
4 An Introduction
to Continuous Models

The mathematics of uncontrolled growth are frightening. A single cell of the
bacterium E. coli would, under ideal circumstances, divide every twenty min-
utes. That is not particularly disturbing until you think about it, but the fact
is that bacteria multiply geometrically: one becomes two, two become four,
four become eight, and so on. In this way, it can be shown that in a single
day, one cell of E. coli could produce a super-colony equal in size and
weight to the entire planet earth.

M. Crichton (1969), The Andromeda Strain (Dell, New York, p. 247).

This chapter introduces the topic of ordinary differential equation models, their for-
mulation, analysis, and interpretation. A main emphasis at this stage is on how ap-
propriate assumptions simplify the problem, how important variables are identified,
and how differential equations are tailored to describing the essential features of a
continuous process.

Because one of the most challenging parts of modeling is writing the equa-
tions, we dwell on this aspect purposely. The equations are written in stages, with
appropriate assumptions introduced as they are needed. We begin with a rather sim-
ple ordinary differential equation as a model for bacterial growth. Gradually, more
realistic aspects of the situation are considered, eventually leading to a system of two
ordinary differential equations that describe the way that the microorganisms repro-
duce at the expense of nutrient consumption in a device called the chemostat.

Some of the simplest models are analytically solvable. However, as complex-
ity increases, even formulating the equations correctly can be tricky. One technique
that proves useful in detecting potential errors in the equations is dimensional analy-
sis. This method forms an underlying secondary theme in the chapter.
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116	 Continuous Processes and Ordinary Differential Equations

After defining the problem and formulating a consistent set of equations, we
turn to analysis of solutions. In the chemostat model we find that, due to complexity
of the system, the only solutions that can be found analytically are the steady states.
Their stability properties are of particular importance, and are explored in Section
4.10.

In a brief digression (Sections 4.7-4.9), we review some aspects of the math-
ematical background. Those of you familiar with differential equations may skip or
skim over Section 4.8. Others who have had no previous exposure may find it help-
ful to supplement this terse review with readings from any standard text on ordinary
differential equations (for example, Boyce and DiPrima, 1977 or Braun, 1979).

Culminating the analysis of the model in Section 4.10 is an interpretation of
the various mathematical results in terms of the biological problem. We shall see
that in this example predictions can be made about how the chemostat is to be oper-
ated for successful harvesting. Treatments of this problem with slightly different
flavors are also to be found in Segel (1984), Rubinow (1975), and Biles (1982).

Methods applied to one situation often prove useful in a host of related or unre-
lated problems. Three such examples are described in a concluding section for fur-
ther independent study.

4.1 WARMUP EXAMPLES: GROWTH OF MICROORGANISMS

One of the simplest experiments in microbiology consists of growing unicellular mi-
croorganisms such as bacteria and following changes in their population over several
days. Typically a droplet of bacterial suspension is introduced into a flask or test
tube containing nutrient medium (a broth that supplies all the essentials for bacterial
viability). After this process of inoculation, the culture is maintained at conditions
that are compatible with growth (e.g., at suitable temperatures) and often kept in an
agitated state. The bacteria are then found to reproduce by undergoing successive
cell divisions so that their numbers (and thus density) greatly increase.'

In such situations, one typically observes that the graph of log bacterial density
versus time of observation falls along a straight line at least for certain phases of
growth: after the initial adjustment of the organism and before its nutrient substrate
has been depleted. Here we investigate more closely why this is true and what limi-
tations to this general observation should be pointed out.

Let

N(t) = bacterial density observed at time t.

Suppose we are able to observe that over a period of one unit time, a single bacterial
cell 'divides, its daughters divide, and so forth, leading to a total of K new bacterial
cells. We define the reproductive rate of the bacteria by the constant K, (K > 0) that
is,

K = rate of reproduction per unit time.

1. There are several ways of ascertaining bacterial densities in a culture. One is by succes-
sive cell counts in small volumes withdrawn from the flask. Even more convenient is a determina-
tion of the optical density of the culture medium, which correlates with cell density.
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An Introduction to Continuous Models 	 117

Now suppose densities are observed at two closely spaced times t and t + At.
Neglecting death, we then expect to find the following relationship:

N(t + At) = N(t) + KN(t)it,

increase in density
total density at	 density at	 due to reproduction

time	 time	 during time interval
t + At	 —	 t	 +	 At

This implies that

N(t + At) — N(t)
 = KN(t).	(Ja)

We now approximate N (strictly speaking a large integer, e.g., N = 106 bacte-
rial cells/ml) by a continuous dependent variable N (t). Such an approximation is rea-
sonable provided that (1) N is sufficiently large that the addition of one or several in-
dividuals to the population is of little consequence, and (2) the growth or
reproduction of individuals is not correlated (i.e., there are no distinct population
changes that occur at timed intervals).

Then in the limit At —* 0 equation (1) can be approximated by the following
ordinary differential equation:

XV =KN.	 (1 b)
dt

This simple equation is sometimes known as the Malthus law. We can easily
solve it as follows: multiplying both sides by dt/N we find that

dN
=Kdt.

N

Integrating both sides we obtain

rd fo,Kds,
o N 

In N =Kt,
0

In N (t) — In N (0) = Kt,

In N(t) = Kt + a,	 (2a)

where a = In N(0). This explains the assertion that a log plot of N(t) is linear in
time, at least for that phase of growth for which K may be assumed to be a constant.

We also conclude from equation (2a) that

	N(t) = No e 	 (2b)

where No = N(0) = the initial population. For this reason, populations that obey
equations such as (1b) are said to be undergoing exponential growth.

This constitutes the simplest minimal model of bacterial growth, or indeed,
growth of any reproducing population. It was first applied by Malthus in 1798 to hu-
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118	 Continuous Processes and Ordinary Dierential Equations

man populations in a treatise that caused sensation in the scientific community of his
day. (He claimed that barring natural disasters, the world's population would grow
exponentially and thereby eventually outgrow its resources; he concluded that mass
starvation would befall humanity.) These deductions are discussed at greater length
in problem 1.

Equation (lb), while disarmingly simple, turns up in a number of natural pro-
cesses. By reversing the sign of K one obtains a model of a population in which a
fraction K of the individuals is continually removed per unit time, such as by death
or migration. The solution

N(t) = Noe-K`,	 (K > 0)	 (2c)

thus describes a decaying population. This equation is commonly used to describe
radioactive decay.

One defines a population doubling time T2 (for K), or half-life r172 (for —K) in
the following way. For growing populations, we seek a time Tz such that

N(TZ) -
No 	2.

Substituting into equation (2b) we obtain

N(7) =2 =e xr,
No

In 2 = Kr,

'r = 1K	 (3)

The doubling time r is thus inversely proportional to the reproductive constant K. In
problem 3 a similar conclusion is obtained for the half-life of a decaying population.

Returning to the biological problem, several comments are necessary:
1. We must avoid the trap of assuming that the model consisting of equation

(ib) is accurate for all time since, realistically, the growth of bacterial populations in
the presence of a limited nutrient supply always decelerates and eventually stops.
This would tend to imply that K is not a constant but changes with time.

2. Suppose we knew the bacterial growth rate K(t) as a function of time. Then
a simple extension of our previous calculations leads to

N(t) = N(0) exp (1fK ds 	 (4)

(See problem 4.) For example, if K itself decreases at an exponential rate, the popu-
lation eventually ceases to grow. (This assumption, known as the Gompertz law,
will be discussed further in Section 6.1.)

3. Generally we have no knowledge of the exact time dependence of the re-
productive rate. However, we may know that it depends directly or indirectly on the
density of the population, as in previous density-dependent models explored in con-
nection with discrete difference equations. This is particularly true in populations
that are known to regulate their reproduction in response to population pressure.
This phenomenon will be discussed in more detail in Chapter 6.
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An Introduction to Continuous Models 	 119

4. Another possibility is that the growth rate depends directly on the resources
available to the population (e.g., on the level of nutrient remaining in the flask).
Suppose we assume that the reproductive rate K is simply proportional to the nutrient
concentration, C:

K(C) = KC.	 (5)

Further assume that a units of nutrient are consumed in producing one unit of popu-
lation increment (Y = 1/a is then called the yield). This then implies that bacterial
growth and nutrient consumption can be described by the following pair of equa-
tions:

d_N = K(C)N = KCN,	 (6a)
dt

dC = — a dN = — aKCN.	 (6b)

This system of ordinary differential equations is solvable as follows:

dC dN
dt = —a- dt ,

so
f dC = —a f dN,

	

C(t) = —aN(t) + Co,	 (7)

where Co = C(0) + aN(0) is a constant. If the population is initially very small, Co
is approximately equal to the initial amount of nutrient in the flask. By substituting
(7) into equation (6a) we obtain

dN

	

=dt = K (Co — aN)N.	 (8)

[Comment: Observe that the assumptions set forth here are thus mathematically
equivalent to assuming that reproduction is density-dependent with

	K (N) = K (Co — aN).	 (9)

This type of growth law, on which we shall comment further, is known as logistic
growth; it appears commonly in population dynamics models in the form
dN/dt = r(1 — N/B)N. ] The solution to equation (8), obtained in a straightforward
way, is

_	 NoB

	

N(t) No + (B — No)e 	,	 (10)

where No = N(0) = initial population,

r = (KCo) = intrinsic growth parameter,
B = (Co/a) = carrying capacity.

(See problem 5 for a discussion of this equation and problem 13 for another ap-
proach to the problem.) A noteworthy feature of equation (10) is that for large values
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120	 Continuous Processes and Ordinary Differential Equations

of t the population approaches a level N(oo) = B = Co/a, whereas at very low lev-
els the population grows roughly exponentially at a rate r = KCo. It is interesting to
compare this prediction with the experimental data given by Gause (1969) for the
cultivation of the yeast Schi zosaccharomyces kephir. (See Figure 4. 1.)

/0ud3

i0CM31

T
So
min

'' 4	 +— 50 .'in --+

Ira -5.80

S8
2^ 1 + ez v7s^»-oo^oa ,

dy

4j 3	
0

Q2

Na
Hours

Figure 4.1 Vessels for cultivating yeast or other
microorganisms: (a) test tube. (b) Erlenmeyer flask.
(c) Growth of the yeast Schizosaccharomyces kephir
over a period of 160 h. The circles are experi-
mental observations. The solid line is the curve

5.8
N(t) = 1 + e2.47-o.o607'

[From Gause, G. F. (1969), Figs. 8 and 15. The
Struggle for Existence, Hafner, New York. K2 in
the figure is equivalent to B = Co/a, the carrying
capacity in equations (8)—(10).
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An Introduction to Continuous Models 	 121

In the following sections we consider a somewhat more advanced model for
bacterial growth in a chemostat.

4.2 BACTERIAL GROWTH IN A CHEMOSTATZ

In experiments on the growth of microorganisms under various laboratory condi-
tions, it is usually necessary to keep a stock supply of the strain being studied.
Rather than use some dormant form, such as spores or cysts, which would require
time to produce active cultures, a convenient alternative is to maintain a continuous
culture from which actively growing cells can be harvested at any time.

To set up this sort of culture, it is necessary to devise a means of replenishing
the supply of nutrients as they are being consumed and at the same time maintain
some convenient population levels of the bacteria or other organism in the culture.
This is usually done in a device called a chemostat, shown in Figure 4.2.

Inflow
Stock	 F
nutrient	 Co
reservoir	 r--

Volume V

Bacterial I	 N
culture	 F
chamber	 C 	— -

Effluent

Figure 4.2 The chemostat is a device for harvesting There is an equal rate of efflux, so that the volume

	

bacteria. Stock nutrient of concentration Co enters 	 V is constant.
the bacterial culture chamber with inflow rate F.

A stock solution of nutrient is pumped at some fixed rate into a growth cham-
ber where the bacteria are being cultivated. An outflow valve allows the growth
medium to leave at the same rate, so that the volume of the culture remains constant.

Our task is to design the system so that

1.	 The flow rate will not be so great that it causes the whole culture to be washed
out and eliminated.

2. Portions of this material were adapted from the author's recollection of lectures given
by L. A. Segel to students at the Weizmann Institute. It has also appeared recently in Segel
(1984).
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122	 Continuous Processes and Ordinary Differential Equations

2.	 The nutrient replenishment is sufficiently rapid so that the culture continues to
grow normally.

We are able to choose the appropriate stock nutrient concentration, the flow rate,
and the size of the growth chamber.

In this example the purpose of the model will be twofold. First, the pro-
gression of steps culminating in precise mathematical statements will enhance our
understanding of the chemostat. Second, the model itself will guide us in making ap-
propriate choices for such parameters as flow rates, nutrient stock concentration, and
so on.

4.3 FORMULATING A MODEL

A First Attempt

Since a number of factors must be considered in keeping track of the bacterial popu-
lation and its food supply, we must take great care in assembling the equations. Our
first step is to identify quantities that govern the chemostat operation. Such a list ap-
pears in Table 4.1, along with assigned symbols and dimensions.

Table 4.1	 Chemostat Parameters

Quantity	 Symbol	 Dimensions

Nutrient concentration in growth chamber	 C	 Mass/volume
Nutrient concentration in reservoir 	 Co	 Mass/volume
Bacterial population density	 N	 Number/volume
Yield constant	 Y = 1/a	 (See problem 6)
Volume of growth chamber	 V	 Volume
Intake/output i ow rate	 F	 Volume/time

We also keep track of assumptions made in the model; here are a few to begin
with:

1.	 The culture chamber is kept well stirred, and there are no spatial variations in
concentrations of nutrient or bacteria. (We can describe the events using
ordinary differential equations with time as the only independent variable.)

At this point we write a preliminary equation for the bacterial population density N.
From Fig. 4.2 it can be seen that the way N changes inside the culture chamber de-
pends on the balance between the number of bacteria formed as the culture repro-
duces and the number that flow out of the tank. A first attempt at writing this in an
equation might be,
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An Introduction to Continuous Models 	 123

	dN
	 =	 KN	 — FN	 (11)dt

rate of change reproduction outflow
of bacteria

where K is the reproduction rate of the bacteria, as before.
To go further, more assumptions must be made; typically we could simplify

the problem by supposing that

2. Although the nutrient medium may contain a number of components, we can
focus attention on a single growth-limiting nutrient whose concentration will
determine the rate of growth of the culture.

3. The growth rate of the population depends on nutrient availability, so that
K = K(C). This assumption will be made more specific later, when we choose
a more realistic version of this concentration dependence than that of simple
proportionality.

Next we write an equation for changes in C, the nutrient level in the growth
chamber. Here again there are several influences tending to increase or decrease con-
centration: inflow of stock supply and depletion by bacteria, as well as outflow of
nutrients in the effluent. Let us assume that

4.	 Nutrient depletion occurs continuously as a result of reproduction, so that the
rule we specified for culture growth and that for nutrient depletion are
essentially going to be the same as before. Here a has the same meaning as in
equation (6b) .

Our attempt to write the equation for rate of change of nutrient might result in the
following:

(wrong): d = —aK(C)N — FC + FCo	 (12)

T
	minus for	 minus for	 plus due to

depletion during	 depletion due	 replenishment from
growth	 to outflow	 stock solution

Corrected Version

Equations (11) and (12) are not quite correct, so we now have to uncover mistakes
made in writing them. A convenient way of achieving this is by comparing the di-
mensions of terms appearing in an equation. These have to match, clearly, since it
would be meaningless to equate quantities not measured in similar units. (For exam-
ple 10 msec- ' can never equal 10 lb.)
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124	 Continuous Processes and Ordinary Differential Equations

By writing the exact dimensions of each term in the equations, we get

(wrong):	 d K(C)N (C)N — FN

number 	1 number volume number
Dimensions: 	 _ —	 —

volume X time time volume	 time volume

From this we see that

1. K(C), the growth rate, must have dimensions of 1/time.
2. The second term on the RHS is incorrect because it has an extra volume dimen-

sion that cannot be reconciled with the rest of the equation.

By considering dimensions, we have uncovered an inconsistency in the term
FN of equation (11). A way of correcting this problem would be to divide FN by a
quantity bearing dimensions of volume. Since the only such parameter available is
V, we are led to consider FN/V as the appropriate correction. Notice that FN is the
number of bacteria that leave per minute, and FN/V is thus the effective density of
bacteria that leave per minute.

A similar analysis applied to equation (12) reveals that the terms FC and FCo
should be divided by V (see problem 6). After correcting by the same procedure, we
arrive at the following two corrected versions of equations (11) and (12):

	dt = K(C)N — FV ,	 (13a)

dt —aK(C)N —	 + Fv° ,	 (13b)

As we have now seen, the analysis of dimensions is often helpful in detecting
errors in this stage of modeling. However, the fact that an equation is dimensionally
consistent does not always imply that it is correct from physical principles. In prob-
lems such as the chemostat, where substances are being transported from one com-
partment to another, a good starting point for writing an equation is the physical
principle that mass is conserved. An equivalent conservation statement is that the
number of particles is conserved. Thus, noting that

NV = number of bacteria in the chamber,

CV = mass nutrient in the chamber,

we obtain a mass balance of the two species by writing

	d (NV)  K(C)NV — FN,	 (14a)
dt

d(CV) _ _
aK(C)NV — FC + FCo,	 (14b)

dt
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An Introduction to Continuous Models 	 125

(problem 9). Division by the constant V then leads to the correct set of equations
(13a, b).

For further practice at formulating differential-equation models from word
problems an excellent source is Henderson West (1983) and other references in the
same volume.

4.4 A SATURATING NUTRIENT CONSUMPTION RATE

To add a degree of realism to the model we could at this point incorporate the fact
that bacterial growth rates may depend on nutrient availability. For low nutrient
abundance, growth rate typically increases with increasing nutrient concentrations.
Eventually, when an excess of nutrient is available, its uptake rate and the resultant
reproductive rate of the organisms does not continue to increase indefinitely. An ap-
propriate assumption would thus be one that incorporates the effect of a saturating
dependence. That is, we will assume that

5.	 The rate of growth increases with nutrient availability only up to some limiting
value. (The individual bacterium can only consume nutrient and reproduce at
some limited rate.)

One type of mechanism that incorporates this effect is Michaelis-Menten kinetics,

K(C) K + C 	
(15)

shown in Figure 4.3. Chapter 7 will give a detailed discussion of the molecular
events underlying saturating kinetics. For now, it will suffice to note that Kmax repre-
sents an upper bound for K(C) and that for C = Kn , K(C) = ZKmax.

Figure 4.3 Michaelis-Menten kinetics: Bacterial
growth rate and nutrient consumption K(C) is
assumed to be a saturating function of nutrient
concentration. See equation (15).

K (C)

Kmax

Kmax

K,,	 C
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126	 Continuous Processes and Ordinary Differential Equations

Our model equations can now be summarized as follows:

dN = ( KmaxC ) _F_N	
(16a)dt	 K„ + CJN V

dC _ _ (
Kn

K,,.C )_ FC FCo
	(16b)dt	 a +CN V + V '

In understanding these statements we draw a distinction between quantities that are
variables, such as N and C and those that are parameters. There is little we can do to
control the former directly, as they undergo changes in response to their inherent dy-
namics. However, we may be able to select values of certain parameters (such as F,
Co , and V) that will influence the process. (Other parameters such as Km. and K,, de-
pend on the types of bacteria and nutrient medium selected in the experiment.)

It is of interest to determine what happens as certain combinations of parame-
ters are varied over a range of values. Conceivably, an increase in some quantities
could just compensate for a decrease in others so that, qualitatively, the system as a
whole remains the same. Thus, while a total of six parameters appear in equations
(16a,b) the chemostat may indeed have fewer than six degrees of freedom. This idea
can be made more precise through further dimensional analysis of the equations in
order to rewrite the model in terms of dimensionless quantities.

4.5 DIMENSIONAL ANALYSIS OF THE EQUATIONS

As shown in Table 4.1, quantities measured in an experiment such as that of the
chemostat are specified in terms of certain conventional units. These are, to a great
extent, arbitrary. For example a bacterial density of 10 5 cells per liter can be written
in any one of the following equivalent ways:

N = l0 cells/liter,

= 1 (unit of 105 cells)/liter,
= 100 cells/milliliter,
= N *N.

Here we have distinctly separated the measured quantity into two parts: a number
N*, which has no dimensions, and a quantity N, which represents the units of mea-
surement and carries the physical dimensions. The values 10 5 , 1, 100, and N* all
refer to the same observation but in terms of different scales. As time evolves, N and
N* might change, but N is a constant, reflecting the fact that the scale of measure-
ment does not change.

All of the original variables can be expressed similarly, as follows:

measured __ scalar
quantity multiple

N = N*
C = C*
t = t*

x	unit
carrying

dimensions,
x	 N,
x	 C,
X	 T.
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We shall see presently that advantage is gained by expressing the equations in terms
of such dimensionless juantities as N *, C *, and t*. To do so, we first substitute the
expressions N*N, C*C, t*,r for N, C, and t respectively in equations (16a,b) and
then exploit the fact that N, C, and r are time-independent constants. We obtain

	d(t* )) \K + C C/N*N 
V (N*N),	 (17a)

n

d( t̂* ^) _ —a
\K m+ C C/N*N — 

F V*C + —.	 (17b)
n

Now multiply both sides by T, divide by IV or C, and group constant terms together.
The result is

dN = 
-rKmax

(_

C
	N* — rF N*,	 (18a)

dt*	 Kn/C + C*	 V

dC* 	 — aTKmax 1V1
(K,^lt

C * l N 	7F C + TFCo
	(18b)

dt	 C 	 + C

*

	V	 VC

By making judicious choices for the measuring scales N, r, and C, which are
as yet unspecified, we will be able to make the equations look much simpler and
contain fewer parameters. Equations (18a,b) suggest a number of scales that are in-
herent to the chemostat problem. Notice what happens when we choose

z=F,	 C =Kn,	
1V=aKnmax

The equations now can be written in the following form, in which we have dropped
the stars for notational convenience.

dN
d = a' +^')N—N,	 (19a)

dC _\l  + C)N — C + a 2 .	 (19b)

The equations contain two dimensionless parameters, a, and a2, in place of the orig-
inal six (Kn , Kmax, F, V, Co, and a). These are related by the following equations:

a, = (TKmax) = 
VKmax

F

TFCo Co
az=	 =K

VC	
n.

In problem 8 we discuss the physical meaning of the scales -r, C, and N and of
the new dimensionless quantities that appear here.

We have arrived at a dimensionless form of the chemostat model, given by
equations (19a,b). Not only are these equations simpler; they are more revealing. By
the above we see that only two parameters affect the chemostat. No other choice of
,r, C, and N yields less than two parameters (see problem 10). Thus the chemostat
has two degrees of freedom.
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128	 Continuous Processes and Ordinary Differential Equations

Equations (19a,b) are nonlinear because of the term NC/(1 + C). Generally
this means that there is little hope of finding explicit analytic solutions for N(t) and
C (t). However, we can still explore the nature of special classes of solutions, just as
we did in the nonlinear difference-equation models. Since we are interested in main-
taining a continuous culture in which bacteria and nutrients are present at some fixed
densities, we will next determine whether equations (19a,b) admit a steady-state so-
lution of this type.

4.6 STEADY-STATE SOLUTIONS

A steady state is a situation in which the system does not appear to undergo any
change. To be more precise, the values of state variables, such as bacterial density
and nutrient concentration within the chemostat, would be constant at steady state
even though individual nutrient particles continue to enter, leave, or be consumed.
Setting derivatives equal to zero,

dN
dt = 0,
	 (20a)

dC
dt = 0,
	 (20b)

we observe that the quantities on the RHS of equations (19a,b) must be zero at
steady state:

F(N,)ai(1	 (21a)

G(N,C)=—^ 1+C^IV—C+az =O.	 (21b)

This_condition gives two algebraic equations that are readily solved explicitly for N
and C.

From (21a) we see that

either N = 0	 (22a)

C 1
or	 —= - . (22b)1 

1 + C a,

After some simplification, (22b) becomes C = 1/(a, — 1). From equation (21b), if
N = Owe get C = a2; on the other hand, if N ^ 0, we get

(1  C)N = (a
2 — C).	 (23)

Using (22b), we get

N = 1 C (a2 — C) = a,(a2 — C). 	 (24)D
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An Introduction to Continuous Models	 129

Combining the information in equations (23) and (24) leads to the conclusion
that there are two steady states:

	l	 1 l(N i , C') = (ai (a2 
—
	 1 
a^ 	 a1 — 1/ 	

(25a)

(N2, C2) = (0, a2).	 (25b)

The second solution, (N2 , CZ), represents a situation that is not of interest to the ex-
perimentalists: no bacteria are left, and the nutrient is at the same concentration as
the stock solution (remember the meaning of a 2 and the concentration scale to which
it refers). The first solution (25a) looks more inspiring, but note that it does not al-
ways exist biologically. This depends on the magnitudes of the terms a, and a 2 .
Clearly, if a, < 1, we get negative values. Since population densities and concen-
trations must always be positive, negative values would be meaningless in the bio-
logical context. The conclusion is that a, and a 2 must be such that a, > 1 and
a2 > 1/(a, — 1). In problem 8 we reach certain conclusions about how to adjust
the original parameters of the chemostat to satisfy these constraints.

4.7 STABILITY AND LINEARIZATION

Thus far we have arrived at two steady-state solutions that satisfy equations (19a, b).
In realistic situations there are always small random disturbances. Thus it is of inter-
est to determine whether such deviations from steady state will lead to drastic
changes or will be damped out.

By posing these questions we return once more to stability, a concept that was
intimately explored in the context of difference-equation models. In this section we
retrace the steps that were carried out in Section 2.7 to reach essentially identical
conclusions, namely that, close to the steady state, the problem can be approxi-
mated by a linear one.

Let us look at a more general setting and take our system of ordinary differen-
tial equations to be

	dX = F(X, Y),	 (26a)
dt

	dY
 = G (X, Y),	 (26b)

dt

where F and G are nonlinear functions. We assume that X and Y are steady-state so-
lutions, i.e., they satisfy

F (X, Y) = G(X, Y) = 0. 	 (27)

Now consider the close-to-steady-state solutions

X(t) = X + x(t),	 (28a)

Y(t) = Y + y(t).	 (28b)
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130	 Continuous Processes and Ordinary Differential Equations

Frequently these are called perturbations of the steady state. Substituting, we arrive
at

dt (X + x) = F (X + x, Y + y), 	 (29a)

dt (Y + y) = G (X + x, Y + y) . 	 (29b)

On the left-hand side (LHS) we expand the derivatives and notice that by definition
dX/dt = 0 and dY/dt = 0. On the right-hand side (RHS) we now expand F and G
in a Taylor series about the point (X, Y), remembering that these are functions of two
variables (see Chapter 2 for a more detailed discussion). The result is

dx
=F(X,Y) +Fx(X,Y)x+FY(X,Y)y

dt

+ terms of order x 2 , y 2 , xy, and higher,	 (30a)

dt = G(X,Y) +G,(X,Y)x+G y(X,Y)y

+ terms of order x 2 , y 2 , xy, and higher.	 (30b)

where Fx(X, Y) is 3F/ax evaluated at (X, Y), and similarly for Fy , G,,, Gy and other
terms.

Again by definition, F(X, Y) = 0 = G(X, Y), so we are left with

dx

	

dt =a"x+a,zy,	 (31a)

	d y = ax + a22 y,	 (3]b)
dt

where the matrix of coefficients

A =
	(all a tz _ FX Fy	 ( )a2 a22	 GX G, , cz. j	

32

is the Jacobian of the system of equations (26a,b). See Section 2.7 for definition.
To ultimately determine the question of stability, we are thus led to the ques-

tion of how solutions to equation (31a,b) behave. We shall spend some time on this
topic in the next sections. The methods and conclusions bear a strong relation to
those we use for systems of difference equations.

4.8 LINEAR ORDINARY DIFFERENTIAL EQUATIONS: A BRIEF REVIEW

In this section we rapidly survey the minimal mathematical background required for
analysis of ordinary differential equations (ODEs) such as those encountered in this
chapter. For a broader review this section could be supplemented with material from
any standard text on ODEs. (See references for suggested sources.)

D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 1

52
.2

.1
05

.2
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



An Introduction to Continuous Models 	 131

Terminology

Equivalent representations of the first derivative of a function y = f(t) are dy/dt, y',
and y; also, d"y/dt" = y is the nth derivative. An ordinary differential equation is
any statement linking the values of a function to its derivatives and to a single
independent variable; for example,

F(t, y, y', y", ... , y(n)) = 0.

The order of the equation is n, the degree of the highest derivative that appears in the
equation. [See equation (33a) for an example of a first-order equation and (34) for an
example of a second-order equation.]

The solution of an ODE is a function y = f(t) that satisfies the equation for every
value of the independent variable.

Linear equations have the special form

aoyc")+ ay"-n+...+ ay" +a"- ty' + any =g(t),

where no multiples or other nonlinearities in y or its derivatives occur. The coefficients
ao, a,, ... , an may be functions of the independent variable t. The case of constant
coefficients (where ao, ... , an are all constants) is of particular importance to stability
analysis and can in principle be solved completely.

The equation is called homogeneous when the term g (t) = 0.

Examples

1.	 A second-order, nonhomogeneous, nonlinear ODE:

order = 2
1

d
s
t2 2x dt	 +	 x 2

nonlinear	 nonlinear
term	 term

=	 sin t.

T
term independent

of x(t)
(nonhomogeneous)

Independent variable = t; unknown function = x(t).

2.	 A third-order, linear, homogeneous ODE with nonconstant coefficients:

order = 3
1

d 3x

dt3
+ 2t—

T
+	 t 2X	 =

T
0

T
nonconstant nonconstant	 homogeneous

coefficient of coefficient	 equation
dx/dt of x

(terms linear in x and dx/dt)

Independent variable = t; unknown function = x(t).
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132	 Continuous Processes and Ordinary Differential Equations

3.	 An nth order, linear, constant-coefficient ODE:

order = n
1

d"y	 d"- 'y
a t̂n +b d— + ... +py=g(t)/ 

‚' \
constant coefficients	 homogeneous
if a, b, ... , p are constant	 only if g = 0

Independent variable = t; unknown function = y(t).

Now we consider only the case of linear, homogeneous, constant-coefficient
ordinary differential equations. (See box for an explanation of terminology.)

First-Order ODEs

The simplest first-order ODE and its solution are

dx
dt = Kx,	 (33a)

x(t) = xo e K`.	 (33b)

(See Section 4.1.) The constant xo is the initial value of x at time t = 0. Below we
see that the exponential function is useful in solving higher-order equations.

Second-Order ODEs

Consider the ODE
z

a dt2 +bdt+c=0.	 (34)

(The second derivative implies that the order is 2; a, b, and c are assumed to be con-
stants.) Following a strategy similar to that of Section 1.3, we proceed with the as-
sumption that solutions to equation (33) might work for equation (34). Thus, con-
sider assuming that

x (t) = e A'	 (35)

(where A is a constant) solves equation (34). Then

x'(t) = AeA`,	 x"(t) = A z e A`

so by substitution and cancellation of a common factor, we get

aA 2 e"`+bAe 1`+ce"`=0,
aA 2 +bit+c=0.	 (36)
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An Introduction to Continuous Models 	 133

The latter characteristic equation has two roots called the eigenvalues:

1k1,z = 
—b ± b2

	(37)
2a

so the two solutions to equation (34) are

x i (t) = e k t,	 x2(t) = e a r`.	 (38)

By the principle of linear superposition (see Chapter 1), if x, and x z are two solutions
to a linear equation such as (34), then any linear combination is also a solution. The
general solution is thus

	x(t) = c t e"'` + c 2 e A21 , 	 (39)

where c, and c 2 are arbitrary constants determined from other information such as
initial conditions. (See problems 17 and 18.)

Exceptional cases occur when

	

A, = A 2 = A	 (repeated eigenvalues),

	

A = a ± bi	 (complex conjugate eigenvalues).

The form of the solution is then amended as follows:

1. IfA,=ßt 2 =A, then

x(t) = c, e" +ci te'``

(See problem 19.)
2. If A,, z = a ± bi, then

x(t) = eat{c, cos bt + cz sin bt}.

(See problem 20.)

(See problems or any standard text on differential equations.)

A System of Two First-Order Equations (Elimination Method)

Consider

dx
d	

y	 (40a)

dy

= ax + a 1z ,
t 

u

at = 
a21x + azzy.	 (40b)

This can be reduced by a procedure of elimination (see problem 21) to a single sec-
ond-order equation in x(t):

d 2x
dtz—ßdt+yx=0,
	 (41)D
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134	 Continuous Processes and Ordinary Differential Equations

where

ß= apt+a22,

y = a11a22 — a12a21.

By the procedure given in the subsection "Second-Order ODEs" we then find the
general solution for x(t) to be

x(t) = c, e"' + c2 e a2`,	 (42a)

where

A1,2= ß± 	(42b)

The quantity S = ß 2 — 4y is called the discriminant. (When S is negative, eigenval-
ues are complex.) y(t) can be found by solving (40a); see problem 21b. (Again, in
the cases of complex or multiple eigenvalues, the form of the general solution must
be amended as before.)

A System of Two First-Order Equations (Eigenvalue -Eigen vector Method)

We write the system of equations in vector notation as

dx
dt = Ax,	

(43a)

where

x = (y) 	 (43b)

A = (a 2i :  a'21	
(43c)

a 	 a221'

for a 2 X 2 system. (More generally, A is a n )< n matrix, and x is an n-vector
when we are dealing with a system of n differential equations in n variables.) The

notes matrix multiplication, and dx stands for a vector whose entries are dx/dt,
dy/dt.

In the spirit of the example given in equations (33a, b) we shall assume solu-
tions of the form

x(t) = ye'".	 (44)

Now v must be a vector whose entries are independent of time. Using this idea, we
substitute (44) into (43a):

dt = v dt e At _ Ave A` = Ave A`.

The last equality has to be satisfied if (44) is to be a solution of system (43). Can-
celling the common factor e'" results in
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An Introduction to Continuous Models 	 135

Av = Av.	 (45a)

Note: v cannot be "cancelled" since Av stands for matrix multiplication; however,
we can rewrite (45a) as

Av — AIv = 0,	 (45b)

where I is the identity matrix (Iv = vI = v). Now kI is also a matrix, namely

C A:)
k

Thus equation (45b) can be written as

(A — AI)v = 0. 	 (45c)

Readers familiar with linear algebra will recognize (45c) as an equation that is
satisfied with eigenvalues A and eigenvectors v of the matrix A. For other than the
trivial solution v = 0, we must have

det (A — Al) = 0. 	 (46)

When A satisfies this equation, vectors which satisfy (45c) can be found. These vec-
tors will be nonunique; that is, they will depend on an arbitrary constant because the
equations making up the algebraic system (45c) are redundant when (46) is true.

As in the subsection "First-Order ODEs" the eigenvalues of a 2 x 2 system
will always be

2
where

ß= trace A=au+a22,
= det A = a 11 a22 — a12a21,

S= disc A=ß Z -4y.
The eigenvectors will be

^t^ — a^^ 	(47)v, _	 ,
a12

for a,z 0 0. (See the examples 1 and 2 in the boxes at the end of this section.) Once
the eigenvectors v, and v 2 are found, the general solution (provided A l * A 2 and
both are real) is given by

x(t) = c,v,e A '` + c2 V2 e AV.	 (48)

Recall that this is a shorthand version of the following:
xi (t) = civiie A l t + c2v2,e A2 `,	 (49a)

X2(t) = civi2e"'` + c2v22e AV .	 (49b)
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136	 Continuous Processes and Ordinary Differential Equations

Special cases

1. A, = ßl2 = A	 (repeated eigenvalues; one eigenvector v):
The form of the general solution must be amended (to allow for two distinct
linearly independent parts). See any text on ODEs for details of the method.

2. A 1 , 2 = r ± ci	 (complex eigenvalues): 	 (50a)
This case occurs when disc A = ß 2 — 4y < 0; then r = ß/2 = real part of
A, c = S/2 = imaginary part of A, and i =	 . Note that complex
eigenvalues always come in conjugate pairs.

Complex eigenvalues always have corresponding complex conjugate
eigenvectors

v1,2 = a ± bi,	 (S0b)

where a and b are two real constant vectors. The general solution can be
expressed in the complex notation

x(t) = c, (a + bi)e (r+c )' + cz(a — bi)e (r- t .	 (50c)

A real-valued solution can also be constructed by using the identity
e (r+ci)t = e

rt(cos ct + i sin ct).	 (51)

Define

u (t) = er (a cos ct — b sin ct),	
(52)

w (t) = e rt (a sin ct — b cos ct),

It can be shown that each of these parts is itself a real-valued solution, so that
the general solution in the case of complex eigenvalues takes the form

x(t) = C10) + cz w (t).	 (53)

As seen in the previous analysis, complex eigenvalues lead to oscillatory
solutions. The imaginary part c governs the frequency of oscillation. The real
part r governs the amplitude.

Summary: Solutions of a second-order linear equation such as (34) or (41), or,
of a system of first-order equations such as (43), are made up of sums of exponen-
tials or else products of oscillatory functions (sines and cosines) with exponentials.
Figure 4.4 illustrates how the three basic ingredients contribute to the character of
the solution. In the case of real eigenvalues, if one or both eigenvalues are positive,
the solution grows with time. Only if both are negative, as in case 1 does the solu-
tion decrease. Furthermore, if complex eigenvalues are found, i.e., if A = r ± ci,
their real part r determines whether the amplitude of the oscillation increases
(r > 0), decreases (r < 0), or remains constant (r = 0). The complex part c deter-
mines the frequency of oscillation.

Figure 4.4 The three basic ingredients of a solution	 the linear combination x(t) = c,e` + cze"' is a
to a linear system for r > 0 are (a) a decreasing	 decreasing function only when both X, and A z are
exponential function e 	 (b) an oscillatory function	 negative (case 1). When eigenvalues are complex,
such as sin t or cos t, and (c) an increasing 	 the solution is oscillatory with either increasing or
exponential function e` `. When eigenvalues are real, 	 decreasing amplitude. (opposite page)
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Case 4: complex conjugate
eigenvalues, positive
real part

x(t)

Case 2: one positive and
one negative eigenvalue

x =r±ci
x (t) = e`1(c i cos ct + c2 sin ct)

x(t)

Case 5: zero real part

t

Case 3: two positive
real eigenvalues

x (t)

Case 6: negative real part

R

t

Case 1: two negative
real eigenvalues
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—rt 	sin ct	
ert

e 

0

t

t

(a)
	

(b)
	

(c)

x(t) = cie) t + c2eX 2 r

x (t)
	

x (t)
	

x (t)
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138	 Continuous Processes and Ordinary Differential Equations

Remarks

1. From equations (33a, b) it is apparent that a solution to a first-order differential
equation involves one arbitrary constant (e.g., z o) whose value depends on other
information, such as the initial conditions of the problem. Similarly, we see that
a second-order equation, such as equation (34), will have a general solution con-
taining two arbitrary constants [for example, c, and c 2 in equation (39)]. These
would again be determined from initial conditions. (See problem 18.)

2. Given a linear equation of nth order,

d"x	 d"- 'x
a°dt"+a,dt"-i 

+...+a"x=0,

the procedure outlined in equations (35) and (36) would lead to a characteristic
equation

aoA"+a,A"-'+.	 +a"=0,

that is, an nth-order polynomial. Generally it is not an easy matter to find the
roots of this polynomial (and thus determine what the eigenvalues are) when
n > 2. We can at best hope to find out something about these eigenvalues. (See
Section 6.4 for details.)

3.	 Nonlinear equations or equations with nonconstant coefficients are not generally
solved in a straightforward way, unless they are of special form. Indeed, we can-
not always be assured that a solution exists. The mathematical theory that deals
with the question of existence and uniqueness of solutions to ODEs can be found
in most advanced texts on ordinary differential equations.

Example 1
Solve the following system of equations:

	dtv = 3x, — x2,	 — = 
6x 1 — 4x2 .	 (54)

dt

Solution
Rewrite the equations as

dx
dt 

= Ax,

3
where x = (X2)' `^	 (6 —4)'

	 (55)

To find solutions x (t) = ve At, we must find the eigenvalues A and eigenvectors v of the
matrix A. The former are found by setting det (A — AI) = 0:

0= det (A—,1I)

= det [(6  —4)- (0 A) ]

=det 3—A	 —1
6 —4—A
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An Introduction to Continuous Models 	 139

_ (3 — ,1)(-4 — A) — (-1)(6)

_P+A-12+6=A z +A-6

=(A-2)(A+3)

This quadratic equation has the two solutions

A, = 2	 and	 A2 = —3.	 (56)

We now find eigenvectors associated with each eigenvalue by solving
(A — AI)v = 0. Corresponding to A,, v, must satisfy

(3 — A 1 	—1 Irvin = (0
0)

(A — ^I)v^ = 	 d^f`v^z) 	 (57)

Since A, = 2, the system of equations is

(6, —6)\v121	 \0) ,

that is,
V11 — V I z = 0,	 (S8)

6v1I — 6v,z = 0.
Notice that the equations are redundant. We use one of these, with an arbitrary value
for one of the variables (for example, v„ = 1) to conclude that

=
( 1),	

(S9)v^

or any constant multiple of (59).
To find v2, repeat the procedure with the second eigenvalue, A2 = —3. The

system of equations is then

(6 —1) \V22)	 \0)'

that is,

6v21 — V22 = 0,

6v21 — V22 = 0.	
(60)

Arbitrarily selecting V2I = 1, we obtain

U) .
vz = 	 (61)

It is worth remarking that the computations in equations 57-60, here done to
reinforce a concept, can be omitted in practice by using equation (47). We conclude
that two solutions to the system of equations are

(6)e-3`	 and	 ()e 2r	 (62)

The general solution is thus

x(t) = 46)e 
s' + c2 (11) e 2t	 (63)
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140	 Continuous Processes and Ordinary Differential Equations

Example 2
Solve the following system of equations:

dx,	 dx2
dt	 x! — X2,	 dt =x, +X2 .	 (64)

Solution
This system is equivalent to

dX =Ax	 where A=Ii	 .	 (65)

	

The eigenvalues of A satisfy the relation 	 \

	

0=det(A—AI)=det(1'1	 —1 )
1 	 A

= (1 — A) 2 + 1

=A 2 -2A+2.

Thus

2±
A1,2= 	 2 	 =1 ±i.	 (66)

The eigenvector of A corresponding to A, = 1 + i satisfies

(g)
=(A—

= (1—(1 +i)	 —1	 1(v„1	 (67)
1	 1 — (l + i)f `v, 2J

l t 	—i/ \v12/
Thus

—v,2=0.

Taking arbitrarily v„ = 1 one obtains v 12 = —iv„ _ —i. Thus

	v, = ('.) = (1) — i(o) = a — ib.	 (68)

It follows that v2 is the complex conjugate of v,; that is,

vz= (1) =( 1)+i1o)=a+ib. (69)

Note that this can again be obtained directly from equation (47). The complex form of
the general solution is

x(t) = c,( 1 )e o` + cz( 1 )e^' '>`.	 (70)i	 i

Defining

1
	(?)

u(t) = e` 	cos t — ) sin tJ 	(71a)
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An Introduction to Continuous Models 	 141

w(t) = e'[ ( 1 ) sin t + (?) cos t]	 (71b)

one obtains the real-valued general solution

x(t) = c,u(t) + c2w(t)

= e`[c,( Coma) + C2 ( sin tu I. 	(72)

4.9 WHEN IS A STEADY STATE STABLE?

In Section 4.8 we explored solutions to systems of linear equations such as (31) and
concluded that the key quantities were the eigenvalues A ; given by

	A,,2 —	 2ß—	 y

where ß = a„ + a22 and y = a„ a22 — a, 2 a 21 . We then saw that when A, and A2 are
real numbers and not equal, the basic "building blocks" for solutions to the system
(31) have the time-dependent parts

	eAI'	 and	 eA2'.	 (73)

We are now ready to address the main question regarding stability of a steady-
state solution that was posed back in Section 4.7, namely whether the small devia-
tions away from steady state (28) will grow larger (instability) or decay (stability).
Since these small deviations satisfy a system of linear ordinary differential equa-
tions, the answer to this question depends on whether a linear combination of (73)
will grow or decline with time.

Consider the following two cases:

1. a,, A2 are real eigenvalues.
2. A 1 , A2 are complex conjugates:

1
A 1 . 2 = r ± ci,	 r = 2,	 c =2 (4y— ß 2)'/2

In case 2 we require that e" be decreasing [see equations (52) and (53)]; that is, r,
the real part of A, must be negative. In case 1 both e "i and e A2' must be decreasing.
Thus A, and A2 should both be negative.

To summarize: in a continuous model, a steady state will be stable
provided that eigenvalues of the characteristic equation (associated with
the linearized problem) are both negative (if real) or have negative real
parts (if complex). That is,

Reh ; <0 for all i.
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142	 Continuous Processes and Ordinary Differential Equations

In case 2 we see that this criterion is satisfied whenever ßl3 < 0. In case 1 we
use the following argument to derive necessary and sufficient conditions. Let

A,=ß+ 
Vß 2

2

2

We want both A, and .2 < 0. For A, < 0 it is essential that

f3<0.

Notice that this will always make A2 < 0. However, it is also necessary that

IfI>ß̂ 2-4y.

Otherwise A, would be positive, since the radical would dominate over P. Squaring
both sides and rewriting, we see that

ß 2 >ß 2 -4y,	 or	 0>—y,

so that

y>o.

We conclude that the steady state will be stable provided that the following
condition is satisfied

Stability Condition

ß=a„+a22<0
	

(74a)

y = a1la22 — al2a2,> 0
	

(74b)

Now we rephrase this in the context of Section 4.7:

A steady state (X, Y) of a system of equations

= F (X, Y),	 dt = G (X, Y),

will be stable provided

F(, P) + G(2,?) < 0,	 (75a)

and
FX(X, Y)GY(X, Y) — F(X, Y)Gx(X, Y) > 0.	 (75b)

where the terms are partial derivatives of F and G with respect to X and
Y that are evaluated at the steady state.D
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An Introduction to Continuous Models	 143

4.10 STABILITY OF STEADY STATES IN THE CHEMOSTAT

Returning to the chemostat problem, we shall now determine whether (N, , C,) and
(N2 , C2) are stable steady-states. Define

F(N, C) = a, ( 1  C)N — N,	 (76a)

G(N,C)= — ( 1+C)N — C +a2.	 (76b)

Then we compute the partial derivatives of F and G and evaluate them at the
steady states. In doing the evaluation step it is helpful to note the following:

1. At (N i , C1) we know that C,/(1 + C,) = 1/a,.
2. The derivative of x/(1 + x) is 1/(1 + x) 2 . (You should verify this.)
3. We define

N,
A=

(1 +C1) 2

to avoid carrying this cumbersome expression.
4. We also define

B— a2

1 + a2

to simplify notation for (N2, C2).

We see from Table 4.2 that for the steady state (N,, C,) given by equa-
tion (25a)

ß<0 	 and	 y > 0,

thus the steady state is stable whenever it exists, that is, whenever N, and C, in (25a)
are positive. We also remark that

ß 2 -4y=(A+ 1) 2 -4A =(A — 1)2>0,

Table 4.2	 Jacobian Coefficients for the Chemostat

Coefficient
in J Relevant Expressions

Evaluated at
(N1, Co

Evaluated at
(N2, C2)

a ll FN=a,C/(1+C)-1 0 a,B-1
a12 Fc = a,N/(1 + C) 2 a,A 0
a21 GN = —C/(1 + C) —1/a1 —B
a22 Gc = —N/(1 + C) 2 — 1 —A — 1 —1
ß = Tr(J) a„ + a22 —(A+1) a,B — 2

= det(J) a,1a22 — a12a21 A —(a,B — 1)D
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144	 Continuous Processes and Ordinary Differential Equations

which means that the eigenvalues of the linearized equations for (N,, C,) are always
real. This means that no oscillatory solutions should be anticipated. Prob lem 10(d)
demonstrates that the trivial steady state (N 2 , Cz) is only stable when (N,, C,) is
nonexistent.

As a conclusion to the chemostat model, we will interpret the various results so
that useful information can be extracted from the mathematical analysis. To summa-
rize our findings, we have determined that a sensibly operating chemostat will al-
ways have a stable steady-state solution (25a) with bacteria populating the growth
chamber. Recall that this equilibrium can be biologically meaningful provided that
a, and a2 satisfy the inequalities

a, > 1,	 (77a)

az > (77b)
a,-1'

where these constraints must be satisfied to prevent negative values of the bacteria
population N, and nutrient concentration C. In problem 8 it is shown that, in terms
of original parameters appearing in the equations,

KmaxV

	

F ,	 (78a)a, = 

Co
az K.	 (78b)=

The first condition (77a) is thus equivalent to

	Kmax > V .	 (79)

We notice that both sides of this inequality have dimensions 1/time. It is more
revealing to rewrite this as

1 	 V 	(80)
Km, F

To interpret this, observe that Km is the maximal bacterial reproduction rate (in the
presence of unlimited nutrient dN/dt = KmaN). Thus 1 /Kmax is proportional to the
doubling-time of the bacterial population. V/F is the time it takes to replace the
whole volume of fluid in the growth chamber with fresh nutrient medium. Equation
(80) reveals that if the bacterial doubling time r2 is smaller than the emptying time of
the chamber (x 1 /ln 2), the bacteria will be washed out in the efflux faster than they
can be renewed by reproduction.
_	 The second inequality (77b) can be rewritten in terms of the steady-state value
C, = 1 /(a 1 — 1). When this is done the inequality becomes

Kn > c1,	 or	 F 	K°
V Kmax

F/V < Co .	 (81)D
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An Introduction to Continuous Models 	 145

Since C = K,, is the reference concentration used in rendering equations
(16a,b) dimensionless, we see that

C = CC, = KX 1 ,

is the original dimension-carrying steady state (whose units are mass per unit vol-
ume). Thus (81) is equivalent to

Co > C,	 (82)

which summarizes an intuitively obvious result: that the nutrient concentration
within the chamber cannot exceed the concentration of the stock solution of nutri-
ents.

4.11 APPLICATIONS TO RELATED PROBLEMS

The ideas that we used in assembling the mathematical description of a chemostat
can be applied to numerous related situations, some of which have important clinical
implications. In this section we will outline a number of such examples and suggest
similar techniques, mostly as problems for independent exploration.

Delivery of Drugs by Continuous Infusion

In many situations drugs that sustain the health of a patient cannot be administered
orally but must be injected directly into the circulation. This can be done with serial
injections, or in particular instances, using continuous infusion, which delivers some
constant level of medication over a prolonged time interval. Recently there has even
been an implantable infusion system (a thin disk-like device), which is surgically in-
stalled in patients who require long medication treatments. Apparently this reduces
incidence of the infection that can arise from external infusion devices while permit-
ting greater mobility for the individual. Two potential applications still in experi-
mental stages are control of diabetes mellitus by insulin infusion and cancer chemo-
therapy. A team that developed this device, Blackshear et al. (1979), also suggests
other applications, such as treatment of thromboembolic disease (a clotting disorder)
by heparin, Parkinson's disease by dopamine, and other neurological disorders by
hormones that could presumably be delivered directly to a particular site in the body.

Even though the internal infusion pump can be refilled nonsurgically, the fact
that it must be implanted to begin with has its drawbacks. However, leaving aside
these medical considerations we will now examine how the problem of adjusting and
operating such an infusion pump can be clarified by mathematical models similar to
one we have just examined.

In the application of cancer chemotherapy, one advantage over conventional
methods is that local delivery of the drug permits high local concentrations at the tu-
mor site with fewer systemic side effects. (For example, liver tumors have been
treated by infusing via the hepatic artery.) Ideally one would like to be able to calcu-D
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146	 Continuous Processes and Ordinary Differential Equations

late in advance the most efficient delivery of drug to be administered (including con-
centration, flow rate, and so forth). This question can never be answered conclu-
sively unless one has detailed information about the tumor growth rate, the extent to
which the drug is effective at killing malignant cells, as well as a host of other com-
plicating effects such as geometry, effect on healthy cells, and so on.

However, to gain some practice with continuous modeling, a reasonable first
step is to extract the simplest essential features of this complicated system and think
of an idealized caricature, such as that shown in Figure 4.5. For example, as a first
step we could assume that the pump, liver, and hepatic artery together behave like a
system of interconnected chambers or compartments through which the drug can
flow. The tumor cells are restricted to the liver. In this idealization we might assume
that (1) the blood bathing a tumor is perfectly mixed and (2) all tumor cells are
equally exposed to the drug. This, of course, is a major oversimplification. How-
ever, it permits us to define and make statements about two variables:

N = the number of tumor cells per unit blood volume,

C = the number of drug units in circulation per unit blood volume.

Inflow

Co 	Dilution

pump	 Blood inflow

Liver

N = tumor cells
C = drug units

_► U

Removal rate

Figure 4.5 In modeling continuous-injection 	 collection of N identical cells that are all equally
chemotherapy, we might idealize the tumor as a	 exposed to C units of drug.

Several quantities might enter into the formulation of the equations. These in-
clude parameters that can be set or varied by the clinician, as well as those that are
specific to the patient. We may also wish to define the following:

Co = the concentration of drug solution in the chamber (units/volume),

F = the pump flow rate (volume/unit time),
V = volume of the blood in direct contact with tumor area,

u = rate of blood flow away from tumor site,
a = reproductive rate of tumor cells.
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An Introduction to Continuous Models 147

Notice that these parameters are somewhat abstract quantities. In general, not
all tumor cells will reproduce at the same rate, due to inherent variability and to dif-
ferences in exposure rates to oxygen and nutrients in the blood. It may be difficult to
estimate V and u. On the other hand, the parameters C o and F are theoretically
known, since they are calibrated by the manufacturer of the pump; a typical value of
F is in the range of 1.0-6.0 ml/day).

Keeping in mind the limitations of our assumptions, it is now possible to de-
scribe the course of chemotherapy as a system of equations involving the drug C and
the tumor cells N. The equations might contain terns as follows:

dN __ growth rate _ drug-induced (83a)tumor dt of cells death rate

drug dc = rate drug _ rate of uptake _ rate of removal by (83b) dt infused by cells the circulation

Clearly this example is a somewhat transparent analog of the chemostat, because in
abstracting the real situation, we made a caricature of the pump-tumor-circulatory
system, as shown in Figure 4.5. A few remaining assumptions must still be incorpo-
rated in the model which in principle, can now be written fully. Some analysis of
this example is suggested in problem 25.

It should be pointed out that this simple model for chemotherapy is somewhat
unrealistic, as it treats all tumor cells identically. In most treatments, the drugs ad-
ministered actually differentiate between cells in different stages of their cell cycle.
Models that are of direct clinical applicability must take these features into account.
Further reading on this subject in Swan (1984), Newton (1980), and Aroesty et al.
(1973) is recommended. A more advanced approach based on the cell cycle will be
outlined in a later chapter.

Modeling Glucose-Insulin Kinetics

A second area to which similar mathematical models can be applied is the physio-
logical control of blood glucose by the pancreatic hormone insulin. Models that lead
to a greater understanding of glucose-insulin dynamics are of potential clinical im-
portance for treating the disorder known as diabetes mellitus.

There are two distinct forms of this disease, juvenile-onset (type I) and adult-
onset (type II) diabetes. In the former, the pancreatic cells that produce insulin
(islets of Langerhans) are destroyed and an insulin deficiency results. In the latter it
appears that the fault lies with mechanisms governing the secretion or response to in-
sulin when blood glucose levels are increased (for example, after a meal).

The chief role of insulin is to mediate the uptake of glucose into cells. When
the hormone is deficient or defective, an imbalance of glucose results. Because glu-
cose is a key metabolic substrate in many physiological processes, abnormally low
or high levels result in severe problems. One way of treating juvenile-onset diabetes
is by continually supplying the body with the insulin that it is incapable of making.
There are clearly different ways of achieving this; currently the most widely used is
a repeated schedule of daily injections. Other ways of delivering the drug are under-
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148	 Continuous Processes and Ordinary Differential Equations

going development. (Sources dating back several years are given in the references.)
Here we explore a simple model for the way insulin regulates blood glucose

levels following a disturbance in the mean concentration. The model, due to Bolie
(1960), contains four functions (whose exact forms are unspecified). These terms are
meant to depict sources and removal rates of glucose, y, and of insulin, x, in the
blood. The equations he gives are (see the definitions given in Table 4.3)

Table 4.3	 Variables in Bolie's (1960) Model for Insulin-Glucose Regulation

Symbol	 Definition	 Dimensions

V Extracellular fluid volume Volume
1 Rate of insulin injection Units/time
G Rate of glucose injection Mass/time
X(t) Extracellular insulin concentration Units/volume
Y(t) Extracellular glucose concentration Units/volume
F, (X) Rate of degradation of insulin (See problem 26)
F2(Y) Rate of production of insulin
F3 (X, Y) Rate of liver accumulation of glucose
F4(X, Y) Rate of tissue utilization of glucose

insulin:	 V dX = 1 — F 1 (X) + F2(Y),	 (84a)

glucose:	 V dY = Ü — F3(X, Y) — F4(X, Y).	 (84b)

The model is a minimal one that omits many of the complicating features; see
the original article for a discussion of the validity of the equations. Although the
model's applicability is restricted, it serves well as an example on which to illustrate
the ideas and techniques of this chapter. (See problem 26.)

An aspect of this model worth noting is that Bolie does not attempt to use ex-
perimental data to deduce the forms of the functions F;, i = 1, 2, 3, 4, directly.
Rather, he studies the behavior of the system close to the mean steady-state levels
when no insulin or glucose is being administered [equations (84a, b) where
1 = G = 0 and dX/dt = dY/dt = 0]. He deduces values of the coefficients a11,

a12, a21 , and a22 in a Jacobian of (84) by looking at empirical data for physiological
responses to small disturbances. The approach is rather like that of the plant-herbi-
vore model discussed in Section 3.5. His article is particularly suitable for indepen-
dent reading and class presentation as it combines mathematical ideas with consider-
ation of empirical results.

Equally accessible are contemporary articles by Ackerman et al. (1965, 1969),
Gatewood et al. (1970), and Segre et al. (1973) in which linear models of the release
of hormone and removal rate of both substances are presented and compared to data.
An excellent recent summary of this literature and of the topic in general is given by
Swan (1984, Chap. 3) whose approach to the problem is based on optimal control
theory.
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An Introduction to Continuous Models 	 149

Aside from a multitude of large-scale simulation models that we will not dwell
on here, more recent models have incorporated nonlinear kinetics (Bellomo et al,
1982) and much greater attention to the details of the physiology. Landahl and Grod-
sky (1982) give a model for insulin release in which they describe the spike-like pat-
tern of insulin secretion in response to a stepped-up glucose concentration stimulus.
Their model consists of four coupled ordinary differential equations. The same phe-
nomenon has also been treated elsewhere using a partial differential equation model
(for example, Grodsky, 1972; Hagander et al., 1978). These papers would be acces-
sible to somewhat more advanced readers.

Compartmental Analysis

Physiologists are often interested in following the distribution of biological sub-
stances in the body. For clinical medicine the rate of uptake of drugs by different tis-
sues or organs is of great importance in determining an optimal regime of medica-
tion. Other substances of natural origin, such as hormones, metabolic substrates,
lipoproteins, and peptides, have complex patterns of distribution. These are also
studied by related techniques that frequently involve radiolabeled tracers: the sub-
stance of interest is radioactively labeled and introduced into the blood (for example,
by an injection at t = 0). Its concentration in the blood can then be ascertained by
withdrawing successive samples at t = t,, t2 , ... , t„; these samples are analyzed
for amount of radioactivity remaining. (Generally, it is not possible to measure con-
centrations in tissues other than blood.)

Questions of interest to a physiologist might be:

1. At what rate is the substance taken up and released by the tissues?
2. At what rate is the substance degraded or eliminated altogether from the

circulation (for example, by the kidney) or from tissue (for example, by
biochemical degradation)?

A common approach for modeling such processes is compartmental analysis:
the body is described as a set of interconnected, well-mixed compartments (see Fig-
ure 4.6b) that exchange the substance and degrade it by simple linear kinetics. One
of the most elementary models is that of a two-compartment system, where pool 1 is
the circulatory system from which measurements are made and pool 2 consists of all
other relevant tissues, not necessarily a single organ or physiological entity. The
goal is then to use the data from pool 1 to make deductions about the magnitude of
the exchange L ;; and degradation D ; from each pool.

To proceed, we define the following parameters:

m, = mass in pool 1,

m2 = mass in pool 2,

Vi = volume of pool 1,
V2 = volume of pool 2,

x, = mass per unit volume in pool 1,
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150	 Continuous Processes and Ordinary Differential Equations

1

7Q
60.
50.
40.

UJ 30

20

A
0	 100	 200	 300

TIME (HRS)

(a)

UI	 U2

DI	 D2
(b)

Figure 4.6 (a) Results of a physiological
experiment in which the percentage of tracer
remaining in the blood is followed over 300 h and
is shown by points marked + on this semilog plot.
Using such data one can estimate the quantities A ; ,
a;, and b; in (88a,b) and thus make deductions

about the distribution of the substance in the body.
Dotted-dashed line: a,e -A " ; dashed line: a2e- "2`;
and solid line, a,e'Al` + a2e - '`2`. Here A2 < Al.
(b) A two-compartment model with exchange rates
L, degradation rates D ; and rates of injection ui
and u2. U1 = u2 = 0 (see text).D
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An Introduction to Continuous Models 	 151

X2 = mass per unit volume in pool 2,

L ;; = exchange from pool i to pool j,

D; = degradation from pool j,
u; = rate of injection of substance into pool j.

Note that L;; and D; have units of 1 /time, while u; has units of mass/time. A linear
model would then lead to the following mass balance equations:

dm, = —L12m1 + L21m2 — D,m, + u,,	 (85a)
dt

dmz

-a- L,zm, — L2 1 m2 — Dzmz + u2.	 (85b)

In problem 30 we show that this can be rewritten in the form

dxt
dt	

—K,x, + Kz,xz + w 1 ,	 (86a)

dXz
dt = K12x, 

— Kzxz + wz,	 (86b)

where

K, = L12+D,,

L21 V2
K21 = V

V1

U,
WI = —,

V,

K2 = L21 + D2 ,

I.12Vi
KIz= V2

U2
wz = —.V2 

Note that now coefficients are corrected by terms that account for effects of dilution
since compartment sizes are not necessarily the same. This illustrates why equations
should proceed from mass balance rather than from concentration balance.

Now suppose that a mass Mo of substance is introduced into the bloodstream
by a bolus injection (i.e. all at one time, say at t = 0). Assuming that it is rapidly
mixed in the circulation, we may take

m 1 (0) = m0, m2(0) = 0, u, = uz = 0. (87)

Then equations (86a,b) are readily solved since they are linear and we obtain

x = c,v,e -Ait + c2 v2 e- A2' (88a)
where

x = (X2(t)) 
and c;v; = (b) . (88b)

Note that the exponents are negative because substance is being removed. In prob-
lems 30 through 32 we discuss how, by fitting such solutions to data for x, (t)
(concentration in the blood), we can gain appreciation for the rates of exchange and
degradation in the body. A thorough treatment of this topic is to be found in Ru-
binow (1975).
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152	 Continuous Processes and Ordinary Differential Equations

PROBLEMS*

1. Discuss the deductions made by Malthus (1798) regarding the fate of human-
ity. Can the model in equation (lb) give long-range predictions of human pop-
ulation growth? Malthus assumed that food supplies increase at a linear rate at
most, so that eventually their consumption would exceed their renewal. Com-
ment on the validity of his model.

2. Determine whether Crichton's statement (The epigram at the beginning of this
chapter. See p. 115) is true. Consider that the average mass of an E. coli bac-
terium is 10 -12 gm and that the mass of the earth is 5.9763 X 10 24 kg.

3. Show that for a decaying population

dN/dt = —KN (K > 0)

the time at which only half of the original population remains (the half-life) is

In 2
T1 ^ 2 = K

4. Consider a bacterial population whose growth rate is dN/dt = K(t)N. Show
that

N(t) = No exp (f ' Kds).

S. Below we further analyze the nutrient-depletion model given in Section 4.1.
(a) Show that the equation

dN = K (Co — aN)N
dt

can be written in the form

dN
d — r(1 B)N,

where r = CoK and B = Co/a. This is called a logistic equation. Inter-
pret r and B.

(b) Show that the equation can be written

dN
(1 — N/B)N = r dt,

and integrate both sides.
(c) Rearrange the equation in (b) to show that the solution thereby ob-

tained is

N(t) =	
NoB

No +(B—No)e't
(d) Show that for t -* - the population approaches the density B. Also show

that if No is very small, the population initially appears to grow exponen-
tially at the rate r.

*Problems preceded by an asterisk are especially challenging.
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An Introduction to Continuous Models 	 153

(e) Interpret the results in terms of the original parameters of the bacterial
model.

(f) Find the values of B, No, and r in the curve that Gause (1934) fit to the
growth of the yeast Schizosaccharomyces kephir (see caption of Figure
4. lc).

In problems 6 through 12 we explore certain details in the chemostat model.

6. (a) Analyze the dimensions of terms in equation 12 and show that an incon-
sistency is corrected by changing the terms FC and FCo .

(b) What are the physical dimensions of the constant a?

7. Michaelis-Menten kinetics were selected for the nutrient-dependent bacterial
growth rate in Section 4.4.
(a) Show that if K(C) is given by equation (15) a half-maximal growth rate

is attained when the nutrient concentration is C = K.
(b) Suppose instead we assume that K(C) = K,„C_, where K,„ is a constant.

How would this change the steady state (N,, C,)?
(c) Determine whether the steady state found in part (b) would be stable.

8. (a) By using dimensional analysis, we showed that equations (16a,b) can be
rescaled into the dimensionless set of equations (19a,b). What are the
physical meanings of the scales chosen and of the dimensionless parame-
ters a, and a2 ?

(b) Interpret the conditions on a 1 , a2 (given at the end of Section 4.6) in
terms of the original chemostat parameters.

9. (a) Show that each term in equation (14b) has units of (number of bacteria)
(time) - '.

(b) Similarly, show that each of the terms in equation (14a) has dimensions
of (nutrient mass)(time) - '.

10. It is usually possible to render dimensionless a set of equations in more than
one way. For example, consider the following choice of time unit and concen-
tration unit:

T= 1 	TE,	 C N D ,
Kmax

where iV is as before.
(a) Determine what would then be the dimensionless set of equations ob-

tained from (18a, b) .
(b) Interpret the meanings of the above quantities T and C and of the new di-

mensionless parameters in your equations. How many such dimension-
less parameters do you get, and how are they related to a, and a2 in
equations (19a, b)?

(c) Write the stability conditions for the chemostat in terms of new parame-
ters. Determine whether or not this leads to the same conditions on K m ,

V, F, Co, K, and so forth.
(d) Show that (N2 , C2) is stable only when (N,, C,) is not.
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154	 Continuous Processes and Ordinary Differential Equations

11. In industrial applications, one wants not only to ensure that the steady state
(N 1 , C,) given by equations (25a, b) exists, but also to increase the yield of
bacteria, N,. Given that one can in principle adjust such parameters as V, F,
and Co, how could this be done?

12. In this question we deal with a number of variants of the chemostat.
(a) How would you expect the model to differ if there were two growth-lim-

iting nutrients?
(b) Suppose that at high densities bacteria start secreting a chemical that in-

hibits their own growth. How would you model this situation?
(c) In certain cases two (or more) bacterial species are kept in the same

chemostat and compete for a common nutrient. Suggest a model for such
competition experiments.

13. Consider equation (8) for the growth of a microorganism in a nutrient-limiting
environment.
(a) By making appropriate choices for units of measurement N and T (for

time), bring the equation to dimensionless form.
(b) What are the steady states of the equation?
(c) Determine the stability of these steady states by linearizing the equation

about the steady states obtained in (b).
(d) Verify that your results agree with the exact solution given by equation

(10).

14. In the hypothetical growth chamber shown here, the microorganisms (density
N(t)) and their food supply are kept in a chamber separated by a semiperme-
able membrane from a reservoir containing the stock nutrient whose concentra-
tion [Co > C(t)] is assumed to be fixed. Nutrient can pass across the mem-
brane by a process of diffusion at a rate proportional to the concentration
difference. The microorganisms have mortality A.

Semipermeable
membrane

Figure for problem 14.

C (t) ^--1 Co

(Stock

N(t)	 • I nutrient

reservoir)

(a) Explain the following equations:

dN Kmax C

=dt — N K„ + C 

_
µN '

dC
= D [Co — C (t)] — aN 

K`"a C

dt	 K„+C
(b) Determine the dimensions of all the quantities in (a).
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An Introduction to Continuous Models 	 155

(c) Bring the equations to a dimensionless form.
(d) Find all steady states.
(e) Carry out a stability analysis and find the constraints that parameters must

satisfy to ensure stability of the nontrivial steady state.

Problems 15 through 24 deal with ODEs and techniques discussed in Section 4.8.

15. Classify the following ordinary differential equations by determining whether
they are linear, what their order is, whether they are homogeneous, and
whether their coefficients are constant.

(a) (sin x)y" + cos x = 0. (f)
dy _ 1
dt 1 + y'

(b) Y"+Y 2 =2y'. (g)
dy = 1
dx 'l + x

(c) +	
= sin y.

clty 	dt
(h) dx = x 6 + 5x + 6.

(d) d (Y z + 2y) = y. (I) t
+ ty = 1.

dt

(e) d2Y+2	
Y

dY +3	 =e`+e- `.
dr z 	dt 

16. Find the steady states of the following systems of equations, and determine the
Jacobian of the system for these steady states:

(a) dr = x 2 — Y 2 ,	 (c) at-- = x — x 2  — xy,

	

d-
=x(1—y).   	 dt = Y( 1 — Y).

(b)dr  Y — xY,	 (d) dt = x — xY,

ät =xY
'	 cit

17. Consider the equation
d2x
dtz

-2dt -3x=0.

(a) Show that x, (t) = e 3' and x2(t) = e - ' are two solutions.
(b) Show that x(t) = c,x,(t) + c2x2(t) is also a solution.

18. The differential equation
z

dt2
+3dt +2x=0

has the general solution
x(t) = c,e-` + c z e -z`.

If we are told that, when t = 0, x(0) = 1 and its derivative x' (0) = 1, we can
determine c, and c2 by solving the equations
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156	 Continuous Processes and Ordinary Differential Equations

x(0) = c 1 e -0 + c2e (-2XX0) = c, (1) + c2(1) = 1,
x'(0) = c,(-1)e -° + c2(-2)e-° = —c, — 2c2 = I.

(a) Find the values of c, and c2 by solving the above.

For questions (b) through (e) find the solution of the differential equation subject to
the specified initial condition.

(b) y'= lOy; y(0) = 0.001.

(c) y" — 3y' — 4y = 0; y(0) = 0, y'(0) = 1.
(d) y"-9y=0; y(0)=5,y'(0)=0.
(e) y" — 5y' = 0; y(0) = 1, y'(0) = 2.

19. When A, = A2 = A, one solution of equation (34) is

x 1 (t) = e At.

To find another solution (that is not just a constant multiple but is linearly inde-
pendent of the above solution), consider the assumption

x2(t) = v(t)e a`.

Find first and second derivatives, substitute into equation (34), and show that
v(t) = t. Conclude that the general solution is

x(t) = c,e'" + c2 te A '.

20. If Al. 2 = a ± bi are complex conjugate eigenvalues, the complex form of the
solutions is

	xi (t) = 
e (o+" ',	

x2(t) = e ^a btu' .

Use the identity

e(0)` = ea , (cos bt + i sin bt)

and consider

	u(t) = xi(t) + x2(t) ,	 w(t) = xi(t) — x2(t)

2	 2i

Reason that these are also solutions by linear superposition and thus show that
a real-valued solution (as in Section 4.8) can be defined.

21. (a) Show that system (40a, b) can be reduced to equation (41) by eliminating
one variable. [Hint: differentiate both sides of (40a) first, and then make
two other substitutions.]

(b) Once x (t) is found [see equation (42a)], y (t) can be found from (40a) by
setting

y(t) = a,^ (d[ — a
i1 x)	 (atz 0 0).

Determine y(t) in terms of the expressions in (42a).
(c) Conclude that in vector form the solution can be written as

(x(
y (

t)) = ci (Al 1 au ) 	+ c2 (A2 1 au )

t)
	a12	 a12
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22. In the following exercises find the general solution to the system of equations
dx/dt = Ax, where the matrix A is as follows:

(a) A = (_0 OI) 	 (d) A =

(b) A	 ( 1 3 ) .	 (e) A 
= (1 —2)

(c) A = (_2 3) .	 (f) A 
= (_3  0)

23. For problem 22(a — f) write out the system of equations

dx, dxz_
dt — auxi 

+ a12x2,	 dt = a2 x + a22x2.

Then eliminate one variable to arrive at a single second-order equation, using
the method given in problem 21. Find the characteristic equation and solve for
the eigenvalues of the equation. Find solutions for x 1 (t) and x2(t).

24. Consider the nth-order linear ordinary differential equation
ycn)+	 +...+a,-1y'+ any =0.

Show that by assuming solutions of the form

Y(t) = Ce
Ar

one obtains a characteristic equation that is an nth-order polynomial.

25. In this problem we write equations to model the continuous chemotherapy de-
scribed in Section 4.11.
(a) Assume that the effect of the drug on mortality of tumor cells is given by

Michaelis-Menten kinetics [as in equation (15)] and that the drug is re-
moved from the site at the rate u. Suggest equations for the tumor cell
population N and the drug concentration C, assuming that tumor cells
grow exponentially.

(b) Carry out dimensional analysis of your equations and indicate which di-
mensionless combinations of parameters are important.

(c) Determine whether the system admits steady-state solutions, and if so,
what their stability properties are.

(d) Interpret your results in the biological context.
(e) A solid tumor usually grows at a declining rate because its interior has no

access to oxygen and other necessary substances that the circulation sup-
plies. This has been modeled empirically by the Gompertz growth law,

d = yN where dy = —ay.

y is the effective tumor growth rate, which will decrease exponentially
by this assumption. Show that equivalent ways of writing this are

dN _
dt = yoe

- °`N = (—a In N)N.
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158	 Continuous Processes and Ordinary Differential Equations

[Hint: use the fact that

	N dt	 dt 
(ln N)J .

(f) Use the Gompertz law to make the model equations more realistic. As-
sume that the drug causes an increase in a as well as greater tumor mor-
tality.

26. Insulin-glucose regulation. Equations (84a,b) due to Bolie (1960) are a simple
model for insulin-mediated glucose homeostasis. The following questions are a
guide to investigating this model.
(a) When neither component is injected in normal, healthy individuals, the

blood glucose and insulin levels are regulated to within fairly restricted
concentration ranges. What does this imply about equations (84a, b)?

(b) Explain the appearance of the factor V on the LHS of equations (84a, b).
What are the dimensions of the functions F, F2 , F3, and F4?

(c) Bolie defines Xo and Yo as the mean equilibrium levels of insulin and glu-
cose when none is being injected into the body. What equations do Xo
and Yo satisfy?

(d) Consider the following four parameters:

a =V X/'	 ß V\aY

1 laF3 	aFal	 1(aF3 aF4)

V ax ax'	 V aY aY
[Partial derivatives are evaluated at (Xo, Yo).]
Interpret what these represent and comment on the fact that these are as-
sumed to be positive constants.

(e) Suppose that 1 = G = 0, but that at time t = 0 a rapid ingestion of glu-
cose followed by a single insulin injection changes the internal concen-
trations to

	X=Xo +x',	 Y=Yo +y',

where x', y' are small compared to Xo, Yo . Discuss what you expect to
happen and how it depends on the parameters a, ß, y, and S.

(f) By extrapolating empirical data for canines to the body mass of a human,
Bolie suggests the values

a = 0.8 hr- ',	 y = 4.8 g hr - ' unit- ',

ß= 0.3 unit hr g',	 S= 3.2 hr- '.

Are these values consistent with a stable equilibrium?

27. The following equations were suggested by Bellomo et al. (1982) as a model
for the glucose-insulin (g, i) hormonal system.

dt— —Kii+KB(g—gd)+Ksi.,D
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An Introduction to Continuous Models 	 159

dg =Khg — Kogi — KsKf .

The coefficients K; , Kg , Ks , Kh, Ko are constants whose exact definitions may
be ignored in this problem.
(a) Suggest an interpretation of the terms in these equations.
(b) Explore the steady state(s) and stability properties of this system of equa-

tions.
Note: For a more extended project, the problem can be extended to a full re-
port or a class presentation based on this model.

28. A model due to Landahl and Grodsky (1982) for insulin secretion is based on
the assumption that there are separate storage and labile compartments, a pro-
visionary factor, and a signal for release. They define the following variables:

G = glucose concentration,
X = moiety formed from glucose in presence of calcium ions Ca++,
P = provisionary quantity required for insulin production,
Q = total amount of insulin available for release = CV, where C is its

concentration and V is the volume,
S = secretion rate of insulin,
I = concentration of an inhibitory quantity.

(a) The following equation describes the amount of insulin available for re-
lease:

VdC= k+Cs—k_C+yVP—S,

where k+, k_ and y are constant and Cs is the concentration in the storage
compartment (of volume Vs), assumed constant. Explain the terms and
assumptions made in deriving the equation.

(b) Show that another way of expressing part (a) is

dQ =H(Qo —Q)+y'P—S.

How do H, y', and Qo relate to parameters which appear above?
(c) An equation for the provisional factor P is given as follows:

dP _ a[P.(G) — P),
dt

where P (G) is just some function of G (e.g., PP(G) = G). Explain what
has been assumed about P.

(d) The inhibitory entity I is assumed to be produced at the rate

dI =B(NX-1),
dt

where B is a rate constant and N is a proportionality constant. Explain
this equation.
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160	 Continuous Processes and Ordinary Differential Equations

(e) Secretion of insulin S is assumed to be determined by two processes, and
governed by the equation

S = [M,Y(G) + MAX — I)]Q,
where M, is constant, Y is a function of the glucose concentration, and
M2 is a step function; that is,

0	 ifX <I,
Mz(X — I)—

j
lMz 	ifX?L

Explain the equation for S.

29. A semitoxic chemical is ingested by an animal and enters its bloodstream at the
constant rate D. It distributes within the body, passing from blood to tissue to
bones with rate constants indicated in the figure. It is excreted in urine and
sweat at rates u and s respectively. Let x,, x2, and x3 represent concentrations
of the chemical in the three pools. The equation for x, is

dx,
dt = D — ux — k 12x 1 + k21 x2 .

Figure for problem 29.

(a) Assuming linear exchange between the three compartments, write equa-
tions for xz and x3.

(b) Find the steady-state values x,, x2, and x3. Simplify notation by using
your own symbols for ratios of rate constants that appear in the expres-
sions.

(c) How would you investigate whether this steady state is stable?
[For an example of this type of model with realistic parameter values see
Batschelet, E.; Brand, L.; and Steiner, A. (1979), On the kinetics of lead in
the human body, J. Math. Biol., 8, 15 — 23.]

30. Verify and explain equations (85a, b) and (86a, b).D
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31. (a) Consider the set of measurements in Figure 4.6(a) indicated by (+). As-
sume that in equations 88 A 2 < A, and that both are positive. Then for
large t it is approximately true that

del
x1(t) = a,e -A1 ' + a2e -k2`.

Why? Use Figure 4.6(a) to indicate how A 2 and a2 can be approximated
using this information.

(b) Now define

y(t) = x i (t) — a2 e_A2'.

This curve is shown in Figure 4.6(a) as the dotted-dashed line. Reason
that

y(t) = Qje -A '`,

and use Figure 4.6(a) to estimate a, and A,. This procedure is known as
exponential peeling. It can be used to give a rough estimate of the eigen-
values of equations (86a, b). More sophisticated statistical and computa-
tional techniques are used when a more reliable estimate is desired.

32. (a) Show that the quantities in equations (86) and (88) are related as follows:
A,a, = —K, a, + K21 b 1 ,

A,b, = K12a, — Kzb,,
,A2 a2 = —K 1 a2 + K21b2,
A2b2 = K 1 2a2 — K2b2.

(Hint: Use the fact that

x'
	 (i) e All	 and	 x2 = (a2^ e "Z'

are both solutions.)
(b) Another useful relation is

b, + b2 = 0.

Why is this true if substance is injected only into pool 1?
(c) Assuming that the mass injected at t = 0 is m, what is the volume of

pool 1?
*(d) Show that

aiA, + a2A2 K2 = a,A2 + a2A1
K, =	 ,

a, + a2	 a, + a2

(e) Find the product K21 K12 .
(f) Can any of the other parameters be determined (e.g., V2 , L12, L21, D,, or

D2)?
(g) Discuss what sort of conclusions could be drawn from such determina-

tions.
[A good source for further details on this topic is Rubinow (1975).]D
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