
5 Phase-Plane Methods and
Qualitative Solutions

Nothing is permanent but change.
Heraclitus (500 B.c.)

Nonlinear phenomena are woven into the fabric of biological systems. Interactions
between individuals, species, or populations lead to relationships that depend on the
variables (such as densities) in ways more complicated than that of simple propor-
tionality. Among other things, this means that models proporting to describe such
phenomena contain nonlinear equations that are often difficult if not impossible to
solve explicitly in closed analytic form.

To give a rather elementary example, consider the following two superficially
similar differential equations:

Linear: - = t 2 — y, (Ja)
dt

Nonlinear: dt = y 2 — t. (1b)

The first is linear (in the dependent variable y) and can be solved by a rather standard
method (see problem 15). The second is nonlinear since it contains the term y 2 ;
equation (lb) is not solvable in terms of elementary functions such as those encoun-
tered in calculus. While the equations both look simple, the nonlinearity in (lb)
means that special methods must be applied in analyzing the nature of its solutions.
Several qualitative approaches to understanding ordinary differential equations
(ODEs) or systems of such equations will make up the subject of this chapter.

Our aim is to circumvent the necessity for calculating explicit solutions to
ODEs; we shall be concerned with determining qualitative features of these solu-
tions. The flavor of this approach is in large measure graphical and geometric. By
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Phase-Plane Methods and Qualitative Solutions	 165

blending certain geometric insights with some intuition, we will describe the behav-
ior of solutions and thus understand the phenomena captured in a model in a pictorial
form. These pictures are generally more informative than mathematical expressions
and lead to a much more direct comprehension of the way that parameters and con-
stants that appear in the equations affect the behavior of the system.

This introduction to the subject of qualitative solutions and phase-plane meth-
ods is meant to be intuitive rather than formal. While the mathematical theory under-
lying these methods is a rich one, the techniques we speak of can be mastered rather
easily by nonmathematicians and applied to a host of problems arising from the nat-
ural sciences. Collectively these methods are an important tool that is equally acces-
sible to the nonspecialist as to the more experienced modeler.

Reading through Sections 5.4-5.5, 5.7-5.9, and 5.11 and then working
through the detailed example in Section 5.10 leads to a working familiarity with the
topic. A more gradual introduction, with some background in the geometry of
curves in the plane, can be acquired by working through the material in its fuller
form.

Alternative treatments of this topic can be found in numerous sources. Among
these, Odell 'S (1980) is one of the best, clearest, and most informative. Other ver-
sions are to be found in Chapter 4 of Braun (1979) and Chapter 9 of Boyce and
DiPrima (1977). For the more mathematically inclined, Arnold (1973) gives an ap-
pealing and rigorous exposition in his delightful book.

5.1 FIRST-ORDER ODEs: A GEOMETRIC MEANING

To begin on relatively familiar ground we start with a single first-order ODE and in-
troduce the concept of qualitative solutions. Here we shall assume only an acquain-
tance with the meaning of a derivative and with the graph of a function.

Consider the equation

dt —
.f(y, t),	 (2a)

and suppose that with this differential equation comes an initial condition that
specifies some starting value of y:

y(0) = yo •	 (2b)

[To ensure that a unique solution to (2a) exists, we assume from here on that f( y,  t)
is continuous and has a continuous partial derivative with respect to y.]

A solution to equation (2a) is some function that we shall call 4 (t).. Given a
formula for this function, we might graph y = 4(t) as a function of t to display its
time behavior. This graph would be a curve in the ty plane, as follows. According to
equation (2b) the curve starts at the point t = 0, 4(0) = yo. The equation (2a) tells
us that at time t, the slope of any tangent to the curve must be f (t, 4 (t)). (Recall that
the derivative of a function is interpreted in calculus as the slope of the tangent to its
graph.)

Let us now drop the assumption that a formula for the solution 4(t) is known
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166	 Continuous Processes and Ordinary Differential Equations

and resort to some intuitive reasoning. Suppose we make a sketch of the ty plane and
use only the information in equation (2a): at every point (t, y) we could draw a small
line segment of slope f(t, y). This can be done repeatedly for many points, resulting
in a picture aptly termed a direction field [Figure 5.1(a)]. The solution curves shown
in Figure 5. 1(b), must be tangent to the directions of the line segments in Figure
5.1(a). Now we reconstruct an approximate graph of the solution by beginning at
(0, yo) and sketching a curve that winds its way through the plane in the general di-
rection depicted by the field. (The more line segments we have drawn, the better our
approximation will be.) Starting at many different initial points one can generate a
whole family of solution curves that summarize the qualitative behavior specified by
the differential equation. See example 1.

Example 1
Here we explore the nature of solutions to equation (lb). We tabulate several values as
follows:

Location	 Slope of Tangent Line

Y	 t	 f(t , y) =y2—t

0	 0	 0
1	 1	 0
1	 2	 —1
2	 1	 3

In a somewhat more systematic approach, we notice that f( t, y) = K is the locus of
points K = y 2 — t. (This is a parabola about the t axis, displaced from the origin by an
amount — K.) Along each of these loci, tangent lines are parallel and of slope = K, as
in Figure 5.1(a). Figure 5. 1(b) is an approximate sketch of solution curves for several
initial values. We have made no attempt to depict exact solutions in this picture, but
rather to describe a general behavior pattern.

Example 2
The equation

dt = 
y(1—y)(2—y)	 (3)

is autonomous. Its solutions have zero slope whenever y = 0, 1, or 2. The slopes are
positive for 0 <y < 1 and y > 2 and negative for 1 <y < 2. (The exact values of
these slopes could be tabulated but are not important since the sketch is meant to be
only approximate.) From the sketch in Figure 5.2b it is clear that for y initially smaller
than 2, the solution approaches the value y = 1. For y initially larger than 2, the solu-
tion grows without bound. The values y = 0, 1, and 2 are steady states (dy/dt = 0).
y = 1 is stable; the others are unstable.
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167Phase-Plane Methods and Qualitative Solutions

-,-ß- y2 - t = 0

/1^ / 	 \\\ y - t = -

=`	 ^\	 \\ \ y2 -t=-K

. t

(a)

y

14

I

Figure 5.1 Solutions to y' = y2 - t. (a) For each	 K = y2 - t, where K is any constant.) (b) Solution
pair of values (t, y), line segments whose slope is	 curves are constructed by maintaining tangency to
f(t, y) yz - t are shown. (Note that slopes are 	 the directions shown in (a).
constant along parabolic curves for which
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168	 Continuous Processes and Ordinary Differential Equations

In example 2, the function appearing on the RHS of equation (3) depends ex-
plicitly only on y, not on t. A system described by such an equation would be un-
folding at some inherent rate independent of the clock time or the time at which the
process began. The differential equation is said to be autonomous, and solutions to it
can be represented in an especially convenient way, as will presently be shown.

Y

3

2 --------------

\ 

—_-------------=

(a)

Y

2

t

Figure 5.2 Solutions to y' = y(1 — y)(2 — y).
(a) For each value of y, line segments bearing the
slope f(y) = y(1 — y)(2 — y) have been drawn.
The slopes are zero when y = 0, 1, or 2, and

(b)

positive for 0 < y < 1 or y> 3. (b) Solution
curves are constructed by maintaining tangency to
the line segments drawn in (a).D
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Phase-Plane Methods and Qualitative Solutions 	 169

The fact that a differential equation is autonomous means, pictorially, that the
tangent line segments do not "wobble" along the time axis. This can be used to rep-
resent the same qualitative information in a more condensed form. Let us suppress
the time dependence and instead plot dy/dt as a function of y. See Figure 5.3(a).
Whenever f(y) is positive (that is, for 0 <y < 1 or y > 2), y must be increasing.
Whenever f(y) is negative, y must be decreasing. This can be represented by draw-
ing arrows pointing to the left or to the right directly along the y axis, as shown in
Figure 5.3(b). This abbreviated representation is called a one-dimensional phase
portrait, or a phase flow on a line. Figure 5.3(b) conveys roughly the same qualita-
tive information as does Figure 5.2, with the omission of the time course, or speed
with which the solution y ( t) changes.

f(y) = Y(1 — y)(2 — y), y>O

Y

(a)

• ' »	 • g of • i »r
	

Y
0	 1	 2

(b)

Figure 5.3 (a) Graph of f(y) versus y for equation	 stationary when f = 0. (b) The qualitative features
(3). Since y' = f(y), y is increasing when f is 	 described in (a) can be summarized by drawing the
positive, decreasing when f is negative, and	 directions of motion along the y axis.

Example 3 again illustrates the procedure of extracting information from the
equation and depicting the solution as a one-dimensional flow.

As mentioned previously, when a differential equation is autonomous, the
qualitative behavior of its solutions can be characterized even when time dependence
is suppressed. Think of a qualitative solution as a trajectory: a flow that begins
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170	 Continuous Processes and Ordinary Differential Equations

Example 3
The differential equation

dt 
= sin y	 (4)

can be treated in the same way, as shown in Figure 5.4. The following are some conve-
nient values to tabulate:

y	 dy/dt =	 sin y

0	 0
nIr	 0
—nIr	 0
it/2±2mr	 1
—zr/2±2nir	 —1

Solution curves and directions of flow are given in Figure 5.4.

dv
dt 

= sin y

0

-\ \\\\\\\\\\\\\

(a)D
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Phase-Plane Methods and Qualitative Solutions 	 171

a—^--	 • a ►-0 4--4 y
-lT	 0	 IT

(b)

Figure 5.4 (a) Tangent lines and several 	 summarized by omitting time dependence and
representative solution curves to the equation 	 concentrating only on the direction of motion
y' = sin y. (b) The information is again	 along the y axis.

somewhere (at an initial point) and has an orientation consistent with increasing val-
ues of time. We shall presently see that these ideas have a natural and important gen-
eralization to systems of differential equations.

5.2 SYSTEMS OF TWO FIRST-ORDER ODEs

In modeling biolog al systems, which are generally composed of several interacting
variables, we are frequently confronted with systems of nonlinear ODEs. The ideas
of Section 5.1 can be extended to encompass such systems; in the present section we
deal in great detail with systems of two equations that describe the interaction of two
species. The reason for dealing almost exclusively with these will emerge after some
preliminary familiarity is established.

Let us therefore turn attention to a system of two autonomous first-order equa-
tions, a prototype of which follows:

dx
	(5a)

di = fz(x, y)•	 (Sb)

Technically, we assume thatfi and 12 are continuous functions having partial deriva-
tives with respect to x and y; this ensures existence of a unique solution given an ini-
tial value for x and y. A solution to system (5) would be two functions, x(t), and
y (t), that satisfy the equations together with the initial conditions, if any.

As a preliminary to understanding the equations, let us consider an approxi-
mate form of these equations, whereby derivatives are replaced by finite differences,
as follows:

[fix
	(6a)

	At = f2(x, y)•	 (6b)

The changes Ox and Dy in the two independent variables are thus specified whenever
x and y are known, sinceD
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172	 Continuous Processes and Ordinary Differential Equations

Ox = f (x, Y) At,	 (7a)
Dy = f2(x, Y) At.	 (7b)

These equations can be interpreted as follows: Given a value of x and y, after
some small increment of time At, x will change by an amount Ox and y by an
amount Ay. This is represented pictorially in Figure 5.5, where a point (x, y) is as-
signed a vector with components (ix, Ay) that describe changes in the two variables
simultaneously. We see that equations (6) and (7) are mathematical statements that
assign a vector (representing a change) to every pair of values (x, y).

(a)
	

(b)

Figure 5.5 (a) Given a point (x, y), (b) a change in its location can be represented by a vector v.

In calculus such concepts are made more precise. Indeed, we know that deriva-
tives are just limits of expressions such as Ax/Ot when ever-smaller time increments
are considered. Using calculus, we can understand equations (5a,b) directly without
resorting to their approximated version. (A review of these ideas is presented in Sec-
tion 5.3, which may be skipped if desired.)

5.3 CURVES IN THE PLANE

In calculus we learn that the concepts point and vector are essentially interchange-
able. The pair of numbers (x, y) can be thought of as a point in the cartesian plane
with coordinates x and y [as in Figure 5.6(a)] or as an arrow strung out between the
origin (0, 0) and (x, y) that points to the location of this point [Figure 5.6(b)]. When
the coordinates x and y vary with time or with some other parameter, the point (x, y)
moves over the plane tracing a curve as it moves. Equivalently, the arrow twirls and
stretches as its head tracks the position of the point (x(t), y(t)). For this reason, it is
often called a position vector, symbolized by x(t).D
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Phase-Plane Methods and Qualitative Solutions 	 173

As previously remarked, since the solution of a system of equations such as
(5a,b) is a pair (x(t), y(t)), the idea that a solution corresponds geometrically to a
curve carries through from the one-dimensional case. To be precise, the graph of a
solution would be a curve (t, x(t), y(t)) in the three-dimensional space, depicting the
time evolution of the values of x and y. We shall use the fact that equations (5a,b)
are autonomous to suppress time dependence as before, that is, to depict solutions by
trajectories in the plane. Such trajectories, each representing a solution, together
make up a phase-plane portrait of the system of equations under consideration.

We observed in Section 5.2 that (Ox, Ay) given by equations (7a,b) is a vector
that depicts both the magnitude and the direction of changes in the two variables. A
limiting value of this vector,

dx dyl

dt ' dt)'	
(8a)

is obtained when the time increment Ot gets vanishingly small in (x/t, Dy/1t).
The latter, often symbolized

dx
dt	

(8b)

represents the instantaneous change in x and y, and can also be depicted as an arrow
attached to the point (x (t), y (t)) and tangent to the curve. This vector is often called
the velocity vector, since its magnitude indicates how quickly changes are occurring.

A summary of all these facts is collected here:

A Summary of Facts about Vector Functions (from Calculus)

1. The pair (x (t), y (t)) represents a curve in the xy plane with t as a parameter.
2. x(t) = (x(t), y(t)) also represents a position vector: a vector attached to (0, 0)

that points to the position along the curve, that is, the location corresponding to
the value t.

3. The vector dx/dt, which is just the pair (dx/dt, dy/dt) has a well-defined geo-
metric meaning. It is a vector that is tangent to the curve at x(t). Its magnitude,
written I d x/dt I represents the speed of motion of the point (x (t), y (t)) along the
curve.

4. The set of equations (5a,b) can be written in vector form,

dx = F(x).
dt

Here the vector function F = (f, , f2) assigns a vector to every location x in the
plane; x is the position vector (x, y), and dx/dt is the velocity vector (dx/dt,
dy/dt).
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174	 Continuous Processes and Ordinary Differential Equations

Figure 5.6 (a) Point and (b) vector representations
of a pair (x, y). (c) A curve (x(t), y(t)) can also be
represented by moving vector x(t), as in (d).

Y 

(a)

Y  

(b)

Y

r
(x (0), y(0))

(c)

Y

/i- (x(t),Y(t))

(d)
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5.4 THE DIRECTION FIELD

From concepts that arise in calculus we surmise that solutions to ODEs, whether in
one dimension or higher, correspond to curves, and differential equations are
"recipes" for tangent vectors to these curves. This insight will now be applied to re-
constructing a qualitative picture of solutions to a system of two equations such as
(5). For such autonomous systems each point (x, y) in the plane is assigned a unique
vector (f,(x, y), f2(x, y)) that does not change with time. A solution curve passing
through (x, y) must have these vectors as its tangents. Thus a collection of such vec-
tors defines a direction field, which can be used as a visual guide in sketching a fam-
ily of solution curves, collectively a phase-plane portrait. Example 4 clarifies how
this is done in practice.

Example 4
Let

dx
dr —

-xy—y, (9a)

dt = xy — x, (9b)

and let f,(x, y) = xy — y, f2(x, y) = xy — x. In the following table the values of f, and
f2  are listed for several values of (x, y).

x Y f, (x , Y) f2(x, y)

0 0 0 0
0 1 —1 0
1 0 0 —1

—1 0 0 1
0 —1 1 0
1 1 0 0
1 —1 2 —2

—2 —1 3 4

After tabulating arbitrarily many values of (x, y) and the corresponding values
of f, (x, y) and f2 (x, y), we are ready to construct the direction field. To each point
(x, y) we attach a small line segment in the direction of the vector (f,(x, y), f2(x, y)).D
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176	 Continuous Processes and Ordinary Differential Equations

See Figure 5.7. The slope Dy/Lix of the line segment is to have the ratio
f2(x, y)/f,(x, y). Notice that a vector (f,(x, y), f2(x, y)) has the magnitude
[ f,(x, y)2 + f2(x, y)2] 1 "2 , which we shall not attempt to portray accurately. This mag

-nitude represents a rate of motion, the speed with which a trajectory is traced. A
cluttered picture emerges should we attempt to draw the vectors (f, , fz) in their true
sizes. Since we are interested in establishing only the direction field, making all tan-
gent vectors some uniform small size proves most convenient.

Y

(-2, —1)1

Ox=2

Figure 5.7 Several points (x, y) and the direction 	 sketched above for equations (9a,b).
vectors (f1 , f2) associated with them have been

Two notable locations in example 4 are the points (0, 0) and (1, 1), at both of
which f, = 0 and f2 = 0. Neither x nor y changes given these initial values; the
terms steady state, equilibrium point, or singular point are synonymously used to
denote such locations. Presently we will see that such points play a central role in
determining global phase-plane behavior.

The chore of tabulating and sketching direction fields is in principle straightfor-
ward but tedious. Rather than belabor the process we might consign the job to a
computer, as we have done in Figures 5.8 (a,b). A simple BASIC program run on
an IBM personal computer produced these results.D
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Figure 5.8 (a) Computer-generated vector field for 	 solution curves for example 4. The directions are
example 4. The vectors point away from the points	 ascertained by noting whether vectors point into or
to which they are attached. For example, along the out of the region at the boundary of the square.
positive x axis, they point down. (b) Hand-sketched (Computer plot by Yehoshua Keshet.)
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178	 Continuous Processes and Ordinary Differential Equations

From the direction field thus generated one gets a good general idea of solution
curves consistent with the flow.Through every point in the plane there is a curve (by
existence of a solution) and only one curve (by uniqueness). Thus curves may not in-
tersect or touch each other, except at the steady states designated by heavy dots in
Figures 5.7 and 5.8. Rules governing the possible pattern of curves will be outlined
in a subsequent section.

As a word of caution, note that a phase-plane diagram is not a quantitatively
accurate graph. In practice, because only a finite number of tangent vectors can be
drawn in the plane, there will always be some small error in the curve that we in-
scribe. Such initially small mistakes could propagate if they result in an improper
choice of tangent vectors along the way. For this reason, solution curves drawn in
this way are approximate. There may be cases where ambiguity arises close to a
steady state and where it is difficult to distinguish between several alternatives. Such
situations call for a more rigorous technique. Before turning to these matters, we in-
vestigate a more systematic way of establishing the direction field in a computation-
ally efficient way.

5.5 NULLCLINES: A MORE SYSTEMATIC APPROACH

Rather than arbitrarily plotting tabulated values, we prepare the way by noticing
what happens along the locus of points for which one of the two functions, either
fi (x, y) or f2(x, y) is zero. We observe that

1. If fi(x, y) = 0, then dx/dt = 0, so x does not change. This means that the
direction vector must be parallel to the y axis, since its Ox component is zero.

2. Similarly, if f2(x, y) = 0, then dy/dt = 0, so y does not change. Thus the
direction vector is parallel to the x axis, since its Dy component is zero.

The locus of points satisfying one of these two conditions is called a nullcline.
The x nullcline is the set of points satisfying condition 1; similarly, the y nullcline is
the set of points satisfying condition 2. Because the arrows are parallel to the y and x
axis respectively on these loci, it proves helpful to sketch these as a first step. Exam-
ple 5 illustrates the procedure.

Example 5
For equations (9a,b) the nullclines are loci for which

1. z = 0 (the x nullcline); that is, xy — y = 0. This is satisfied when x = 1 or
y = 0. See dotted lines in Figure 5.9(a). On these lines, direction vectors are
vertical.

2. y = 0 (the y nullcline); that is, xy — x = 0. This is satisfied when x = 0 or
y = 1. See the dotted-dashed line in Figure 5.9(a). On these lines direction vec-
tors are horizontal.D
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(a)
	

(b)

VA
	

Y

(c)

Figure 5.9 Nullclines and flow directions for
example 5. (a) Nullclines, which happen to
be straight lines here, are sketched in the
xy-plane and assigned vertical or horizontal
line segments in (b). (c) Directions are

(d)

determined by tabulating several values and
inscribing arrowheads. (d) Neighboring
arrows are deduced by preserving a
continuous flow.

Points of intersection of nullclines satisfy both z = 0 and y = 0 and thus rep-
resent steady states. To identify these and determine the directions of flow, several
guidelines are useful.D
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180	 Continuous Processes and Ordinary Differential Equations

Rules for determining steady states and direction vectors on nullclines

1. Steady states are located at intersections of an x nullcline with a y nullcline.
2. At steady states there is no change in either x or y values; that is, the vectors

have zero length.
3.	 Direction vectors must vary continuously from one point to the next on the

nullclines. Thus a change in the orientation (for example, from pointing up to
pointing down) can take place only at steady states.

We note that (0, 0) and (1, 1) are the only two steady states in example 5. It is im-
portant to avoid confusing these with other intersections, for example (1, 0) and
(0, 1), for which only one of the two nullcline conditions is satisfied. Generally it is
a good idea to distinguish between the x and y nullclines by using different symbols
or colors for each type.

It should be remarked that in affixing orientations to the arrows along null-
clines we can economize on algebra by being aware of certain geometric properties.
For instance, in example 5 we observe the following patterns of signs:

x	 y 	f^(x, y)	 ß(x, y)

— i —	 0
o — +	 0
1 — 0	 —
o + 0	 —
+‚>1 1 +	 0
i +‚>1 0	 +
o + —	 0
— 0 0	 +

It is evident that on opposite sides of a steady-state point (along a given null-
cline) the orientation of arrows is reversed. This is a property shared by most sys-
tems of equations with the exception of certain singular cases. (We shall be able to
distinguish these exceptions by calculating the Jacobian J and evaluating it at the
steady state in question. If det J 0 0, the property of arrow reversal holds.) In most
cases where we encounter det J * 0, it suffices to determine the direction vectors at
one or two select places and deduce the rest by preserving continuity and switching
orientation as a steady state is crossed. Thus the arrow-nullcline method can reveal a
fairly complete picture with relatively little calculation (see example 6).

Example 6
Consider the equations

dx
dt 

—x+y 2 ,	 (10a)

D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 1

52
.2

.1
05

.2
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Phase-Plane Methods and Qualitative Solutions 	 181

dy 
= x + y.	 (10b)

The x nullcline is the curve 0 = x + y 2; the y nullcline is the line 0 = x + y. Steady
states are thus (0, 0) and (-1, 1). The Jacobian of system (10) is

J (xo , Yo) = 1	 1
(1 2y

) (x , ro)

Thus det J(0, 0) = 1 # 0, det J(— 1, 1) = —1 # 0, so the property of arrow reversal
holds. It suffices to tabulate two values, for example, as follows:

x	 y	 x =x +y2	 y= x+y

+	 y=—x	 +	 0
—	 x = —y 2 	0	 —

After drawing these two arrows, all others follow by the above method. (See Figure
5.10.)

Figure 5.10 Nullclines and arrows for
example 6, equations (10a,b).

Y 

x

)

5.6 CLOSE TO THE STEADY STATES

The examples we have seen give evidence to the notion that dramatic local changes
in the flow pattern can only take place in the vicinity of steady-state points. We now
invoke a metaphorical magnifying glass to scrutinize the behavior close to these lo-
cations. In the discussions of Chapter 4, we established that close to a steady state
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182	 Continuous Processes and Ordinary Differential Equations

(xo, yo) [defined by fi(xo, Yo) = fz(x'o, yo) = 0] the nonlinear system (5) behaves very
nearly like a linear one,

dx	
(Ila)=a„x +a 1z y,

dy = az, x + a22 y,	 (Jib)
dt

where a,,, related to partial derivatives of f, and f2, make up the coefficient of the Ja-
cobian matrix J(xo , yo) as follows:

äf, af,

	a^, a^z	 ax ay	 (12)
	J (X0, y0) = a21 =a22

	 aft afz

ax ay (ioJo)

This result is important, as it reduces the problem to one we understand well. It
remains to interpret the phase-plane equivalents of solutions to systems of linear
ODEs (described in Chapter 4). This will give us the local picture of the flow pattern
about the steady states.

Example 7
Equations (9a,b) can be linearized about the steady states (0, 0) and (1, 1). The Jaco-
bian is

__ y x-1
J(xo, 3'u) y — 1	 x

One obtains

J(0, 0) = (_1	 Q, ' 	J(1, 1) _	 i)

Thus close to (0, 0) the system behaves much like the linearized version,

dx
cit
.=—y,	 d t =—x.

Similarly, close to (1, 1) the linearized equations are

dx 	dy=
Tx,	 dt y '

A summary of properties of linear systems (of two ordinary differential equa-
tions) is given in Table 5.1, in which we consider only the real, distinct eigenvalues
case.D
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184	 Continuous Processes and Ordinary Differential Equations

5.7 PHASE-PLANE DIAGRAMS OF LINEAR SYSTEMS

We observe that a linear system can have at most one steady state, at (0, 0) provided
y = det A 0 0. In the particular case of real eigenvalues there is a rather distinct
geometric meaning for eigenvectors and eigenvalues:

1. For real A ; the eigenvectors v ; are directions on which solutions travel along
straight lines towards or away from (0, 0).

2. If A ; is positive, the direction of flow along v ; is away from (0, 0), whereas if
A, is negative, the flow along v ; is towards (0, 0).

Proof of these two statements is given below.

An Interpretation of Eigenvectors

Solutions to a linear system are of the form

x(t) = c, v, e A ll + c2 v2 e Alt.	 (13)

Recall that c, and c2 are arbitrary constants. If initial conditions are such that c, = 0
and c2 = 1, the corresponding solution is

x(t) = v2 e "2`.	 (14)

For any value of t, x(t) is a scalar multiple of v2. (This means that x(t) is always paral-
lel to the direction specified by the vector v2 .) If A is negative, then for very large val-
ues of t x(t) is small. In the limit as t approaches +oo, x(t) approaches the steady state
(0, 0). Thus x(t) describes a straight-line trajectory moving parallel to the direction v2

and towards the origin.
A similar result is obtained when c, = 1 and c2 = 0. Then we arrive at

x(t) = v, e a".	 (15)

The solution is a straight-line trajectory parallel to v,.

It follows that any solution curve that starts on a straight line through (0, 0) in
either direction ±v, or ±v2 will stay on that line for all t, — < t < - either ap-
proaching or receding from the origin. Note also from the above that a steady state
can only be attained as a limit, when t gets infinitely large, because time dependence
of solutions is exponential. This tells us that the rate of motion gets progressively
slower as one approaches a steady state.

Solution curves that begin along directions different from those of eigenvectors
tend to be curved (because when both c, and c2 are nonzero, the solution is a linear
superposition of the two fundamental parts, v,eA 1 t and v2e A2`, whose relative contri-
butions change with time). There is a tendency for the "fast" eigenvectors (those as-
sociated with largest eigenvalues) to have the strongest influence on the solutions.
Thus trajectories curve towards these directions, as shown in Figure 5.11.
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Y
	

Y
	

14

x x x

(a)
	

(b)	 (C)

Y
	

Y
	

Y

x x x

(d)	 (e)	 (f)

Figure 5.11 Sketches of the eigenvectors (a — c) and eigenvalues are as follows: (a, d), both positive;
solution curves (d—f) of the linear equations 	 (b, e), opposite; (c, f), both negative.
(11a,b) for real eigenvalues. The signs of the two

Real Eigenvalues

Assuming that eigenvalues are real and distinct (with y 0 0, ß 2 — 4y > 0 where
ß, y are as defined in Table 5.1 and equation (16), the behavior of solutions can be
classified into one of the three possible categories:

1. Both eigenvalues are positive: A, > 0, A2 > 0.
2. Eigenvalues are of opposite signs: e.g., A, > 0, A 2 < 0.
3. Both eigenvalues are negative: A, <0, A 2 < 0.

In these three cases the eigenvectors also are real. Both vectors point away
from the origin in case 1 and towards it in case 3. In case 2 they are of opposite ori-
entations, with the one pointing outwards associated with the positive eigenvalue.
Figure 5.11(a — c) illustrates this point.
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186	 Continuous Processes and Ordinary Differential Equations

All solutions grow with time in case 1 and decay with time in case 3; hence in
each case the point (0, 0) is an unstable or a stable node, respectively. Case 2 is
somewhat different in that solutions approach (0, 0) along one direction and recede
from it along another. This unstable behavior is descriptively termed a saddle point
(see Figure 5.11(e)).

Complex Eigenvalues

For A = a ± bi, we distinguish between the following cases:

4. Eigenvalues have a positive real part (a > 0).
5. Eigenvalues are pure imaginary (a = 0).
6.	 Eigenvalues have a negative real part (a < 0).

Note that when the linear equations have real coefficients, complex eigenval-
ues can occur only in conjugate pairs since they are roots of the quadratic character-
istic equation.

The eigenvectors are then also complex and have no direct geometric
significance. In building up real-valued solutions, recall that the expressions we ob-
tained in Section 4.8 were products of exponential and sinusoidal terms. We re-
marked on the property that these solutions are oscillatory, with amplitudes that de-
pend on the real part a of the eigenvalues A = a ± bi. In the xy plane, oscillations
are depicted by trajectories that wind around the origin. When a is positive, the am-
plitude of oscillation grows, so the pair (x, y) spirals away from (0, 0); whereas if a
is negative, it spirals towards it. The case where a = 0 is somewhat special. Here
ear = 1, and the amplitude of such solutions does not change. These trajectories are
disjoint closed curves encircling the origin, which is then termed a neutral center. In
this case a somewhat precarious balance exists between the forces that lead to in-
creasing and decreasing oscillations. It is recognized that small changes in a system
that oscillates in this way may disrupt the balance, and hence a neutral center is said
to be structurally unstable. Cases 4, 5, and 6 are illustrated in Figure 5.12.

5.8 CLASSIFYING STABILITY CHARACTERISTICS

From certain combinations of the coefficients appearing in the linear equations, we
can deduce criteria for each of the six classifications described in the previous sec-
tion. We shall catalog the nature of the eigenvalues and thus the stability properties
of a steady state using three quantities,

ß = a ll + a22 = Tr A,	 (16a)

y = a11a22 — a 12a 21 = det A,	 (16b)

S = (3 Z — 4y = disc A,	 (16c)

where A is the 2 x 2 matrix of coefficients (au) and A = J(xo, yo). [See equation
(12)] and Tr (A) = trace, det (A) = determinant, and disc (A) = discriminant of A.
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Figure 5.12 Solution curves for linear equations
(11 a,b) when eigenvalues are complex with (a)
positive, (b) zero, and (c) negative real parts.
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188	 Continuous Processes and Ordinary Differential Equations

Criteria stem from the fact that eigenvalues are related to these by

	Al, 2 =	 ß 2^ •	 (17)

Consult Figure 5.13 for a graphical interpretation of the arguments that follow.
For real eigenvalues, S must be a positive number. Now if y is positive,

S = (3 2 — 4y will be smaller than /3 2 so that VS < P. In that case, /3 + \/S and
ß — 1/S will have the same sign [see Figures 5.13(a) and 5.13(c)]. In other words,
the eigenvalues will then be positive if /3 > 0 [case 1, Figure 5.13(a)] and negative
if ß < 0 [case 3, Figure 5.13(c)]. On the other hand, if y is negative, we arrive at
the conclusion that VS is bigger than A. Thus (3 + VS and ß — VS will have op-
posite signs whether (3 is positive or negative [case 2, Figure 5.13(b)].

Example 8
In Section 5.6 we saw that the Jacobian of equations (9a,b) for the two steady states
(0, 0) and (1, 1) are

	J(0,0) _ ( -0 —Ol
,	 J(1, 1) _ (0 0).

Thu s for (0, 0), /i = 0 and y = —1; so (0,0) is a saddle point. For (1, 1), (3 = 2 and
y = 1; so (1, 1) is an unstable node.

Example 9
Consider the system of equations

dx
	ar=2x—y,	 d-=3x+2y.

Then

ß(2+2)=4,	 y=(2)(2)+(1)(3)=7,

S=/3 2 -4y=16-28=-12.

Since /3 2 < 4y, the eigenvalues will be complex. Since ß = 4> 0, the behavior is
that of an unstable spiral.

Example 10
Consider the system

	dx
dt = —4x+y,	 d-=x-2y.

Then

ß = (-4 — 2) = —6,	 y = (-4)(-2) — (1)(1) = 7,

S=ß 2 -4y=36-28=12.

Since ß < 0 and y > 0, the system is a stable node.D
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Figure 5.13 Eigenvalues are those values X at
which the parabola y = K 2 — 13X + ry crosses the K
axis. Signs of these values depend on ß and on the
ratio of \ to ß where 8 = 13 2 — 4y. When
y > 0, both eigenvalues have the same sign as ß.
If 8 < 0, the parabola does not intersect the K axis,
so both eigenvalues are complex. 

11

R>0  
(a)

Y    

(b)

Y

(c)

Y

(d)

D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 1

52
.2

.1
05

.2
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



190	 Continuous Processes and Ordinary Differential Equations

For eigenvalues to be complex (and not real) it is necessary and sufficient that
S = (3 2 — 4y be negative. Then

2

Cases 4, 5, and 6 then follow for positive, zero, or negative ß respectively.
To summarize, the steady state can be classified into six cases as follows:

1. Unstable node: ß > 0 and y > 0.
2. Saddle point: y < 0.
3. Stable node: ß < 0 and y > 0.
4. Unstable spiral: ß 2 < 4y and ß > 0.
5. Neutral center: ß 2 < 4y and ß = 0.
6. Stable spiral: ß 2 < 4y and ß < 0.

The ßy parameter plane, shown in Figure 5.14, consists of six regions in
which one of the above qualitative behaviors obtains. This figure captures in a corn-

Stable spiral	 (4) Unstable spiral
ß2 = 4y

(5) Neutral
center

node	 (1) Unstable node(3) Stable 

(2) Saddle point (2) Saddle point

Figure 5.14 To get a general idea of what happens
in a linear system such as

X = a11x + a12y,	 )y = a21x + a22 y,

we need only compute the quantities

f3 = all + a22,	 y = ai,a22 — a12a21•

The above parameter plane can then be consulted
to determine whether the steady state (0, 0) is a
node, a spiral point, a center, or a saddle point.
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Phase-Plane Methods and Qualitative Solutions 	 191

prehensive way the fundamental characteristics of a linear system. Notice that the re-
gion associated with a neutral center occupies a small part of parameter space,
namely the positive y axis.

The stability and behavior of a linear system, or the properties of a steady state
of a nonlinear system can in practice be ascertained by determining ß and y and not-
ing the region of the parameter plane in which these values occur. See examples 8,
9, and 10.

5.9 GLOBAL BEHAVIOR FROM LOCAL INFORMATION

Systems of nonlinear ODEs may have multiple steady states (see examples 5 and 6).
Close to the steady states, behavior is approximated by the linearized equations, a
fact that does not depend on the degree of the system; that is, it holds true in general
for n X n systems.

An attribute of 2 X 2 systems that is not shared by those of higher dimensions
is that local behavior at steady states can be used to reconstruct global behavior. By
this we mean that stability properties of steady states and various gross features of
the direction field determine a flow in the plane in an unambiguous way. The reason
bigger systems of equations cannot be treated in the same way is that curves in
higher dimensions are far less constrained by imposing a continuity requirement. A
result that holds in the plane but not in higher dimensions is that a simple closed
curve (for example, an ellipse or a circle) separates the plane into two disjoint re-
gions, the "inside" and the "outside." It can be shown in a mathematically rigorous
way that this limits the ways in which curves can form a smooth flow pattern in a
planar region. Problem 16 gives some intuitive feeling for why this fact plays such a
central role in establishing the qualitative behavior of 2 x 2 systems.

The terminology commonly used in the theory of ODEs reflects an underlying
analogy between abstract mathematical equations and physical flows. We tend to as-
sociate the behavior of solutions to a 2 X 2 system with the motion of a two-dimen-
sional fluid that emanates or vanishes at steady-state points. This at least imparts the
idea of what a smooth phase-plane picture should look like. (We note a slight excep-
tion since saddle points have no readily apparent fluid analogy.) By smooth, or con-
tinuous flow we understand that a small displacement from a position (x i , y,) to one
close to it (x2, y2) should not cause a drastic change in the direction of the flow.

There are a limited number of ways that trajectories can be combined to create
a flow pattern that accommodates the local (steady-state) properties with the global
property of continuity. A partial list follows:

1. Solution curves can only intersect at steady-state points.
2. If a solution curve is a closed loop, it must encircle at least one steady state

that cannot be a saddle point (see Chapter 8).

Trajectories can have any one of several asymptotic behaviors (limiting behav-
ior for t - + oo or t - - co). It is customary to refer to the a-limit set and co -limit
set, which are simply the sets of points that are approached along a trajectory for
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192	 Continuous Processes and Ordinary Differential Equations

t — — x and t — + oo respectively. Limit sets may include any of the following (see
Figure 5.15):

1. A steady-state point.
2. Infinity. (Trajectories emanating from or approaching infinitely large values in

phase space are said to be unbounded.)
3. A closed-loop trajectory. (A trajectory may itself be a closed curve or else may

approach or recede from one. Such solution curves represent oscillating
systems; see Chapters 6 and 8.)

4. A cycle graph (a set containing a finite number of steady states connected by
an equal number of trajectories).

Figure 5.15 Limit sets described in text: (a)
steady-state point, (b) infinity, (c) closed-loop
trajectory, (d) cycle graph, (e) heteroclinic
trajectory, (f) homoclinic trajectory, and (g) limit
cycle. (a)	 (6)

(c)	 (d)

•
(e)	 (f)

(g)
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Phase-Plane Methods and Qualitative Solutions 	 193

Certain types of trajectories are further distinguished by name since they repre-
sent interesting or important properties. Three of these are listed here:

5. A heteroclinic trajectory connects two (different) steady states. (The term
connects is often used loosely to convey that an orbit tends to each of the
steady states for t ---> ±oo.)

6. A homoclinic trajectory returns to the same steady state from whence it
originates.

7.	 A limit cycle is a closed orbit that is the a or w limit set of neighboring orbits
(see Figure 5.15 and Chapter 8).

It has been shown that by linearizing a set of (nonlinear) equations about a
given steady state, we can understand local behavior rather thoroughly. Indeed, this
behavior falls into a small number of possible cases, six of which were described in
Figure 5.14. (We did not go into details of several other singular cases, for example,
if det A = 0 or disc A = 0. These are discussed in several sources in the refer-
ences.)

Suppose we arrive at a prediction that some steady state is a spiral, a node, or
a saddle point according to linear theory. The nonlinearity of the equations might
distort that local behavior somewhat, but its basic features would not change. An ex-
ception to this occurs when linearization predicts a neutral center. In that case,
somewhat more advanced analysis is necessary to establish whether this prediction
holds true. A hint for why this prediction is not trustworthy has been given previ-
ously and involves the concept of structural stability. Briefly, even though the effect
of nonlinearities is small near a steady state, it may suffice to disrupt the delicate
balance of a neutral center. What happens when the delicate rings of a neutral center
are broken? We postpone discussion of this to a later chapter.

5.10 CONSTRUCTING A PHASE-PLANE DIAGRAM FOR THE CHEMOSTAT

To demonstrate how to apply the theory given in Chapters 4 and 5 to a given situa-
tion, we return to the example of the chemostat. In Section 4.5 we discovered the
following set of dimensionless equations depicting bacterial density N and nutrient
concentration C:

d = a' 1 + C)N — N,
	 (18a)

dC  	C 1
dt	 1 +CJN

—C+ a2.	 (18b)

As we saw, these nonlinear equations have two steady states, one of which repre-
sents a stable level of nutrient and cells. We now apply the method of phase-plane
analysis to this example. Because only positive values of N and C are biologically
meaningful, we shall restrict attention to the positive quadrant of the NC plane.
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194	 Continuous Processes and Ordinary Differential Equations

Step 1: Nullclines

The N nullcline
N = 0 represents all the points such that

IC
a 1

which are N = 0, or a,C/(1 + C) = 1. After rearranging, the latter leads to

C= 	1
'	

(19)
a,-1

This horizontal line crosses the C axis at 1/(a 1 — 1). On this line and on the
line N = 0, the value of N cannot change, so arrows are parallel to the C axis.

The C nullcline
C = 0 represents all the points satisfying

—(C)
N— C+a2=0.

For a better way of expressing this implicit equation of a nullcline, we solve for N to
get

N = (a2 — C) I
 +C
	(20)

This is a single curve with the following properties:

1. It passes through (a2, 0).
2. It is asymptotic to C = 0 and tends to +oo there.
3.	 Arrows along this nullcline are parallel to the N axis.

The curves corresponding to the N nullclines and C nullcline are shown on Fig-
ure 5.16. Notice that we have drawn the two curves intersecting in the first quadrant;
in other words, we assume that

1 < a2 .	 (21)
a, — 1

When this fails to be true, the picture will be quite different, as shown in problem
11. Direction of arrows will be determined by tabulating several judiciously chosen
values. Having calculated the Jacobian of equations (18a,b) previously, we observe
that det J $ 0 at either steady state. This means that arrows along nullclines have
opposite orientations on opposite sides of a steady state.

In determining the signs of dC/dt and dN/dt, it is sometimes helpful to prepare
the ground by rewriting the equations in a more transparent form. For example, after
rearranging equation (18a) we get

dN __ (a, — 1)C — 1 N.
	 (22)

dt	 (1 + C)
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C

a2	 (N2, C2)

C nullcline
l \ar

—fie►
C
C ii	 N nullcline

li- -1-c-3-`. (NI, CI)	 1 -

[07

N

a2

W

at a2

Figure 5.16 Phase plane portrait of the chemostat
model based on equations (18a,b) showing
nuliclines (dashed and dotted lines) and steady-state
points (heavy dots). (a) The directions of flow as

(b)

given in Table 5.2. (b) The trajectories based on
flow directions, steady state stability, and all other
analysis.

This allows us to conclude in a more direct way that dN/dt is negative whenever
C < 1/(a1 — 1) and positive when C > 1/(a, — 1). A similar procedure can be
used for equation (18b). Table 5.2 summarizes these conclusions.
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196	 Continuous Processes and Ordinary Differential Equations

Table 5.2	 Directions of Flow in the NC Plane (Fig. 5.16)

Case	 C	 N	 dC/dt	 dN/dt

1	 small, > 0	 on C nullcline	 0	 = small term X N — N; < 0;
N must be decreasing

2	 large, > a2 	0	 =—C + a2 < 0;	 0
C must be decreasing

3 	1	 N > steady-state	 =—large term + small term 	 0
a, — 1	 value N,	 < 0; C must be decreasing

4	 0	 0	 a2>0;	 0
C must be increasing

Step 2: Steady States

The two steady states of the chemostat, (N,, C,) and (N2, C2), are given by the ex-
pressions

1	 1

	

(

a, a2
 — a, — 1 ' a 1 — 1	

and	 (0, a2). 	(23)

These are the two points of intersection of 11 = 0 and C = 0. [Note that (0,
1/(a, — 1)) is not such an intersection since it satisfies only the condition IN = 0.]
The nullclines always intersect at two places, but the first of these intersections is in
the positive NC quadrant only when a2> 1/(a, — 1) and a, > 1. We have already
noted that these inequalities must be satisfied in order to apply to biological systems.

Step 3: Close to Steady States

We now summarize the calculations of stability characteristics of the two steady
states:

1. In the steady state (N,, Cl) the Jacobian is

__	 0	 a, A
J 	(-1/a, —(A + 1))'	 (24^

where A = N,/(1 + C,) 2 . Since

	ß=-(A+1)<0,	 y=A>0,
ßZ-4y=(A-1) 2 >0,

this steady state is always a stable node.
2. In the second steady state (N2, C2), the Jacobian is

=
( 
a, B — 1 0J	

'	
(25)

	—B	 —1 
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Phase-Plane Methods and Qualitative Solutions 	 197

where B = a2/(1 + a2). Thus

ß=a,B -2	 and	 y=1 —a,B.

This steady state will be a saddle point whenever 1 — a,B < 0, that is, when

1	(26)a, >B.

In problem 11(a) it is shown that this is satisfied precisely when

1
az > (27)

a, — 1

This condition ensures that the nonzero steady state (N1 , 1 ) exists. Thus, when
(N,, C,) is a biologically meaningful steady state, (N 2 , C2) = (0, a2) is a saddle
point.

The Shape of Trajectories Close to (N 1 , Cl)

Problem 12 demonstrates that eigenvalues and corresponding eigenvectors of the
Jacobian in equation (24) are as follows:

= —A,	 ,tz = 
v, = (a,),

 	 v2 = (a21).	 (29)

In problem 12(d) we show that v, defines a straight line through the steady state
(N,, C,) and two other points (a, a2 , 0) and (0, a2). In problem 13 it is also shown that
all trajectories approach this line as t approaches infinity.

It is worth remarking that several steps carried out in the chemostat example
simplify the analysis. The first was that of reducing equations to dimensionless form;
this eliminated many parameters that would complicate the expressions appearing in
the Jacobian. The second step was recognizing certain recurring expressions, such as
N,/(1 + C1)2 , and representing these by suitably defined constants. Such steps are
recommended as an aid to organization when analyzing the behavior of a model.

We can complete a phase-plane portrait of the chemostat by combining the
nullcline-and-arrow method with knowledge of the steady-state behavior ascertained
above. [See also box on the shape of trajectories near the steady state (N,, C,).] Fig-
ure 5.16(b) shows a smooth flow pattern consistent with both local and global clues.
Other details of the flow are worked out in problems 10 through 13. We see that no
matter what the initial values of C and N, solution curves eventually approach the
steady state (N,, C,).

Step 4: Interpreting the Solutions

Three hypothetical ways of starting a chemostat culture are described below. Figure
5.16 is used to deduce what happens in each situation.
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198	 Continuous Processes and Ordinary Differential Equations

First, suppose that the growth chamber in the chemostat initially has no bacte-
ria or nutrient. As the stock solution of nutrient flows into the chamber, it causes the
nutrient level there to increase. From Figure 5.16 we see that after starting at (0, 0)
we gradually approach the steady state (0, a2). Thus C is building up to a level
equivalent to that of the stock solution (recall the definition of a2). N never in-
creases, because bacteria are not present and thus cannot reproduce.

Now consider inoculating the chamber with a small bacterial population,
N = e, and again starting with C = 0. Note that the solution curves through the N
axis (for N small) sweep into the positive quadrant. N initially decreases, because
until a nutrient level is established, bacteria cannot reproduce fast enough to replace
those that are lost in the effluent. Once excess nutrient is available, bacterial densi-
ties rise dramatically, so that the solution curve has a nearly vertical "kink." At this
point, rapid consumption causes decline in the nutrient and N and C approach their
steady-state values. (In theory, the steady state is only attained at t = ±oo. In prac-
tice it may take only a finite time such as a few hours to be close enough to steady
state as to be indistinguishable from it.) _

As a third example, starting with N > N,, C > C, we find that N initially in-
creases, thereby causing nutrient depletion. (C drops below its steady-state value.)
The bacterial population declines so that nutrient consumption is less rapid. Again,
after these transients, the steady state is once more established.

In problem 14 we return once again to the original parameters of the
chemostat. There it is shown that the following relevant conclusions are reached:

Summary of the Chemostat Model

1. If either

V - Kmax ,	 Or

y > Kmax	 and	 Co K
 (FI V )K,,

(N2, C2) = (0, Co) is the only steady-state point and it is stable. This situation is
called a washout since the microbe will be washed out of the chemostat.

2. If both

F
V > Kmax	 and

(F/V)K,, < Co,
Kmax — (F/^

then (N,, C,) is a stable steady-state point. Provided N(0) is initially nonzero and
Co > 0, the bacterial density and nutrient concentration will converge to N, and
C, respectively.
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Phase-Plane Methods and Qualitative Solutions 	 199

5.11 HIGHER-ORDER EQUATIONS

So far we have dealt only with systems of first-order equations. However, the geo-
metric theory used here can also be applied to problems consisting of higher-order
equations, such as

n	 n-1	 n-z

y=F
dt"	 dt"' ' dtn-z , .. . Y ^, Y	 (30)

The problem will be reduced to one that is familiar by converting this nth-order
equation to a set of n first-order equations. To do so, define yo = y and n — 1 new
variables, each of which represents the derivative of the preceding variable:

yo=y,
dyo — dy

yt=

-dY"
 =	 =

	-z	 dn1 Y

Now rewrite this as a "system" of equations in the variables yo , . 	 yn- i, using
equation (30) in the final equation:

dyo 
- Yl,

dt = Y2'

(31)
dYn- z
dt = yn- I ,

d
Yn- ' = F(Yn- 1, Yn -z, . .. , Y1, yo).dt

The system (31) can be summarized by a vector equation,

dt = f (Y) = (fo, fi, ... , f"-1), 	 (32)

where fo = yi, fi = yz, ... , fn- i = F, and so on.
A solution to (32), y(t) is a curve in n-dimensional space, parameterized by t.

While f(y) again represents a direction field, it is now much more difficult to visual-
ize. Nullclines are hyperplanes or hypersurfaces of dimension n — 1; in the exam-
ples given here, the subspaces are y, = 0, Y 2 = 0, ... , and F(y"_,, yn-2, ...
y,, yo) = 0. It is clear that while the geometric interpretation underlying the equa-
tions can be thus generalized, we must abandon the idea of visualizing qualitative
behavior in all but the simplest cases.
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200	 Continuous Processes and Ordinary Differential Equations

In theory, steady states can be determined analytically (when equations such as
yo = 0, ... , )„_, = 0 can be solved). The stability of these steady states is ascer-
tained by linearizing the equations, but technical difficulties ensue (see Section 6.4).
Even given complete local information about steady states, the global qualitative be-
havior is generally unknown, with few exceptions. So while in theory the scope of
the analysis of the 2 X 2 case can be extended, in practice we obtain valuable in-
sights in the general case only rarely.

PROBLEMS*

1. For the following first-order ordinary differential equations, sketch solution
curves y (t) by first plotting the tangent vectors specified by the differential
equations:
(a) dt = y 2 . 	(d)	 = ye (Y-n

(b) dt = 1 	1 + y '	
(e) d = sin y cos y.

(c) d =y(y -2).

2. For problem 1(a—e) above, graph dy/dt as a function of y. Use this graph to
summarize the behavior of solutions to the equations on the y axis by drawing
arrows to indicate when y increases or decreases.

3. Prove that solution curves of equation (3) have inflection points at

y= 1 ±

(Hint: Consider f'(y) and see Figure 5.3(a).)

4. Curves in the plane. The locus of points for which x = y 3 can be written in the
form (x (t), y (t)) by choosing some parameter t. For example,

	x(t) = t,	 y(t) = t3.

Other choices are possible, for example,
	x=s'/3 ,	 y=s.

These would depict the same curve but a different rate of motion along the
curve. Then, using this parameterized form we can depict any position on the
curve by the vector

x(t) = (t, t 3)
and any tangent vector to the curve by the vector

v(t) =d = ^ddtt) , dd t)) = (1, 3t 2).

* Problems preceded by an asterisk are especially challenging.
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Phase-Plane Methods and Qualitative Solutions	 201

For example, at t = 1, x = (1, 1) and v = (1, 3).
(a) Using the parameterized form given here, sketch the curve, and compute

the tangent vectors at points (0, 0), (2, 8), and (-1, —1).
(b) Find a way of parameterizing the following curves, and determine the

form of the tangent vector to the curve:

(1) y = x(x — 1).	 (4) x 2 + y 2 = 1.
(2) y 2 = sin x.	 (5) y = ax + b.
(3) x = 1/y.	 (6) y = 4x 2 .

5.	 Sketch the nullclines in the xy phase plane, identify steady states, and draw di-
rections of arrows on the nuliclines for the following systems of first-order
equations:

dx
(a)	 dt = Y 2

 —x2 , —d- (e)	 = x 2 _y

d--x—l.
dt dt

dy =yZ —x.

dx
(b)	 = x (Y

z
 — Y) ,

dx _ —xy
(f)	 + x'dt dt	 1 + x

dY _ dY	 xY=
dt	

X
	y dt	 1+x

(c)	
dx_	 2

(g)	 dx =xy( 1 — x)+C,

dy dy	 yl=	 1= -
dt	 y' dt	 Y 	xl

(d) dt
= (1 + x)(1 - y).

dt

6.	 For problem 5(a—g) find the Jacobian of each system of equations and deter-
mine stability properties of each steady state.

7.	 Sketch the phase-plane behavior of the following systems of linear equations
and classify the stability characteristic of the steady state at (0, 0):

(a)	 dt = —2y, (d) dr = 5x + 8y,

dy
dt = x. dy   

(b)	 di = 3x + 2y, (e)	 dt = —4 — 2y,

dt-4x+y. dt =3x—y.
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202	 Continuous Processes and Ordinary Differential Equations

	(c) dt =2x+y,	 (f) 
dx

 =x-4y,

	cit=x
+2y.	 dt=x+y.

8. Write a system of linear first-order ODEs whose solutions have the following
qualitative behaviors:
(a) (0, 0) is a stable node with eigenvalues A l _ — 1 and A2 = — 2.
(b) (0, 0) is a saddle point with eigenvalues A, _ — 1 and A2 = 3.
(c) (0, 0) is a center with eigenvalues A = ± 2i.
(d) (0, 0) is an unstable node with eigenvalues A, = 2 and A2 = 3.

Hint: Use the fact that A, and 1l 2 are eigenvalues of a matrix A, then
A + A2 = Tr A = a„ + a22 ,
Al A2 = det A = a„ a22 — a , 2 az, .

Note that there will be many possible choices for each of the above.

9. Consider the system of equations

	

z=y—x 2 ,	 y= y-2x 2

(a) Show that the only steady state is (0, 0).
(b) Draw nullclines and determine the directions of arrows on the nullcline.

Note that (0, 0) is a point of tangency of the two nullclines, which inter-
sect but do not cross.

(c) Find the Jacobian at (0, 0), show that its determinant is equal to zero, and
conclude that two eigenvalues are A, = 0 and A2 = 1.

(d) Sketch solution curves in the xy plane.

10. By examining Figure 5.16 describe in words what would happen if we set up
the chemostat to contain the following:
(a) A small number of bacteria with excess nutrient in the growth chamber.
(b) A large number of bacteria with very little nutrient in the growth

chamber.

11. In drawing the phase-plane diagram of the chemostat, we assumed that
a2 > 1/(a, — 1) .

(a) Show that (Nz, C2) is a saddle point whenever this inequality is satisfied.
(b) Now suppose this inequality is not satisfied. Sketch the resulting phase-

plane diagram and interpret the biological meaning.

12. (a) In the chemostat model find the quantity

N,
A=

(1 +C,) 2

in terms of a, and a2 [where (N, , C,) is given by (23)].
(b) Show that the two eigenvalues of the Jacobian given by (24) are

	Al = —A,	 and	 A2 = — 1.D
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(c) Show that the corresponding eigenvectors are

v, _ (aif,	 V2= (a '1).

*(d) Show that the eigenvector v, and the steady state (N i , C,) define a straight
line whose equation is

N — a 1 a2 = —a,C.

[Hint: Use the fact that the slope is given by the ratio a,/(-1) = —a, of
the components of v i .]

(e) Show that this line passes through the points (a, az , 0) and (0, a2).

13. In this problem we establish that, for the chemostat all trajectories approach
the line

N — a,a2 = a,C.

(a) Multiply equation (18b) by a, and add to equation (18a). Show that this
leads to

ddt (N + a, C) = a, a2 — (N + a, C).

(b) Let x = N + a, C and integrate the equation in part (a). Show that
x(t) = Ke -' + a, a2

is a solution (K = a constant of integration).
(c) Show that in the limit for t —* oo one obtains x (t) —^ a, a2 ; that is,

N + a,C = a,a2 .

Conclude that as t approaches infinity, all points (N(t), C(t)) approach
this line.'

14. (a) Verify that conclusions outlined in the summary of the chemostat model
at the end of Section 5.10 are correct.

(b) Sketch the phase-plane behavior of the original dimension-carrying vari-
ables of the problem. (Your sketch should be similar to Figure 5.16 but
with relabeled axes.)

15. Equation (la) is linear but nonhomogeneous. To solve this problem consider
first the corresponding homogeneous problem

dt +y=0.

Find the solution y = «t) of this equation and look for solutions of the equa-
tion (1 a) of the form

y = c1(t)C(t)
where C (t) is an unknown function. Solve for C (t). This procedure is known
as the method of variation of parameters.

1. This problem was kindly suggested by C. M. Biles.D
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16. In the accompanying figure, locations and stability properties of steady states
have been indicated by arrows. Fill in the global flow pattern using the fact that
continuity of the flow must be preserved (that is, no sharp transitions at neigh-
boring points except in the vicinity of steady states). In some cases more than
one qualitative flow pattern is possible. Can you determine which of the fol-
lowing gives ambiguous clues?

Y	 y

x

(a)

Y

x

(c)

Y•-- ._

\	 /

(e)

Figure for problem 16.
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17. In this problem we explore one of the major distinctions between 2 X 2 sys-
tems of equations, which are represented by flows in the plane, and those of
higher dimensionality.

Y

f B

f—A

0

(a)

Figure for problem 17.

(a) In diagram (a) of a 2 x 2 system, a closed orbit (6) has been drawn in
the xy plane. The arrows A and B represent the local directions of motion
at two points on the inside and outside of the closed curve.
(1) By preserving a continuous flow, sketch several different qualita-

tive flow patterns consistent with the diagram.
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206	 Continuous Processes and Ordinary Differential Equations

(2) Section 5.11 tells us there must be a steady state somewhere in the
diagram. In which region must it be, and why?

(b) A similar diagram in three dimensions (for a system xyz of three equa-
tions) leads to some ambiguity. Is it possible to define inside and outside
regions for the orbit? Give some sketches or verbal descriptions of flow
patterns consistent with this orbit. Show that it is not necessary to assume
that a steady state is associated with the closed orbit.

18. Use phase-plane methods to find qualitative solutions to the model for the glu-
cose-insulin system due to Bellomo et al. (1982). (See problem 27 in Chapter
4.) Draw nullclines, identify steady states, and sketch trajectories in the ig
plane. Interpret your graph and discuss how parameters might influence the na-
ture of the solutions.

19. Use methods similar to those mentioned in problem 17 to explore the model
for continuous chemotherapy that was suggested in problem 25 of Chapter 4.

20. Extended problem or project. Using plausible assumptions or sources in the lit-
erature, suggest appropriate forms for the functions F1 (X), F2 (Y), F3(X, Y), and
F4(X, Y) in the model for insulin and glucose proposed by Bolie (1960) (see
equations (84a) and (84b) in Chapter 4). Use these functions to treat the prob-
lem by phase-plane methods and interpret your solutions.

21. In this problem we examine a continuous plant-herbivore model. We shall
define q as the chemical state of the plant. Low values of q mean that the plant
is toxic; higher values mean that the herbivores derive some nutritious value
from it. Consider a situation in which plant quality is enhanced when the vege-
tation is subjected to a low to moderate level of herbivory, and declines when
herbivory is extensive. Assume that herbivores whose density is I are small in-
sects (such as scale bugs) that attach themselves to one plant for long periods
of time. Further assume that their growth rate depends on the quality of the
vegetation they consume. Typical equations that have been suggested for such
a system are

dq = K, — K2 g1(I — Io),

dt= K3I(1 —K4I I.
4/

(a) Explain the equations, and suggest possible meanings for K,, K2, Io, K3 ,

and K4 .

(b) Show that the equations can be written in the following dimensionless
form:

dt-
1—Kgl(I-1),

dt = all — q).
Determine K and a in terms of original parameters.
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(c) Find qualitative solutions using phase-plane methods. Is there a steady
state? What are its stability properties?

(d) Interpret your solutions in part (c).

22. A continuous ventilation-volume model. In Chapters 1 and 2 we considered a
simple model for irregular patterns of breathing. It was assumed that the sensi-
tivity of the CO 2 chemoreceptor controls the depth (volume) of breathing. Over
the time scale of 10 to 100 breaths the discontinuous nature of breathing and
the delay in CO 2 sensitivity play significant roles. However, suppose we now
view the process over a much longer time length (t = several hours). Define

C (t) = blood CO 2 concentration at time t

V(t) = magnitude of ventilation volume at time t.

(a) By making the approximations

	C^+, — C^ dC	 V„+, — V„ dV
At	 dt '	 At	 dt

reason that the continuous equations for the CO2 ventilation volume sys-
tems based on equations (49) of Chapter 1 take the form

dC _ —(V, C) + m,
dt

dV _ S(C) — EV,
dt

where Y = CO 2 loss rate per unit time and 9 = CO 2 -induced ventilation
change per unit time. What is E in terms of At?

(b) Now investigate the problem using the following steps: First assume that
Y and f are linear functions (as in problem 18 in Chapter 1); that is,

	(V, C) = ßV,	 f(C) = aC.

(1) Write out the system of equations, find their steady state, and deter-
mine the eigenvalues of the equations. Show that decaying oscilla-
tions may occur if E Z <4aß.

(2) Sketch the phase-plane diagram of the system. Interpret your results
biologically.

(C) Now consider the situation where

(V, C) = fVC,	 f(C) = aC.

(1) Explain the biological significance of this system. When is this a
more valid assumption?

(2) Repeat the analysis requested in part (b).
(d) Finally, suppose that	_T(V, C) = ßV, 	&(C) = Vmax l.

K + l

How does this model and its predictions differ from that of part (b)?

23. The following equations were given by J. S. Griffith (1971, pp. 118— 122), as
a model for the interactions of messenger RNA M and protein E:
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208	 Continuous Processes and Ordinary Differential Equations

aKE tm

M 1 +KEm—bM, 
E cM—dE.

(See problem 25 in Chapter 7 for an interpretation.)
(a) Show that by changing units one can rewrite these in terms of dimension-

less variables, as follows

A1= 1 E Em —aM, E =M—ßE.

Find a and ß in terms of the original parameters.
(b) Show that one steady state is E = M = 0 and that others satisfy

E' = aß(1 + Em). For m = 1 show that this steady state exists only
if aß	 1.

(c) Case 1. Show that for m = 1 and aß > 1, the only steady state
E = M = 0 is stable. Draw a phase-plane diagram of the system.

(d) Case 2. Show that for m = 2, at steady state

E_ 1 ± (1 + 4a2ß2)2
2aß

Conclude that there are two solutions if 2aß < 1, one if 2aß = 1, and
none if 2aß > 1.

(e) Case 2 continued. For m = 2 and 2aß < 1, show that there are two sta-
ble steady states (one of which is at E = M = 0) and one saddle point.
Draw a phase-plane diagram of this system.

24. In modeling the effect of spruce budworm on forest, Ludwig et al. (1978)
defined the following set of variables for the condition of the forest:

S (t) = total surface area of trees

E(t) = energy reserve of trees.

They considered the following set of equations for these variables in the pres-
ence of a constant budworm population B:

dt — rsS(1 Ks E /'

dE= rEEl1— E) —PB.

The factors r, K, and P are to be considered constant.
*(a) Interpret possible meanings of these equations.
(b) Sketch nullclines and determine how many steady states exist.
(c) Draw a phase-plane portrait of the system. Show that the outcomes differ

qualitatively depending on whether B is small or large.
*(d) Interpret what this might imply biologically.
[Note: You may wish to consult Ludwig et al. (1978) or to return to parts (a)
and (d) after reading Chapter 6.]
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