λ1=λ2.

• The characteristic polynomial might have repeated roots. Establishing diagonalizability in that case requires
additional concepts

DEFINITION 6.1. The algebraic multiplicity of an eigenvalue λ is the number of times it appears as a repeated root of the
characteristic polynomial p(λ)=det(A −λI)

Example. p(λ)=λ(λ−1)(λ−2)2 has two single roots λ1=0, λ2=1 and a repeated root λ3,4=2. The eigenvalue λ=2 has
an algebraic multiplicity of 2

DEFINITION 6.2. The geometric multiplicity of an eigenvalue λ is the dimension of the null space of A−λI

DEFINITION 6.3. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be
defective

PROPOSITION 6.4. A matrix is diagonalizable is the geometric multiplicity of each eigenvalue is equal to the algebraic
multiplicity of that eigenvalue.

• Finding eigenvalues as roots of the characteristic polynomial p(λ)=det(A−λI) is suitable for small matrices
A ∈ℝm×m.

− analytical root-finding formulas are available only for m �4

− small errors in characteristic polynomial coefficients can lead to large errors in roots

DATA STABILITY 81

• Octave/Matlab procedures to find characteristic polynomial

− poly(A) function returns the coefficients

− roots(p) function computes roots of the polynomial

octave] A=[5 -4 2; 5 -4 1; -2 2 -3]; disp(A);

5 -4 2
5 -4 1
-2 2 -3

octave] p=poly(A); disp(p);

1.00000 2.00000 -1.00000 -2.00000

octave] r=roots(p); disp(r');

1.0000 -2.0000 -1.0000

octave]

• Find eigenvectors as non-trivial solutions of system (A −λI)x =0

λ1=1⇒A −λ1I = ((((((((((((((((
((((
(
(4 −4 2

5 −5 1
−2 2 −4))))))))))))))))

))))
)
)
∼ ((((((((((((((((
((((
(
(−2 2 −4

0 0 −6
5 −5 1))))))))))))))))

))))
)
)
∼ ((((((((((((((((
((((
(
(−2 2 −4

0 0 −6
0 0 0))))))))))))))))

))))
)
)

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowledge that A−λ1I
is singular to deduce that last row must be null

• In traditional form the above row-echelon reduced system corresponds to

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
−2x1+2x2−4x3 = 0
0x1+0x2−6x3 = 0
0x1+0x2+0x3 = 0

⇒ x =α((((((((((((((((
((((
(
(1
1
0))))))))))))))))
))))
)
)
,‖x‖=1⇒α =1/ 2�

• In Octave/Matlab the computations are carried out by the null function

octave] null(A+5*eye(3))'

ans = [](0x3)

octave]

• The eigenvalues of I ∈ℝ3×3 are λ1,2,3 = 1, but small errors in numerical computation can give roots of the
characteristic polynomial with imaginary parts

octave> lambda=roots(poly(eye(3))); disp(lambda')

1.00001 - 0.00001i 1.00001 + 0.00001i 0.99999 - 0.00000i

octave>

• In the following example notice that if we slightly perturb A (by a quantity less than 0.0005=0.05%), the
eigenvalues get perturb by a larger amount, e.g. 0.13%.

82 EIGENPROBLEMS

octave] A=[-2 1 -1; 5 -3 6; 5 -1 4]; disp([eig(A) eig(A+0.001*(rand(3,3)-0.5))])

3.0000 + 0.0000i 3.0005 + 0.0000i
-2.0000 + 0.0000i -2.0000 + 0.0161i
-2.0000 + 0.0000i -2.0000 - 0.0161i

octave]

• Extracting eigenvalues and eigenvectors is a commonly encountered operation, and specialized functions
exist to carry this out, including the eig function

octave> [X,L]=eig(A); disp([L X]);

-2.00000 0.00000 0.00000 -0.57735 -0.00000 0.57735
0.00000 3.00000 0.00000 0.57735 0.70711 -0.57735
0.00000 0.00000 -2.00000 0.57735 0.70711 -0.57735

octave> disp(null(A-3*eye(3)))

0.00000
0.70711
0.70711

octave> disp(null(A+2*eye(3)))

0.57735
-0.57735
-0.57735

octave>

• Recall definitions of eigenvalue algebraic mλ and geometric multiplicities nλ.

DEFINITION. A matrix which has nλ <mλ for any of its eigenvalues is said to be defective.

octave> A=[-2 1 -1; 5 -3 6; 5 -1 4]; [X,L]=eig(A); disp(L);

Diagonal Matrix

-2.0000 0 0
0 3.0000 0
0 0 -2.0000

octave> disp(X);

-5.7735e-01 -1.9153e-17 5.7735e-01
5.7735e-01 7.0711e-01 -5.7735e-01
5.7735e-01 7.0711e-01 -5.7735e-01

octave> disp(null(A+2*eye(3)));

0.57735
-0.57735
-0.57735

octave> disp(rank(X))

2

octave>

DATA STABILITY 83

2. Computation of the SVD

• The SVD is determined by eigendecomposition of ATA, and AAT

− ATA = (UΣVT)T (UΣVT)=V (ΣTΣ)VT , an eigendecomposition of ATA. The columns of V are eigen-
vectors of ATA and called right singular vectors of A

B=ATA=V ΣT ΣVT =VΛVT

− AAT = (UΣVT)(UΣTVT)T =U (ΣΣT)UT , an eigendecomposition of ATA. The columns of U are eigen-
vectors of AAT and called lest singular vectors of A

− The matrix Σ has form

Σ=

(((((((((((((((
(((((((((((((((
((((((((((((((((
((((((((((((((

(

(σ1
σ2

⋅⋅ ⋅
σr

0
⋅⋅ ⋅)))))))))))

))))))))))))))))
)))))))))))))))
)))))))))))))))
)))

)

)
∈ℝ+

m×n

and σi are the singular values of A.

• The singular value decomposition (SVD) furnishes complete information about A

− rank(A)= r (the number of non-zero singular values)

− U ,V are orthogonal basis for the domain and codomain of A

DATA RESONANCE

1. Bases induced by eigenmodes

The trigonometric functions {1, cos t, sin t, cos2t, sin2t, . . . } have been introduced as a particularly appropriate basis
for periodic functions. The functions cos(kt), sin(kt) are also known as solution of the homogeneous differential
equation

y ʹʹ +k2y =0.

The diferential operator is a linear mapping

dq

dt q
(αy +βz)=α dqy

dt q
+β

dq z
dt q

,

84 EIGENPROBLEMS

and hence has an associated linear mapping. An approximation of the second-order differentiation operation is
given by the finite difference formulas

yí ʹ =y ʹʹ(ti)≅
1
h2 (yi+1−2yi +yi−1)

octave]

DATA RESONANCE 85

	Abstract
	1. Linear Combinations
	Vectors and Matrices
	1. Quantities
	1.1. Numbers
	1.2. Quantities described by a single number
	1.3. Quantities described by multiple numbers

	2. Vectors
	2.1. Vector spaces
	2.2. Real vector space ℛ_m
	Column vectors.
	Row vectors.
	Compatible vectors.

	2.3. Working with vectors
	Ranges.
	Visualization.

	3. Matrices
	3.1. Forming matrices
	3.2. Identity matrix

	4. Linear combinations
	4.1. Linear combination as a matrix-vector product
	Linear combination.
	Matrix-vector product.

	4.2. Linear algebra problem examples
	Linear combinations in E_2.
	Linear combinations in ℛ_m and ᵉ�뀃�쀃‼�쀂适�

	5. Vectors and matrice in data science

	Linear Mappings
	1. Functions
	1.1. Relations
	Homogeneous relations.

	1.2. Functions
	1.3. Linear functionals
	1.4. Linear mappings

	2. Measurements
	2.1. Equivalence classes
	2.2. Norms
	2.3. Inner product

	3. Linear mapping composition
	3.1. Matrix-matrix product

	2. Vector Spaces
	Formal Rules
	1. Algebraic structures
	1.1. Typical structures
	Groups.
	Rings.
	Fields.

	1.2. Vector subspaces

	2. Vector subspaces of a linear mapping

	Data Redundancy
	1. Linear dependence
	2. Basis and dimension
	3. Dimension of matrix spaces

	3. Fundamental Theorem of Linear Algebra
	Data Information
	1. Partition of linear mapping domain and codomain

	Data Partitioning
	1. Mappings as data
	1.1. Vector spaces of mappings and matrix representations
	1.2. Measurement of mappings

	2. The Singular Value Decomposition \(SVD\)
	2.1. Orthogonal matrices
	2.2. Intrinsic basis of a linear mapping
	2.3. SVD solution of linear algebra problems
	Change of coordinates.
	Best 2-norm approximation.
	The pseudo-inverse.

	4. Least Squares
	Data Compression
	1. Projection
	2. Gram-Schmidt
	3. Q R solution of linear algebra problems
	3.1. Transformation of coordinates
	3.2. General orthogonal bases
	3.3. Least squares

	Model Reduction
	1. Projection of mappings
	2. Reduced bases
	2.1. Correlation matrices
	Correlation coefficient.
	Patterns in data.

	5. Change of Basis
	Data Transformation
	1. Gaussian elimination and row echelon reduction
	2. L U-factorization
	2.1. Example for m=3
	2.2. General m case

	3. Inverse matrix
	3.1. Gauss-Jordan algorithm

	4. Determinants
	4.1. Cross product

	Data Efficiency
	1. Krylov bases
	2. Greedy approximation

	6. Eigenproblems
	Data Stability
	1. The eigenvalue problem
	2. Computation of the SVD

	Data Resonance
	1. Bases induced by eigenmodes

