
9 An Introduction
to Partial Differential Equations
and Diffusion in Biological Settings

I do not know what I may appear to the world; but to myself I seem to have
been only like a boy playing on the seashore, and diverting myself in now
and then finding a smoother pebble or prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me.

Isacc Newton (1642-1727) p 90 E. T. Bell (1937) Men of Mathematics
Simon & Schuster, N.Y.

Part of our admiration for nature stems from the fact that it continually surprises us
with its infinite variation, regardless of the scale of observation. This holds true of
microscopic worlds; the surface of a cell for example, consists of myriad buoyant
macromolecules distributed haphazardly in a viscous lipid sea. On the broad scale,
that of continents or ecosystems, the fabric of habitats is like a patchwork quilt with
a wide variety of local conditions, some favoring one species, some favoring an-
other.

For this reason, real natural systems behave in a way that reflects an under-
lying spatial variation. Despite our idealizations, no species actually consists of
identical individuals, since not all individuals are equally exposed to a constant envi-
ronment. Similarly, on the molecular level, rarely do reactions take place in a homo-
geneous soup of chemicals. Somehow the effect of spatial organization does
influence the way individual particles or molecules interact.

In the three chapters to follow, our purpose is to expose how spatial variation
influences the motion, distribution, and persistence of species. We shall see that in
the fine balance that exists between interdependent species, the spatial diversity of
the system can have subtle but important effects. Conversely, the interactions of un-
like species can result in spatial heterogeneity and lead to the appearance of patterns

D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 1

52
.2

.1
05

.2
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



384	 Spatially Distributed Systems and Partial Differential Equation Models

out of a uniform state. Our initial goal is to introduce the concepts underlying spa-
tially dependent processes and the partial differential equations (PDEs) that describe
these. The discussion is somewhat general, with examples drawn from molecular,
cellular, and population levels. Later we will apply the ideas to more specific cases
with the aim of gaining an understanding of phenomena.

In this chapter we discover primarily how partial differential equations arise
and by what procedures they can be assembled into statements that are reasonable
mathematically as well as physically. We see that under appropriate assumptions the
motion of groups of particles (whether molecules, cells, or organisms) can be repre-
sented by statements of mass or particle conservation that involve partial derivatives.
Such statements, often called conservation or balance equations, are universal in
mathematical descriptions of the natural sciences. Indeed practically every PDE that
depicts a physical process is ultimately based on principles of conservation—of
matter, momentum, or energy.

Before undertaking the derivation of balance equations, we devote Section 9.1
to a review of the material that forms much of the structural underpinning of the
mathematical framework. Students well versed in advanced calculus may skim
through this section. One of the key observations we make is that the spatial varia-
tion in a distribution can lead to directional information. This proves conceptually
useful in later discussions.

With this preparation we then proceed with the derivation of statements of con-
servation. This is accomplished in two stages. First, a simple argument for one-di-
mensional settings is given in Section 9.2. This is followed by more rigorous deriva-
tions and a generalization to other geometries and higher dimensions. We then
consider several specific phenomena—including convection, diffusion, and attrac-
tion—that result in the motion of particles. Each phenomenon leads to special cases
of the conservation equation. Such equations are derived in Section 9.4 and explored
more fully later.

One example of applying such ideas to a universal process—that of diffu-
sion —is illustrated in Sections 9.5 to 9.9. Derivation of the equation governing dif-
fusion is rather straightforward if one accepts an assumption known as Fick's law. A
more fundamental approach based on random-walk models is rather more sophisti-
cated. Okubo (1980) and references therein should be consulted for finer details.
Less straightforward is the process of actually solving the diffusion equation (or any
other) PDE. Exploring the host of powerful techniques commonly applied by mathe-
maticians in analyzing PDEs is beyond our scope. However, even before attempting
to find a full solution, the form of the equation leads to an appreciation for the role
of diffusion as a biological transport mechanism. A ubiquitous and metabolically
free process on the subcellular level, diffusion proves inefficient or totally useless on
somewhat larger distance scales. Some of these observations and their implications
are presented in Sections 9.5 to 9.7.

Section 9.8 and the Appendix give some guidance on ways of solving the dif-
fusion equation. We limit ourselves to separation of variables, a technique that is
readily applied given a familiarity with ordinary differential equations (ODEs). Sev-
eral basic solutions are derived, and others are given without formal justification in
order to circumvent a lengthy mathematical excursion into the relevant techniques.
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Partial Differential Equations and Diffusion in Biological Settings	 385

Section 9.9 describes an application of the diffusion equation to bioassay for muta-
tion-inducing substances.

For a rapid coverage of the key ideas in this chapter, the following sequence is
recommended: Section 9.1 should be included or covered briefly in the interests of
review. Sections 9.2 and 9.4 are essential for later material. Sections 9.3 and 9.5
can be assigned as independent reading or further research. Some highlights of the
material in Section 9.8 or in the Appendix should be given, with particular emphasis
on the role of boundary conditions in solutions of the diffusion equation. Familiarity
with the examples may prove helpful but is not essential for mastering the material
in Chapter 11.

9.1 FUNCTIONS OF SEVERAL VARIABLES: A REVIEW

We begin this chapter by briefly reviewing the theory of functions of several vari-
ables with emphasis on the geometric concepts behind the mathematical ideas.
Those of you who have had advanced calculus can skim quickly through this section
or go directly to the next one.

First consider a real-valued function of two variables x and y. In this chapter x
and y will symbolize spatial coordinates of a point (x, y), and

z = f(x, Y),	 (1)

the value assigned to (x, y) by the function !, will generally represent some spatially
distributed quantity. Examples include

1. The density of a population at (x, y).
2. The concentration of a substance at (x, y).
3.	 The temperature at (x, y).

A graph of the function f is the set of points (x, y, f(x, y)) in R 3 . The value
z = f(x, y) can be visualized as the height [assigned by the function f to each point
in the plane, (x, y)]. Equation (1) thus describes a surface, as shown in Figure
9.1(a).

Similarly, a function of three variables

z=g(x,Y,w)	 (2)

has a graph consisting of all points (x, y, w, g(x, y, w)). This is not as easy to draw,
but the idea is analogous. (Every point in space is assigned a value by the function.)
Sometimes it is more convenient to depict functions in other ways, some of which
are shown in Figure 9.1 for functions of two and three variables. It is common to
represent the behavior of a function of two variables by a set of contours for which

f(x, y) = constant.	 (3)

In R 2 these are called level curves and are simply loci for which a constant concen-
tration or a constant density (or height) is maintained. As we shall see, they play an
important role in the geometry of gradients and gradient fields.
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R3: z = f(x, y, w)

w

v

(a)

386	 Spatially Distributed Systems and Partial Differential Equation Models

R 2: z = f(x, y)

x

x

(d)

x

(e)

Figure 9.1 Functions of two or three variables can	 distributions in R3 or R2 ; or (d, e) by loci
be represented graphically in several ways: (a) as a representing constant f. The latter are called
surface (two variables only); (b, c) by density 	 (d) level surfaces or (e) level curves.

(c)

Y
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Partial Differential Equations and Diffusion in Biological Settings 	 387

In R 3 the function of three variables given by (2) can similarly be represented
by sets of points for which

f(x, y, w) = constant. (4)

Such loci are a generalized version of level curves, but for obvious reasons these are
called level surfaces [see Figure 9.1(d)]. To clarify with an example, consider a
temperature field in three dimensions. The equitherms are then surfaces at which
some given constant temperature is maintained. If heat sources are located at two
points, the resulting equithermal surfaces might look something like those shown in
Figure 9.1(d).

In the context of this chapter, level curves or surfaces might represent the loci
on which (1) population density is constant or (2) chemical concentration is con-
stant.

We shall be concerned primarily with statements about how spatial distribu-
tions change with time; frequently it will be clear that the movement of one sub-
stance or population is closely linked to the distribution of another.

Consider the following simple example. An organism crawling on a flat sur-
face may adapt its motion to the search for food particles. Imagine then that the dots
in Figure 9.1(c) represent nutrient particle concentration. The observed path should
ideally lead to the site of greatest concentration. To sense an increase in the ambient
concentration level, an organism must continually cross level curves of the particle
distribution. Per unit distance traveled, this crossing can be done most efficiently by
maintaining a path orthogonal to the level curves; in other words, a tangent vector to
the path should be perpendicular to a tangent to a level curve through a given point.
This assertion can be verified using rather elementary calculus of several variables.
It can also be shown that the destination will be a critical point of the function (in
this case a local maximum) but not necessarily the global maximum.

In calculus a commonplace analogy is often drawn in explaining these ideas.
Hikers often use topographical maps which are two-dimensional representations of
the height of the terrain. The curves on such maps are level curves for the function
f(x, y) = height above sea level at latitude x and longitude y. Mountain peaks, val-
leys, and mountain passes are critical points of f(x, y) that correspond to local max-
ima, minima, and saddle points respectively. Using local information only (for ex-
ample, walking uphill with no information other than the local slope), one can attain
a local maximum, but this may or may not be the highest possible peak.

These two-dimensional examples can be extended to higher dimensions. A
motile organism that swims in a droplet of water might also use local cues in orient-
ing itself and moving towards sites that have higher nutrient levels. This type of mo-
tion, called chemotaxis, will be discussed at greater length in Section 10.2. In R 3 the
path of a highly efficient chemotactic organism would be orthogonal to the level sur-
faces of the nutrient distribution c(x, y, z).

The descriptive statements in this section can be made more rigorous by intro-
ducing partial derivatives and gradients which are reviewed in the boxed material.
Several examples follow the general discussion and definitions.D
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388	 Spatially Distributed Systems and Partial Differential Equation Models

Partial Derivatives (A Review)

For a function of two variables f(x, y) we define

of = lim	 (5)
(x + Ax, y) — f(x, y) 	(S)

ax nx-+O 	Ox

A similar definition holds for of/ay. Shorthand notation for partial derivatives is
f and f.

To understand the geometrical meaning of these derivatives, imagine standing at
a point (xo , yo) on a plane. Suppose f(xo , yo) is the height of a surface above this loca-
tion. The expression following "lim" in equation (5) (and similarly for of/ay) repre-
sents the changes in the height of the surface per unit distance as we take a step in the x
(or the y) direction. A partial derivative is the limit of this quantity as the length of the
step shrinks to an infinitesimal size. It is therefore analogous to an ordinary derivative
and also represents a slope.

To clarify, suppose we slice away part of the surface z = f (x, y) along a direc-
tion parallel to the x (or y) axis. (See Figure 9.2.) In such cutaway drawings the partial
derivative is the slope of a tangent to the curve forming the surface edge. The idea of a
partial derivative is a special case of the somewhat more general concept of directional
derivative. We shall not deal in more depth with this but rather refer the reader to any
standard calculus text for a definition and explanation.

The following properties of partial derivatives follow from their basic definition:

a(cf) 	 of	 (6a)
ax — c ax

a( + g) 
= a ag .	 (6b)

for functions f and g and constant c. Similar equations ensue for partial differentiation
with respect to y.

For functions that are continuously differentiable sufficiently many times, it is
also true that mixed partial differentiation in any order produces the same result. For
example

a ofl	 alf	 alf 	a ofl
fyX = ax äyl = ax ay = ay ax = ay äx = fXy .	

(6c)

Note: Equation (6c) also defines the equivalent notation used for multiple partial differ-
entiation.
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Slane = ar

Sic

Gradient
vectors

y = constant

ar
ey

evel	 Vf
urve	 —

/	 /

IL-C cocve

Figure 9.2 An interpretation of partial
derivatives and gradient vectors. The surface
z = f(x, y) intersects planes for which y =
constant or x = constant along curves f, and
e2. The slope of a tangent to e, is of/ax, and
the slope of a tangent to e2 is of/ay.

Gradient vectors, Vf [for f = f(x, y)] live in
the xy plane and have (af/ax, of/ay) as
components. These vectors are always
orthogonal to level curves of z = f(x, y),
shown here by dashed lines (see inset).

Gradients

For a function f of several variables the gradient, symbolized Vf, is a vector consisting
of the partial derivatives of f. For example, if f = f(x, y), then

vf= (af , af),	 (7)
ax ay

If f = f(x, y, z), then

Vf = ^ of , of , af) ,
ax ay äz

and so on for functions of n variables. The symbol V is called the del operator, and is
discussed in greater detail in Section 9.3.

The gradient vector has the following properties:

1.	 The magnitude of Vf, Vf , represents the steepness of the local variations in the
function f. For example,

(8)

VfI = (f + f 2) '/2. 	 (9)D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 1

52
.2

.1
05

.2
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



390	 Spatially Distributed Systems and Partial Differential Equation Models

2.	 (a) The direction of Vf,

u = ^öf^,
is a unit vector in the direction of steepest (increasing) slope, in the sense
that a step in this direction leads to the greatest increase in! per unit distance.

(b) The gradient vector at a point (xo , yo) is perpendicular to a level curve
f(x, y) = c that goes through (xo , yo) as long as (xo , yo) is not a local maxi-
mum, minimum, or saddle point.

For every point in R 2 (analogously, R' or R) at which the function f is defined,
is continuous, and has partial derivatives, there will be a gradient vector. The vector
will have all zero components at the critical points of f.

It is common to visualize a whole collection of these vectors, one at each point in
space, as a vector field. A vector field that arises thus is called a gradient field and has
certain special properties. (Note that a gradient field is a vector field, but the converse
is not necessarily true.)

Gradient fields can always be paired (up to an arbitrary constant) with differen-
tiable multivariate functions and vice versa (see examples in the following boxes). We
see that the variations in a spatial distribution lead to orientation cues that are repre-
sented by the geometry of the gradient field.

The proof of the statements in this box are based on the chain rule of functions of
several variables and on the properties of curves and vector dot products. These can be
found in any text dealing with the calculus of several variables.

Example I
Consider the function

f(x, y) = x 2 — 2x + y 2 + 4y + 5.

Level curves of this function have the equation

c = x 2 — 2x + y2 + 4y + 5

= (x - 1)2 + (y + 2)2.

These are circles of radius c'l2 centered at the point (1, —2). Partial derivatives of
f(x, y) are the following:

a 2x-2,	 of =2y+4,
y

ä2f
 0,	 ayZa— =0,

axf =2,
	 a 2=2.
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The gradient vector at a point (x, y) is

Vf= (af , afl = (
2x — 2, 2y + 4).

`ax ayl
This vector is perpendicular to a level curve going through the point (x, y). A

critical point off occurs at (1, —2), where Vf = (0, 0). At this point, f(1, —2) = 0. At
any other point f is greater. For example, f(1, 1) = 1 — 2 + 1 + 4 + 5 = 9. There-
fore (1, —2) is a local minimum. (A more rigorous second-derivative test to distinguish
between local minima, maxima, and saddle points is given in most calculus books).

Example 2
Consider the vector field

F = (M(x, y), N(x, y)) 	
(10)

= (2x + 2y + y cos xy, 2x + x cos xy).

We would like to determine whether F is a gradient field, that is, whether there is a
function f(x, y) such that

F = Vf. 	 (Ila)

If so, then

F = (M, N) _\ ax' öy/ 	
(11 b)

where M(x, y) = of/8x and N = of/ay.
By a previous observation we must have

a 	aN
ay — fzy — fyz 	ax .	 (12)

Checking this, we note that

a = 2 + cos xy — xy sin xy = äx ,
so that no contradiction results by assuming that (11 a) holds. The condition given by
(12) in fact guarantees that F is a gradient field (a fact whose proof will be omitted
here).

To find! we need a function whose partial derivatives satisfy the following:

of = 2x + 2y + y cos xy,	 (13a)ax

oY
f = 2x + x cos xy.	 (13b)D
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392	 Spatially Distributed Systems and Partial Differential Equation Models

Integrating each expression with respect to a single variable while holding the other
variable constant leads to these results:

f(x, y) = fy-const)
(2x + 2y + y cos xy) dx	 (14)

= x 2 + 2xy + sinxy + H,

and

f(x, y) = j	 (2x + x cos xy) dy	 (15)

= 2xy + sin xy + G.

In ordinary one-variable calculus, a single integration introduces a single arbitrary con-
stant. However, in the partial integration of (14) and (15) one must account for the dis

-tinct possibility that the integration "constants" H and G may depend on the values
given to the fixed variables (toy = const and to x = const). For this reason it is neces-
sary to presuppose that

H = h (y)	 and	 G = g (x)	 (16)

are functions. Indeed, the only possibility for matching the two different expressions,
(14) and (15), both of which equal the same functionf(x, y), would be to take

G(x)=x 2 +c,	 H(y)=c,
for constant c.

The conclusion then is that

	f(x, y) = x 2 + 2xy + sin xy + c.	 (17)

To check this result, observe that

of = (2x + 2y — y cos xy , 2x — x cos xy) = F,

which confirms the calculation. Note that adding any constant to f(x, y) results in the
same gradient. Thus f(x, y) is defined only up to some arbitrary additive constant.

Example 3
The concentration of nutrient particles suspended in a pond is given by the expression

c(x, y, z) = Co exp —a(x 2 + y 2 + z 2).	 (18)

An organism located at (x, y, z) = (1, —1, 1) moves in the direction of increasing con-
centration. In which direction should it move? Where is the maximum concentration?

Answer
To find the direction of greatest increase per unit distance, compute the gradient vector.
Since c is a function of three variables, Vc is a vector in R':

ac ac ac
Vc	 (19a)

= äx , äy' äz

= (-2axCoe -°'2 , — 2ayCoe -°'2 , — 2azCoe-°''),	 (19b)
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Partial Differential Equations and Diffusion in Biological Settings 	 393

where

r2 = x 2 + y 2 + z 2 	(19c)

at (1, —1, 1)

r2 =3	 and	 Vc=(—y, y,—y),

where

y = 2aCo e-3"

Furthermore, Vc = 0 only when (x, y, z) = (0, 0, 0), so that the origin is a crit-
ical point. It is readily observed that this is a local maximum, since c(x, y, z) is a func-
tion that decreases exponentially with distance from the origin. Thus, the maximal
concentration of nutrient particles is c(0, 0, 0) = Co. We further observe that equicon-
centration loci are surfaces that satisfy

Co exp —a(x 2 + y 2 + z 2) = constant.	 (20a)

After algebraic simplification this becomes

x 2 + y 2 + z 2 = K	 (K = constant),	 (20b)

which represents spheres with centers at (0, 0, 0) and radii VK.
Thus the organism will move in the direction of the gradient, and its path will

eventually end at (0, 0, 0).

In the next section our purpose is to understand the basic process through which a
partial differential description of motion through space is obtained. We shall be con-
cerned mainly with the dynamic processes that lead to changes in a spatial distribu-
tion over time. Some of the many examples cited pertain to the motion and continu-
ous redistribution of animals, cells, and molecules through space. For this reason we
shall deal with functions that depend on both space and time.

9.2 A QUICK DERIVATION OF THE CONSERVATION EQUATION

The conservation equation in its various forms is the most fundamental statement
through which changes in spatial distributions are described. Most of the PDEs we
will encounter are ultimately based on such statements of balance. To gain an easy
familiarity with the basic concepts we will consider a rather special case and give an
informal derivation first, later to be made more rigorous and more general.

Our initial assumptions are that

1. Motion takes place in a single space dimension (as, for example, in the thin
tube of Figure 9.3a).

2. The cross-sectional area of the vessel or container is constant along its entire
length.

We shall let x represent the distance along the tube from some arbitrary loca-
tion. Fixing attention on the interval between x and x + Ax, let us describe changes
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394	 Spatially Distributed Systems and Partial Differential Equation Models

II --► x
0	 x x+Ax

((a)

A

J(x, t)	 i'	 I:	 J(x + Ax, t)

x	 x + Ax

(b)

Figure 9.3 Equations of balance are derived for
flow of particles [concentration c(x, t)] along a
tube. (a) If the tube has uniform cross-sectional
area A, equation (24) results from a balance of
flows into and out of a small section (b) of length

0	 x x+Ox

(c)

A(x, t)	 A(x+ Ax, t)

x	 x+Ax

(d)

Ox. (c) If the tube has spatially or temporally
varying area A(x, t), one obtains equation (29) by
formulating the balance statement for the small
region shown in (d).

in the concentration by accounting for two possible effects: (1) flow of particles into
and out of the interval (x, x + Ax), and (2) processes that introduce new particles or
degrade particles locally (such as through a chemical reaction). The balance equation
can be written either in terms of mass or number of particles. We arbitrarily choose
the latter description, and so our statement will be

/rate of change of rate of
of particle rate of entry	 eparture local degra-
population in	 1

(ate

=I into (x, x + 0 x) 1 —rom ±	 dation or
(x, x + D x)	 J per unit time	 x, x + 0 x) creation per
per unit time er unit time unit time

(21)

To go further, define the following quantities:

c (x, t) = concentration of particles (number per unit volume) at (x, t),

J(x, t) = flux of particles at (x, t) = number of particles crossing a unit area
at x in the positive direction per unit time,

o,(x, t) = sink/source density = number of particles created or eliminated per
unit volume at (x, t).

We note that the only flux that changes the total population is that entering or leaving
through the cross sections at x and x + 11x, namely, J(x, t) and J(x + Ax, t).
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Partial Differential Equations and Diffusion in Biological Settings 	 395

To now translate (21) into a dimensionally correct equation, it is necessary to
take into account the following quantities:

A = cross-sectional area of tube,

AV = volume of length element Ax = A Ax.

Every term in the equation must have the same units as the terms on the LHS of
(21): number per unit volume per unit time.

This leads to the following equation:

at [c (x, t)A t^ x] = J(x, t)A — J(x + Ax, t)A ± o, (x, t)A Ax.	 (22)

Note that since c depends on two variables, its derivative with respect to time is a
partial derivative. Choosing to write equation (22) in terms of x, the coordinate of
the left boundary of the interval, is entirely arbitrary since we are about to take the
limit x —+ 0.

We observe that a flux in the positive x direction tends to contribute to the net
population positively at x but negatively at x + to x; hence the signs of the terms in
(22). See Figure 9.3(b).

Now dividing through by A Ax, which by assumption is constant, we obtain

ac(x, t)	 J(x, t) — J(x + Ax, t)

at
	

Ax ± o•(x, t).	 (23)

Taking a limit of this equation as Ax -4 0, that is, as the slice width gets vanish-
ingly small, we arrive at a local statement, the one-dimensional balance equation,

ac (x, t) — _ aJ(x, t) +	 o (x, t).	 (24)
at	 ax

net motion	 source/sink.

The minus sign on äJ/&x stems from the fact that the finite difference in (23) has a
sign opposite to that in the definition of a derivative.

This is the basic form of the balance law that we shall soon apply to numerous
specific problems. Before doing so, we will make a number of extensions and gen-
eral statements. It is possible to skip this material and go on to Section 9.4 without
loss of continuity.

9.3 OTHER VERSIONS OF THE CONSERVATION EQUATION

Tubular Flow

We shall drop assumption (2) and consider the possibility that the cross-sectional
area of the tube may vary over space and time. To be somewhat more formal, we
take the following definitions: By the concentration c (x, t) we mean a quantity such
that

f
' X̂2

c (x, t)A (x, t) dx = total number of particles located within	 (25a)
 the tube in the interval (xi, x2) at time t.
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396	 Spatially Distributed Systems and Partial Differential Equation Models

Similarly, the source density o, (x, t) is defined by

J xZ o (x, t)A (x, t) dx = net rate of particle creation or	 (25b)
x 	 degradation within the interval (x 1 , xz) at time t.

The equation of balance can then be written in integral form (sometimes called the
weak form), as follows:

x0+dr

c (x, t)A (x, t) dx = J(xo, t)A (xo, t) — J(xo + Ax, t)A(xo + A x, t)
ät x0

± f
xo+^x

o (x, t)A (x, t) dx.	 (26)
xo

(This is similar to a derivation in Segel (1980, 1984) for constant area.)
An integral mean value theorem allows one to conclude that at some locations

(x,, x2) (where xo : x; < xo + Ax for i = 1, 2) the following is true:

at[c(xi, t)A(x i , t)] Ax = J(xo, t)A(xo , t) — J(xo + Ax, t)A(xo + Ax, t)

± [cr(xz, t)A(x2, t)] Ax. (27)

Now dividing through by Ax and letting Ax -4 0, we get x, --^ x0 and xz --+ xo , so
that in the limit equation (27) becomes

at[c(xo, t)A(xo, t)] = - a [J(xo , t)A(xo, t)] ± [o, (xo, t)A(xo, t)]	 (28)

Special cases

1. If A (xo, t) = A is constant, dividing by A reduces equation (28) to equation
(24).

2. If A (x, t) = Ä (x) : 0 (that is, if the area does not change with time), then the
equation can be written in the form

ac (x, t) 	 _ 1	
a [ J(x, t) A (x)] ± a•(x, t) 	 (29)

	at 	 A (x) ax

When the partial derivative is expanded, one obtains

	ac (x, t) 	 _ aJ(x, t) — J(x, t) äA (x)
 + cr(x, t).	 (30)

at	 ax	 A (x) ax

The equation is thus similar to (24) but contains an extra term which accounts
for an effect similar to dilution; that is, a change in concentration that stems
from local changes in the fluid volume "felt" by particles as they move along
the length of the tube.

3.	 If A (x, t) = A (t) 0 0 (if the area of the tube is uniform along its length but
possibly time varying), then equation (28) leads to the following:

ac (x, t)	 aÄ (t) - 	aJ(x, t)
A (t) 	at	 + c (x, t)

	= _
at 
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Partial Differential Equations and Diffusion in Biological Settings 	 397

After some rearranging, this becomes

ac (x, t)c(x, t) aA(t) 	 aJ(x, t)= —	 — 	 + o(x, t).	 (32)
at	 A (t)	 at	 ax

Again the equation resembles (24), with an additional term that roughly
speaking also describes a dilution effect as the tube expands or contracts.

4.

	

	 In a situation where the cross-sectional area varies both spatially and
temporally [A = A (x, t)] it follows that equation (28) can be written

	ac (x, t) _ _ aJ(x, t)	 1 	IXX,
 aA (x, t)

at	 ax	 ± o (x '

 t) — A (x, t) 
	 t)	

ax

+ c (x, t)
 äA (x, t) 1

J	 (33)
at 

Flows in Two and Three Dimensions

To write a balance equation analogous to (24) in higher dimensions we consider a
small rectangular element of volume AV = AxAy0 z situated in R 3 and account for
motion of particles into and out of the region. First it proves necessary to extend
somewhat our definition of flux, for now both direction and magnitude of flow have
to be considered.

Let us focus attention on a point (x o , yo, zo) in R 3 . We shall define flux by
counting the number of particles per unit time that traverse an imaginary unit area A
suspended at (xo , yo, zo) with some particular orientation. As the orientation of the
"test area" is varied, the rate of crossings changes. Indeed, the highest rate of cross-
ing is achieved when the predominant flow direction is orthogonal to the area that it
must cross. This leads us to define flux as a vector in the direction n whose magni-
tude is given by:

net number of particles crossing
I J(x, y, z, t) I = a unit area at (x, y, z) per 	 (34)

unit time at time t

where n is the unit normal vector to that element of area that admits the greatest net
crossings. [See Figure 9.4(a).]

We shall symbolize the components of J (in R 3) as follows:

	

J(x, y, z) = ( Jr, Jy, J=).	 (35)

Each of the components Jx, J,., and JZ may in general depend on both space and
time.

In three dimensions the magnitude of flux is given by the quantity

J _ (Jx + Jy + J)` 12 = (J • J)" 2 	(36)

(where • represents a vector dot product). Given some test area A, this definition of
flux allows one to calculate the number of particle crossings N that take place in a
given time t. If m is a unit vector perpendicular to the test area, one obtains

N = (J • m)A At.	 (37)
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398	 Spatially Distributed Systems and Partial Differential Equation Models

(a)

(xo+Ax,YO+DY,z0+&Z)

AZ

'f_ ..

(o, Yo, zo) 

(b)

Figure 9.4 (a) In R3 flux J is a vector. Its
magnitude represents the net number of particles
crossing an imaginary unit area per unit time. Its
direction is given by the normal vector n to the

given area A. (b) The equation of conservation
(39) is derived by considering net flow into a small
rectangular volume of dimensions Ax X Ay X Az .

To illustrate this idea, consider a wall of unit area at the point (— 1, 0, 3) orthogonal
to the direction m = (1, 0, 0), and a flux J = (z — y, x — z, y — x). At the point in
question,

J = (3, — 4, 1),
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Partial Differential Equations and Diffusion in Biological Settings 	 399

so that the number of crossings is

N = (J • m) lAt = [(3, —4, 1) • (1, 0, 0)] At = 3^t.

Thus three particles traverse the wall per unit time.
Given a small rectangular volume as shown in Figure 9.4(b), the statement of

balance must accommodate, as before, local creation and entry or departure through
each of the six planar surfaces. Since these planes are parallel to the coordinate
planes, we can readily determine their normal vectors and calculate the net number
of particles crossing (inwards) through each wall. (See Table 9. 1.)

The net rate of change of concentration inside the volume that accrues from
combining all these factors is the following:

ac — JJ(xo, Yo, zo) — Jx(xo + l x, Yo, zo)
at	 Ax

+ JJ(xo, Yo, zo) — JJ(xo, yo + i y, zo)
Ay

+ Jz(xo, yo, zo) — J:(xo, yo, z o + 0 z) + o,(x
 Y ,

 z) 	(38)
Oz

Taking the limit as 0 x —^ 0, Dy —^ 0, and 0 z —* 0, one obtains

ac
= —(

aJx aJy aJZ

at	 ax	 ay	 az

ac
=-v•J±a

at
(40)

where V • J, called the divergence of J, is the parenthetical term in equation (39).
This scalar quantity can be described roughly as the net tendency of particles to
leave an infinitesimal volume at the point (x, y, z). More details about the del opera-
tor V are given in the box.

We have completed the derivation of the three-dimensional conservation equa-
tion. Note the similarity of equations (40) and (24). The two-dimensional case is left
as an easy exercise for the reader. We must next turn to the question of what induces
the motion of particles, molecules, or organisms so we can relate the idea of flux to
the functions that describe spatial distributions.

Table 9.1	 Particles Entering the Box (See Figure 9.4b.)

Wall
number

Location
on the plane

Inwards
normal vector n

Net inwards
crossing J • n

1 x = xo (1, 0, 0) Jx(xo, yo, zo)
2 x = xo + Ax (-1,0,0) —J(xo + AX, yo, zo)

3 Y = Yo (0, 1, 0) JJ(xo, Yo, zo)
4 y = Yo + Dy (0, —1,0) —J'(xo, yo + Dy, zo)
5 Z = zo (0, 0, 1) JZ(xo, yo, zo)
6 z=zo+Oz (0,0,-1) —J:(xo, Yo, zo+Oz)
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400	 Spatially Distributed Systems and Partial Differential Equation Models

The Del Operator V

Loosely speaking, the quantity V behaves like a vector whose components in R 3 are

V = (ax,ay'az).	
(41)

We can think of the components as partial derivatives "hungry for a function to differ-
entiate." The del operator can be combined with vector or scalar functions in several
ways that parallel standard vector operations, as shown in Table 9.2.

Table 9.2	 Analogies between Vector and Del Opera ions

Ordinary vector operations 	 Analogous del operations

Scalar multiplication	 For v = (v 1 , v2 , v 3) and a scalar a,

av = (av,, av2, av3).

The result is a vector.

Dot products	 For v = (v 1 , v 2 , v 3) and
u = (u,, u 2 , u 3 ),

V•U = v 1U1 + V2U2 + v3u3.

The result is a scalar.

For V as defined in (41) and a func-
tionf(x, y, z),

__( a a a )
^f	 ax' ay' azlf

__ of of of
ax'ay'az ,

This is the gradient off and is a vec-
tor.

For V as defined in (41) and
v = (UI, v2, U3),

a a a
Vv=

 ax a— ' —)

 (VI, v2, V3)
Y

aVI	 aV2	 aV3

= ax + ^ + ^zY

This is the divergence of the vector

field v and is a scalar quantity.

Cross products	 For two vectors v and u as defined 	 For V and v as defined above,
above, i	 j	 k

p

)

xv_ a a s
ax	 az

v x u = vl V2 V3	
ay

v, ay v3
u l u 2 u3J	

V2

( aV3	 av2avl	 av3
= (V2U3 — U2V3,'U3U1 — LIU3, 	 = ay — az ' az — ax '

VIU2 — v2Ul)•	 aV2	 a'UI

The result is a vector.	 ax	 al

This is the curl of the vector field v
and is a vector.
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Partial Differential Equations and Diffusion in Biological Settings	 401

In descriptive terms, the vector Vf measures local variations in a function and
points to the direction of greatest steepness. The scalar quantity V • v measures the ten-
dency of a vector field to represent the divergence (departure) of a fluid; the vector
V x v (called the curl of v) depicts a magnitude and axis of rotation (for example, of
fluid in a vortex). Figure 9.5 demonstrates several vector fields that have net curl or di-
vergence. We shall not concern ourselves too greatly with curl since in biological situa-
tions rotation is rarely encountered. (It does play a role in other physical sciences such
as meteorology, where rotating atmospheric flows can be viewed as generating turbu-
lent storms.) As equation (40) indicates, however, divergence is more relevant since
we attempt to keep track of changes in densities of biological substances or popula-
tions. More details and basics about the properties of vector fields and the operations on
them can be obtained in most standard calculus texts.

\ //

/j\\

N

y r
1	 //

(b)

p

1

\\
(c)

Figure 9.5 Several examples of vector fields
depicting such properties as divergence and
rotation of particles. (a) V • v : 0 and
VXv= 0.(b)V v=0andVxv *0.
(c)V v00andVxv00.(d)V v#0
and V x v= 0 (at point P). (e)Vv = 0
andVxv=0.

(d)

//
/'/////// //
// ///

7/
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402	 Spatially Distributed Systems and Partial Differential Equation Models

Example 4. Propagation of the Action Potential Along an Axon
In Section 8.1 equation (9) was derived for the action potential in the membrane of a
voltage-clamped nerve axon. (Recall that voltage clamping means keeping the voltage
the same all along the axon.) In real axons the action potential is a signal that propa-
gates from the soma (cell body) along the axon to the terminal synapses. A space-
dependent model must take this into account. Here we derive a balance equation for
charge that incorporates the effect of transport in the axial direction. Define

x = distance along axon,

q (x, t) = charge density per unit length inside axon at location x and time t,

J(x, t) = flux of charged particles (= current) at location x and time t.

o-(x, t) = rate at which charge enters or leaves axon through its
membrane at (x, t).

By referring to Figure 9.3 and to equation (24) one concludes that q is governed by the
equation

q =	 (42)
a	 _a
at ax + ^

(See problem 18.) In Section 8.1 we established that

q(x, t) = 21raCv(x, t),	 (43)

where

C = the capacitance of the axonal membrane,

a = the radius of the axon,
v = the voltage across the membrane.

It has further been shown that the rate at which charge enters the axon is

	Q(x, t) = —2oraIi ,	 (44)

where I; is the net ionic current into the axon. Note that o, is analogous to a local source
of charge. (It is the only term that leads to changes in q in the voltage-clamped equa-
tion (6) of Section 8.1.)

To find an expression for J we now use Ohm's law, which states that the current
(in the axial direction) is proportional to a voltage gradient and inversely proportional
to the resistance of the intracellular fluid. This implies that the net axial current in the
axon would be

	

J = — \ R Z/ ax	
(45)

where av/ax is a local voltage gradient and R is the intracellular resistivity (ohm-cm).
Making the appropriate substitutions leads to the following equation for voltage:

av _ a azv 	 1;
	(46)

at 2RC aX2 C

(See problem 18.) This equation with the appropriate assumptions about 1 ; is used to
study propagated action potentials.D
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Partial Differential Equations and Diffusion in Biological Settings 	 403

9.4 CONVECTION, DIFFUSION, AND ATTRACTION

Equations (24) and (40) are general statements that apply to numerous possible situa-
tions. To be more specific, it is necessary to select terms for J and o, capturing the
particular forces and effects that lead to the motion, and to the creation or elimina-
tion of particles. The choices may be made on the basis of known underlying mecha-
nisms, suitable approximations, or analogy with classical cases. We deal here with
three classical forms of the flux term J.

Convection

Particles in a moving fluid take on the fluid's velocity and participate in a net collec-
tive motion. If v(x, y, z, t) is the velocity of the fluid, one can easily demonstrate
that the flux of particles is given by

J = cv,	 (47)

where all quantities may vary with space and time. (See problem 10 for the key idea
in proving this.)

Substituting (47) into equation (24) leads to the following one-dimensional
transport equation:

	ac (x, t) =	 a [c (x, t)v (x, t)],	 (48)
at	 ax

or, in arbitrary space dimensions,

ac
	at

	 —V • (cv).	 (49)

Attraction or Repulsion

Suppose i/r is a function that represents some source of attraction for particles. (For
example, the particles could be charged, and i/i could be an electrostatic field.) An
attractive force would pull particles towards the site of greatest attraction. The direc-
tion and the magnitude of motion would thus be determined by the gradient of 4r (for
example, it might be aVi/ for some scalar a); the net flux in that direction would be

J = ca V i/i. 	 (50)

(In one dimension this is simply J = ca(air/ax).) Substituting into equation (24) re-
sults in the following one-dimensional equation for attraction to fir:

ac (x, t) 	_	 Ic (x, t)a 
O

(51)
at 	

a	 a
ax 	 ßx1,
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404	 Spatially Distributed Systems and Partial Differential Equation Models

or, in arbitrary space dimensions,

ac = —0 • (c aV qi).	 (52)
at

We will later encounter two realistic versions of this general form, one of which de-
picts the motion of organisms towards sites of high nutrient concentration, and an-
other the avoidance of overcrowding.

Random Motion and the Diffusion Equation

One of the most important sources of collective motion on the molecular level is dif
fusion, which results from the perpetual random motion of individual molecules.
Diffusion is an important "metabolically cheap" transport mechanism in biological
systems, but as we shall see, its effectiveness decreases rapidly with distance. A fa-
miliar assumption made in the context of diffusion through cell membranes is that
the rate of flow depends linearly on concentration differences. This is an approxima-
tion to a more complicated situation. An extension of this concept to more general
situations is known as Fick's law, which states that the flux due to random motion is
approximately proportional to the local gradient in the particle concentration:

J = —9vc.	 (53)

The constant of proportionality 9 is the diffusion coefficient. The net migration
due to diffusion is "down the concentration gradient," in a direction away from the
most concentrated locations. This makes sense since in most situations where there
is a relatively large local concentration, more molecules leave on average than return
(due to the random character of their motions).

In one dimension, diffusive flux is simply given by J = —(ac/ax), so that
upon substitution into equation (24) one gets

ac (X , t)
 __ 3x[  ax c (x, t)1	 (54)

(If 9 is a constant and does not depend on c or x, it can be drawn outside the outer
derivative, giving the most familiar version of the one-dimensional diffusion equa-
tion:

ac	 z— =gac	
(55a)

at	 axz

In arbitrary dimensions this result would be written

äc = V (2vc),
	 (55b)

at

or, if 26 is constant, then

ac = 
26 Oc = 26V 2 c.	 (55c)

at
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Partial Differential Equations and Diffusion in Biological Settings 	 405

Random Walk and the Diffusion Equation
A collection of particles shown in Figure 9.6 moves randomly with an average step
length Ox every time unit T. Assume that the probability of moving to the left, A,, and
to the right, A r , are both equal; that is, A, = Ar = 2. The x axis is subdivided into seg-
ments of length Ox. We write a discrete equation that describes the change in the num-
ber of particles located at x.

A,	 A,

	x—Ox	 x	 x+,fix

Figure 9.6 Particles arrive at or depart from	 moving left or right.
x randomly, with probabilities A, and Ar of

Let C(x, t) Ox be the number of particles within the segment [x, x + Ax] at time
t. Then

C(X, t + T) = C(X, t) + ArC(X - AX, t) - ArC(X, t)

+ A,C(x + Ax, t) – A,C(x, t).	 (56)

Now we write Taylor-series expansions of these terms, as follows:

	ac 	 1a , c
C(x,t+T)=C(x,t)+ t̂ T+ 2 t̂Z T

Z 
+...,

(57)
	ac 	 1 azc

C(x±Ax, r)=C(x,t)±aX Ox+	 ±.2 !AxZ

Substituting into (56) and using the fact that Ar = A,‚ we obtain

ac	 1 a 2c	 1 äC	 1 a°c

atT+-atZT2+...=2aXZOXZ+-fi
x^OX°+....	 (58)

Dividing through by T, we look at a limiting form of this equation for T— 0, Ox --p 0
such that

(ßx)2 = constant = 9. 	 (59)
2T

Then the result is
ac 	(0x) 2 a 2 c	 a2c	

(60)
^t = 2T äx 2 = ßx 2

Note that (60) is equivalent to equation (55a).
Extensions of the random walk model for A, 0 A. and for numerous other special

cases are described by Okubo (1980).

The symbol A is the Laplacian of c; it stands for the combination V • V (read "div
dot grad"), also written V 2 . Equations (54) and (55a) are also known as heat equa-
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406	 Spatially Distributed Systems and Partial Differential Equation Models

tions since they describe equally well the diffusion of heat following Newton's law
of cooling.

Fick's law is just one version of flux of diffusion and warrants several remarks.
Clearly the term —2Vc gives a directionality to J. The diffusion coefficient 26 repre-
sents the degree of random motion (how "motile" the particles are); 26 depends
strongly on the size of the particles, the type of solvent, and the temperature.

While the assumption is common that diffusive flux takes the form of equation
(53), this is not the only possibility. From a consideration of the Taylor series, diffu-
sive flux can be appreciated as a reasonable first approximation. Since diffusion
derives from concentration differences, consider the Taylor-series expansion

z	 z
c(x+Ax,t)—c(x,t) =0xac + 2x axz +....

If flux depends linearly on differences in concentrations, for quite small Ax, it is ap-
proximately proportional to ac/ax, which is the one-dimensional version of (53).

In more complicated situations (chiefly for high concentrations when interac-
tions between molecules become important), Fick's law is no longer accurate and
other versions of diffusion are more applicable. It is a challenging physical problem
to deal with such situations. A full treatment of the diffusion equation and of random
walks is given in Okubo (1980) along with references and outlines of its extension to
more complicated situations.

9.5 THE DIFFUSION EQUATION AND SOME OF ITS CONSEQUENCES

The one-dimensional diffusion equation derived in Section 9.4 is
z

= 26 axe'	
(55a)

In radially and spherically symmetric cases in two and three dimensions the
equation is slightly different: In two dimensions one obtains

aE9IJa f tEO'at	 r	 rar	 ( (61)

whereas in three dimensions the result is

ac 	9l a	 Z ac 1	
(62)

at R Z aR R aR)'

where r and R are the distances away from the origin. (See problem 12 for an easy
derivation.)

The methods one would apply to solving each of these equations would be
somewhat different. However, even without solving them explicitly, certain interest-
ing conclusions can be made. Based on dimensional considerations alone it follows
from any one of equations (55a), (61), or (62) that 26 has the following units:

= (distance)'
	(63)

time
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Partial Differential Equations and Diffusion in Biological Settings 	 407

Table 9.3	 Diffusion Coefficients of Biological Molecules

Temperature ( °C)	 Substance	 21J(cm2 sec- ')	 Ref

0 Oxygen in air 1.78 X 10- '
20 Oxygen in air 2.01 X 10- '
18 Oxygen in water 1.98 x 10 -5

25 Oxygen in water 2.41 x 10 -5

20 Sucrose in water 4.58 x 10 -6

Sources:
1. L. Leyton (1975), Fluid Behavior in Biological Systems, Clarendon Press, New York.
2. K. E. Van Holde (1971), Physical Biochemistry, Prentice-Hall, Englewood Cliffs, N.J.

From this simple observation follow a number of results whose consequences are
important in numerous biological systems. First, as we shortly see, equation (63)
implies that

1. The average distance through which diffusion works in a given time is
proportional to (t)" 2

2. The average time taken to diffuse a distance d is proportional to d 2/.

The diffusion coefficients of several key biological substances are given in
Table 9.3. As a typical magnitude for the diffusion coefficient of small molecules
such as oxygen in a medium such as water, we shall take

2boxygen = 10_ 5 cm2 sec-'

The dimensions of a single cell are roughly 1 to 10 microns (1 µ = 10 -4 cm =
10 -6 m). As shown in Table 9.4, the amount of time it takes to diffuse through a
given distance increases rapidly with the length scale.

On the scale of intracellular structures, diffusion is an extremely rapid process
and can thus act as a metabolically free transport mechanism, in the sense that no en-
ergy need be expended by the cell to maintain it. On somewhat larger scales, (such
as 1 mm), diffusion is already inadequate for such critical functions as oxygen trans-
port. The longest cells of the human body are neurons; some of these have axons
that are at least 1 m in length. Transport of small molecules from one end to the
other would take roughly 30 years if diffusion were the only available mechanism.

Table 9.4	 Time Taken to Diffuse Through a Given Distance

Distance	 Diffusion time

1 µm = 10 -6 m	 10-' sec
10µm	 0.1 sec
1 mm	 10 sec = 15 min
1 cm	 105 sec = 25 h ' 1 day
1 m	 108 sec = 27 years
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408	 Spatially Distributed Systems and Partial Differential Equation Models

The following simple arguments due to, for example, Haldane (1928) and LaBarbera
and Vogel (1982) lead to a number of deductions about the limitations of diffu-
sion.

Consider a spherical cell of radius r. The volume and surface area of such a
cell are

V=3irr3,	 S=4rrr 2 .	 (64)

Suppose that the cell metabolizes a given substance completely, so that its concen-
tration at r = 0 is c (r, t) = 0, while its concentration at the surface is co. The gradi-
ent thus established is co/r (concentration difference per unit distance). Thus a diffu-
sive flux of magnitude 26 co/r would admit molecules through the cell surface. The
total number of molecules entering the cell per unit time would be

JS = 2 Co 47rr 2 = 4 rr2b cor. 	 (65)

The rate of degradation of substance, however, is generally proportional to the
volume of the cell:

3

rate used = 3 ^T ,	 (66)

where r is the time constant for the degradation process. Thus

rate supply
rate used	

3I 
co r 	( 6 7)

Since for a viable cell this ratio should not fall below 1, it is necessary that

or

1 = 32l co 2,	 (68)
r

r2 (69)Co = 3,rß .

To match supply and demand the minimum external substance concentration must be
proportional to the square of the cell radius. It is therefore unrealistic to expect
spherical cells whose radii are large to rely solely on diffusion as a means of convey-
ing crucial substances inside the cell.

LaBarbera and Vogel (1982) point out some of the most common ways
adopted by organisms to reduce the limitations due to diffusion. These are high-
lighted below.

Size and shape
Geometry influences diffusion rates. Flat shapes (such as algal leaves) or long
branched filaments (such as fungi, filamentous algae, roots, and capillaries) are ide-
ally suited for organisms that rely heavily on direct absorption of substances from
their environment; these shapes can increase in volume (for example, by getting
longer) without changing the distance through which diffusion must act (that is, the
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Partial Differential Equations and Diffusion in Biological Settings	 409

radius of the cylinder). La Barbera and Vogel suggest a dimensionless flatness
index

S3
y V 2 (70)

as an appropriate description of shape; they point out that with increasing size, an or-
ganism relying on diffusion must increase its flatness.

Dimensionality
It can be shown that the diffusion time taken to reach some internal sink depends dif-
ferently on length scales in one, two, and three dimensions; one obtains somewhat
different results from the equations (55a), (61), or (62). With the geometries given
in Figure 9.7 one can establish the results that the diffusion time is as follows:

L2
in one dimension:	 r, = 2 .	 (71a)

L2
in two dimensions:	 T2 = V In 

L
 .	 (71b)

L2
in three dimensions:	 73 = j- 3 a .	

(71 c)

Transit times

-D	 2-D	 3-D

^`^Sink .	 Sink

Diffusion from	 L	 L
release site to sink	 + a	 a

Sink	 Wall
x=0	 x=L

Corresponding	 C	 Co	 Co
steady state
concentration profiles

0 — L -L_0 L -L_- 0 _L
x	 -r 'r

Number of particles	 L	 nL2 For	 4 n L'
N	2	 L>>a 3
Co

	Flux	 D 	2nD
	4aDaF 	L	 In (L/a)

Co

Transit time	 L2 	L2 In(L)	L2 2L
	1V 	 2D	 2D a	 2D 3 a

T =^

(a)	 (b)	 (c)

Figure 9.7 The average time it takes a particle to
diffuse from a source to a sink, called the transit
time -r, depends on the dimensionality. (a) In one
dimension, T is proportional to LZ where L is the
distance. (b) In two dimensions, r is greater by a
factor of In (L/a) where a is the radius of the sink.
(c) In three dimensions the multiplicative factor is

L/a. [From Hardt, S. (1980). Transit times.
Fig. 6.2.1, p. 455. Copyright © 1980 by
Cambridge University Press and reprinted with
their permission.] In L.A. Segel, Mathematical
Models in Molecular and Cellular Biology.
Cambridge University Press, England.
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410	 Spatially Distributed Systems and Partial Differential Equation Models

Here L is the cell radius and a is the radius of an internal sink (for example, an en-
zyme molecule that degrades substance). (See details in Figure 9.7 and Section 9.6.)

Murray (1977, chap. 3) gives an in-depth analysis and application of the ef-
fects of dimensionality to the antenna receptors of moths. In a set of papers,
S. Hardt describes a convenient way of calculating transit times without explicitly
solving the time-dependent diffusion equation.

We thus see that diffusion acts much more quickly in one- or two-dimensional
settings than in three dimensions. This provides an advantage for intracellular orga-
nization of chemical reactions on membranes (which are two-dimensional) rather
than on "loose" enzymes in the cytoplasm. Hardt (1978) compares the two- and
three-dimensional cases where a represents the dimensions of an enzyme (-10 A)
and 262 = 100263. She concluded that for the cells of diameter larger than 1 µ, the
organism benefits by arranging enzymes on internal membranes.

Circulatory systems
Where geometric solutions to diffusion limitations have failed, organisms have
evolved ingenious mechanisms to convey substances to their desired destinations.
From the intracellular cytoplasmic streaming and assorted mechanochemical meth-
ods to the circulatory system of macroscopic organisms, the ultimate purpose is to
overcome the deficiency of long-distance diffusion and to transport substances
efficiently. A fascinating account of the minimal design principle necessary to make
a circulatory system work is given by LaBarbera and Vogel.

9.6 TRANSIT TIMES FOR DIFFUSION

Despite limitations on large distance scales, diffusion is of great importance in many
processes on the cellular level. To give one example, communication between
neighboring neurons is based on a chemical information system. Substances such as
acetylcholine (called a neurotransmitter) are released by vesicles at the terminal
branches of a given neuron, diffuse across the synapses, and relay messages to the
neighboring neuron. An important consideration, particularly so in this example, is
the average length of time taken to diffuse a given distance and how this time de-
pends on particular features of the geometry.

Until a recent innovation suggested by Hardt, the problem of diffusion transit
times was addressed by solving the time-dependent diffusion equation in the geome-
try of interest and using the resulting solution to derive a relationship. This process
tends to be rather cumbersome for all but the simplest cases because solving diffu-
sion equations in complicated geometries is a nontrivial task. Thus the approach was
less than ideal.

A simpler method, proposed by Hardt (1978), is based on the observation that
the mean transit time r of a particle is independent of the presence or absence of
other particles (given that no interactions occur) and can thus be computed in a
steady-state situation. Hardt remarked that -r is then given by a simple ratio of two
quantities that can be calculated in a straightforward way once the steady-state diffu-
sion equation is solved. Solving the latter is always easier than solving the time-de-
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Partial Differential Equations and Diffusion in Biological Settings 	 411

pendent problem, since it is an ordinary differential equation. To establish Hardt's
result we define the following quantities:

N = total number of particles in the region,

F = total number entering the region per unit time,

A = average removal rate of particles,

rr = 1/A = average time of residency in the region.

Regardless of spatial variations, one can make an approximate general state-
ment about the total number of particles in a given region. For instance, if particles
enter at some constant rate F and are removed at a sink with rate A, then

dN = entering _ removal
= F — AN.	 (72)

	

dt	 rate	 rate 

In steady state (dN/dt = 0) we obtain the result that

	F=AN= N ^7=F.	 (73)

Example 5
Consider the one-dimensional geometry shown in Figure 9.7(a), with particles entering
at x = L and diffusing to x = 0. Then assuming particles cannot leave the region (the
interval [0, L]), the mean residency time for a particle is the same as the mean time it
takes to diffuse from the source (wall at x = L) to the sink (at x = 0). (It is assumed
that particles are removed only at the sink.)

The time-dependent particle concentration is given by equation (55a). However,
according to Hardt's observation, to compute the mean time for diffusion it suffices to
find the steady-state quantities. To do so we consider the steady-state equation

a2b ac ) = 0,	
(74)

äx\

and assume that c (L) = Co, c(0) = 0. (These are boundary conditions, to be discussed
in more detail in Section 9.8 and the Appendix. In the equation to be solved c depends
only on x, so we have an ODE whose solution is easily found to be

c(x) = ax + ß.	 (75)

By using the boundary conditions we find a = C o /L and ß = 0, so that

x
c (x) = Coy •	 (76)

(See problem 21.) The total number of particles is

	j 	 zt

N = J C (x) dx = Lo J x dx = Lo 2 = Co •	 (77)

Particles enter through x = L due to diffusive flux,

J = —^ ax
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412	 Spatially Distributed Systems and Partial Differential Equation Models

Assuming a wall of unit area at x = L, we obtain the result that

F=fluxxarea=Jx1=.	 (78)

Note that in higher dimensions it will be necessary to take into account the area
through which particles can enter, which depends in a less trivial way on the geometry
of the region (see problems 19 and 20).

Thus the mean transit time from source to sink is

	N _ CoL L _ L2
	(79)

T = F	 2 21 Co 2^

Derivations of similar results for two and three dimensions are outlined in the prob-
lems.

9.7 CAN MACROPHAGES FIND BACTERIA BY RANDOM MOTION ALONE?

Macrophages are cells that are implicated in a number of defense responses to infec-
tion in the body. One of their important roles is to clear the lung surface of the bac-
teria we inhale with every breath. Macrophages are motile, crawling about on the
walls of alveoli (the small air sacs in the lung at which gas exchange with the blood
takes place) until they locate and eliminate an invader. Although the whole process
is a complicated one involving several types of cells and chemical intermediates, the
basic goal can be summarized simply: the macrophage response must be sufficiently
rapid and accurate to prevent the proliferation of invading microorganisms. A good
summary of the macrophage response to the bacterial challenge is given by Lauffen-
burger (1986) and Fisher and Lauffenburger (1986).

These authors propose an interesting question regarding the motion of the de-
fending macrophages: Is random motion by the macrophages adequate to find their
bacterial targets before rapid population increase has occurred? To answer this ques-
tion, Lauffenburger observes that a macrophage moves at a characteristic speed s.
The direction of motion is typically fairly constant for a time duration -r, and then
some reorientation may occur. If the motion is truly random, it is possible to define
an "effective diffusion coefficient" for macrophages.

26 = 1 TS 2 .	 (80)

(This can be based on rigorous random-walk calculations; see problem 22.)
We now consider a simple two-dimensional geometry such as the one shown in

Figure 9.7(b). The sink (or "target") will represent a bacterium, assumed to have an
approximate radius of detection a, and the disk (with radius R) will depict the sur-
face of an alveolus. We shall assume that a macrophage enters the region through its
circular boundary and searches until it arrives at its target. The transit time based on
a purely random motion is given by equation (71 b). According to Lauffenburger and
Fisher (1986), the values of constants that enter into consideration are as follows:

a = radius of bacterial cell = 20 µ,
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Partial Differential Equations and Diffusion in Biological Settings	 413

s = speed of motion of macrophage = 3 µ min - '

e = time spent moving in given direction = 5 min,

A = area of alveolus = 2.5 x 105 µ2,

N = number of bacteria = 1,

v = reproductive rate of bacteria = 0.2 hr - '.

Then the radius of the disk is

(A)1/ 2 _ 	x 105 'i2

L =
(2.5
	= 2.8 x 102 µ.	 (81)

The effective diffusion coefficient is
z

26 = s2 = (3 µ) 2	X 5 in = 22.5 µ 2 min- '.	 (82)
2

Thus the average time to reach the bacterial cell is

L 2 	L _ (2.8 x 102) 2 2.8 x 102
T

In A	 (2)(22.5) In
	20 	(83),

= 1.74 X 10 (2.64) = 4.6 X 103 min = 76 h.

However, the bacterial doubling time Td is given by

Td= v= 012 =5h.	 (84)

Thus if random motion was the only means of locomotion, the macrophage would
on average be unable to find its target before proliferation of bacteria takes place.

By contrast, if macrophages are perfectly sensitive to the relative location of
their targets, the time taken to reach the bacteria would be

z
T = S = 2.8 x 10 = 93 min = 1.5 h.	 (85)

In practice, neither one of these two extremes is totally accurate; the orienta-
tion of the macrophage is indeed governed by gradients in chemical factors produced
as byproducts of infection, although some random motion is also present. We shall
discuss chemotaxis more fully in the following chapters.

9.8 OTHER OBSERVATIONS ABOUT THE DIFFUSION EQUATION

In this section we make some general observations about the mathematical properties
of the diffusion equation, leaving certain technical details to the Appendix at the end
of this chapter.

Consider the one-dimensional diffusion equation
z

cat = 26 C.	 (86)
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414	 Spatially Distributed Systems and Partial Differential Equation Models

By a solution to equation (86) we mean a real-valued function of (x, t) whose partial
derivatives satisfy (86). We first remark that (86) is linear. Thus if c = ¢,(x, t) and
c = 42(x, t) are two solutions of (86), then so is c = A4 1 (x, t) + B42(x, t). This
follows from the superposition principle, as in linear difference or differential equa-
tions.

We can reinforce the connection between partial and ordinary differential
equations by writing (86) in "operator notation":

ac
= c, (87a)

at ^
where

z
Z _ a aZ .	 (87b)

_Y is a linear operator, also called the diffusion operator; it is an entity that takes a
function c and produces another function (26 X the second x partial derivative of c).
It will soon be clear why such notation is helpful.

Equation (86) has two spatial derivatives and one time derivative. Thus, in or-
der to select out a single (unique) solution from an infinite class of possibilities, it is
necessary to specify, in addition to (86), two other spatial constraints (boundary con-
ditions) and one time constraint (an initial condition). However, were this done in an
arbitrary or haphazard way, the problem might be such that no sensible solutions to
it would exist. ("Sensible" solutions are those that conform to real physical pro-
cesses.) The problem is then said to be ill posed. What constitutes a well-posed
problem depends on the character of the PDE and the combination of added condi-
tions. (Mathematicians are particularly concerned with proving well-posedness,
since this is essentially equivalent to guaranteeing that a unique and meaningful so-
lution exists.) We shall avoid this issue entirely since it is beyond our scope.

Several examples of initial and boundary conditions typically applied to equa-
tion (86) are given in the Appendix. Physically such conditions specify the initial
configuration [the concentration at time zero at every point in the region, c (x, 0)]
and what happens at the boundary of the domain. It makes intuitive sense that both
factors will influence the evolution of the concentration c(x, t) with time. For exam-
ple, a region for which particles are admitted through the boundaries will support
different behavior than one that has impermeable boundaries.

In forming solutions to the diffusion equation, one finds especially useful func-
tions f(x) that satisfy the relation

`Yf = Af,	 (88)

where T is given by (87b). Such functions are called eigenfunctions, and here again,
in terminology previously encountered, A is an eigenvalue. Eigenfunctions of the
diffusion operator have the property that their second derivative is a multiple of the
original function. Three familiar functions that fall into this category are the follow-
ing:

fi(x) = exp (±\x),	 (89a)

fz(x) = sin (±\x),	 (89b)

f3(x) = cos (±Vx).	 (89c)
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By straightforward partial differentiation, the reader may verify that

c(x, t) = e"` f• (x)	 (i = 1, 2, 3)	 (90)

are solutions to (86) if the constant K is chosen appropriately [see problem 15(a,b)].
We arrive at the same result in the Appendix using the technique of separation of
variables.

To illustrate an important point, let us momentarily consider a finite one-di-
mensional domain of length L and assume that at the boundary of the region there is
a sink that eliminates all particles. By this we mean that the concentration c (x, t) is
zero (and held fixed) at the ends of the interval so that for x E [0, L] the appropriate
boundary conditions are

	c(0, t) = 0,	 (91 a)

	

c(L, t) = 0.	 (91b)

From the form of the solution in (90) it is readily verified that to satisfy (91a) one
should select f, (x) = sin (±\x), since neither of the other two eigenfunctions are
zero at x = 0. Further restrictions are necessary to ensure that (91b) too is satisfied.
This can be done by choosing

	=nL	 (n= 1,2,...),	 (92)

since then sin (\L) = 0.
Now consider a second situation. Suppose that this finite one-dimensional do-

main has impermeable boundaries, so that particles neither enter nor leave at the
ends of the interval. This means that diffusive flux is zero at x = 0 and x = L. Ac-
cording to our definitions in Section 9.4,

	

J(0)=J(L) =a ac l	 = 0.
ax boundary

Thus no flux boundary conditions are equivalent to the conditions

ac _
	ax-0

	 at	 x=0,

ac
	=0 	 at	 x L.

ax

To satisfy the first boundary condition we must choose in the solution (90) the eigen-
function f(x) = cos (±\ x). (This has a "flat" graph at x = 0.) Similarly, to sat-
isfy the second condition we need

a
=nL	 (n= 0,1,2,...).	 (92)

Since then cos (V'i L) = cos (n7r) = ± 1. (In other words, the cosine has a "flat"
graph also at x = L.)

This discussion illustrates the idea that imposing boundary conditions tends to
weed out certain classes of solutions (for example, (89a,c) in the first example). Fur-
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416	 Spatially Distributed Systems and Partial Differential Equation Models

thermore, in a given class of eigenfunctions only certain members are compatible.
(For example, in the first case discussed, only those sine functions that go through
zero at both ends of the interval are compatible.) This has important implications
that will be touched on in later discussions.

The diffusion equation has many other types of solutions. Some of these will
be described in the Appendix. In higher dimensions the geometry of the region may
be much more complicated and difficult to treat analytically. At times certain fea-
tures such as radial symmetry are exploited in solving the two- or three-dimensional
diffusion equation. Crank (1979) and Carslaw and Jaeger (1959) describe methods
of solution in such cases. An application to chemical bioassay is described in the
next section.

9.9 AN APPLICATION OF DIFFUSION TO MUTAGEN BIOASSAYS

Chemical substances that are suspected of being carcinogens are frequently tested for
mutagenic properties using a bioassay. Typically one seeks to determine whether a
critical concentration of the substance causes genetic mutations (aberrations in the
genetic material), for example in bacteria. The bacteria are grown on the surface of a
solid agar nutrient medium to which a small amount of mutagen is applied. Gener-
ally, the chemical is applied on a presoaked filter paper at the center of a petri dish
and spreads outwards gradually by diffusion. If the substance has an effect, one
eventually observes concentric variations in the density and appearance of the bacte-
rial culture that correlate with different levels of exposure to the substance.

While such qualitative tests have been commonly used for antibiotic, muta-
genic, and other chemical tests, more recently quantitative aspects of the test were
developed by Awerbuch et al (1979). These investigators noted that the radius of the
observed zones of toxicity and mutagenesis (see Figure 9.8) could be used directly
in obtaining good estimates of the threshold concentrations that produce these ef-
fects.

Working in radially symmetric situations, Awerbuch et al. (1979) used the ra-
dial form of the diffusion equation,

ac _ 26 (ä2 c 	 1 ac _ c	 (93)
at	 3r2+__) r ari	 T

where

r = radial distance from the center of the dish,

c (r, t) = the concentration at a radial distance r and time t,

211 = diffusion coefficient of the mutagen,

1 /T = the rate of spontaneous decay of the mutagen. (See problem 17.)

Because the probability of a mutation taking place depends both on the expo-
sure concentration and the exposure duration, a time-integrated concentration was
defined as follows:

C(r) =	 1 IT2
 c(r, t) dt,	 (94)

(T2—Ti)s 
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Partial Differential Equations and Diffusion in Biological Settings 	 417

Figure 9.8 (a) In a test for mutagenicity, Awerbuch
et al. (1979) place a mutagen-soaked filter paper
(radius = a) at the center of a petri plate
(radius = R). The substance diffuses outwards.
Beyond some threshold level the substance fails to
be toxic but does cause changes in the appearance
of the bacteria growing on the plate (due to
increased mutation). (b) The time-integrated
concentration of mutagen [equation (94)] can be
computed as a function of radial distance by solving
the diffusion equation; a plot of log c(r) versus r
can then be used to determine the threshold
concentrations for toxicity c(r ox) and for
mutagenesis C(rm„t). [From Awerbuch et al. (1979).
A quantitative model of diffusion bioassays. J.
Theor. Biol., 79, figs. 1 and 2; reproduced by
permission of Academic Press Inc. (London)]	 to-'

0•05

to-2

0.005

Glyn	 10-!

0-0005

10-•
0.00005

ßo- 5

(a)

0•2	 04	 06	 08
HR

(b)

where s is the width of the agar and T, and T2 represent times before and after the
diffusion wave arrives at the point r.

The initial situation, shown in Figure 9.8(a), corresponds to a constant muta-
gen level within the filter paper disk (radius a) at the center of the dish. Thus at
t = 0 the concentration can be described by the equation

	I co 	for r <a
	c (r, 0) = 0	 for r ? a

This statement is an initial condition (see Appendix).
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418	 Spatially Distributed Systems and Partial Differential Equation Models

Furthermore, because the walls of the dish (at radius r = R) are impermeable
to chemical diffusion, there is no radially directed flux of particles at r = R. Thus an
additional condition is that

ac
—= 0 forr =R.
ar

This is the radial equivalent of the one-dimensional no-flux condition discussed in
the previous section. It is also trivially true that ac /ar = 0 at r = 0 in this example.
More discussion of boundary and initial conditions is given in the Appendix.

We will not go into the details of how the radially symmetric diffusion equa-
tion (93) is solved (see Awerbuch et al., 1979, and Caslaw and Jaeger, 1959). The
methods are well known but not of particular importance to our discussion. Once a
solution is obtained, the quantity (94) can be computed and tabulated. Figure 9.8(b)
demonstrates a typical relationship between the value of C(r)/cos and radial distance
that can then be used directly in making a quantitative estimate of the time-averaged
mutagen threshold. Observe that if bacteria were exposed to a uniform fixed chemi-
cal concentration Co, the value of C(r) would be the same for all r and would equal
Co. In this way a correspondence can be made between results of the diffusion
bioassay and similar homogeneous bioassay concentrations.

To illustrate the method, Awerbuch et al. (1979) quote the following example
for the bacteria Salmonella typhimurium and the mutagen N-methyl -N-nitro-N' -ni-
trosoguanidine. Conditions of the bioassay were as follows:

a = radius of chemically treated filter paper = 0.318 cm,
R = radius of petri plate = 2.5 cm,

s = thickness of agar = 0.356 cm,

.r = decay time of mutagen = 2.25 h,

26 = diffusion coefficient of chemical in agar = 7.2 x 10 -6 cm2 sec',

co/S = initial concentration of chemical (applied on filter paper)
corrected for agar thickness = 221.04 µg cm -3 .

[Note: co, c (r, t), and c (r) have dimensions of grams per centimeter squared since
only two-dimensional diffusion is being considered here. For this reason it is neces-
sary to divide by agar thickness so as to obtain a concentration in grams per centime-
ter cubed.]

Under these conditions, a ring of mutated bacteria occurs at a radial distance of
2.17 cm. We thus have

r __ 2.17
R	 2.5 = 0.868.

From Figure 9.8(b) we observe that corresponding to this radius is a dimensionless
time-averaged concentration,

C (r)
 = 1.95 x 10 -5 .

(co/s)
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Thus the critical concentration for mutagenicity is

Cmut = 1.95 X 10-5 x 221.04 µg ml -t ,

= 4.31 x 10 -3 µg ml- '

The diffusion-based assay is of wide applicability. Considering the older meth-
ods of serial dilutions and tests of bacteria cultured at numerous mutagen concentra-
tions, one appreciates the elegance of this simple and time-saving procedure.

PROBLEMS*

Problems 1 through 6 are suitable for reviewing the properties of functions of several
variables.

1. For the following functions, sketch the surface corresponding to z = f(x, y)
and the level curves in the xy plane:
(a) f(x, Y) = x 2 + Y Z .	 (d) f(x, y) = 2x + y.
(b) f(x, y) _ — 2x 2 — 2y 2 .	 (e) f(x, Y) = xy.

(c) f(x, y) = exp
 —(x2+  

y 2)
	(f) f(x, y) = sin x cos y.

2

2. For each function in problem 1 find the following:

(1) a'

(2)ä LL ä and

(3) Vf.

3. For each function in problem 1, determine whether there are any critical
points. Which if any are local maxima?

4. Sketch the level curves described by the following equations. Give an equation
for a surface that has these level curves. Sketch the vector field corresponding
to Of by using its property of orthogonality to level curves:

x Z	 y2	 xZ	 y2

(a) c= j+bZ . 	 (d)

(b) c=x 2 +y.	 (e) c=(x 2 +y 2).
(c) c=x—y.

5. For the following vector fields, find V x F, V • F:
(a) (x, y, z). 	 1 1

.

(b) (y — z, z — x, x — y) . 	
(e) (_X1 , y , z 

(c) (x 2 +2y+z,y 2 —x,z 2 —y 2).	 (f) (x+y,y+z,z+x).
(d) (sin xyz, cos xyz, ern).

*Problems preceded by an asterisk (*) are especially challenging.

D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 1

52
.2

.1
05

.2
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



420	 Spatially Distributed Systems and Partial Differential Equation Models

*6. Determine whether the following vector fields are gradient fields. If so, find 4)
such that F = VO:
(a) (x, y).	 (d) (x + y, x — y).

(b) (y 2 , x 2).	 (e)	 (ye xY , xe -y).

(c)	 (sin xy, cos xy).	 (f) (x 2y, y 2x).

7. (a) Verify that terms in equation (22) carry the correct dimensions.
(b) Explain why the integral in equation (25a) represents the number of parti-

cles in the interval (x 1 , x2).
(c) Similarly, explain the integral in equation (25b).
(d) Give justification for equation (26).
(e) Verify that equation (27) leads to (28) when the appropriate limit is

taken.

8. The cross-sectional area of the small intestine varies periodically in space and
time due to peristaltic motion of the gut muscles. Suppose that at position x
(where x = length along the small intestine) the area can be described by

A (x, t) = 2 [2 + cos (x — vt)],

where vis a constant.
(a) Write an equation of balance for c (x, t), the concentration of digested

material at location x.
(b) Suppose there is a constant flux of material throughout the intestine from

the stomach [that is, J(x, t) = 1] and that material is absorbed from the
gut into the bloodstream at a rate proportional to its concentration for ev-
ery unit area of intestinal wall. Give the appropriate balance equation.

(c) Show that even if J(x, t) = 0 and a-(x, t) = 0, the concentration c(x, t)
appears to change.

9. For a planar flow, consider a small rectangular region of dimensions Ax X Ay.
Carry out steps analogous to those of Section 9.3 (subsection "Flows in Two
and Three Dimensions") to derive the two-dimensional form of the equation of
conservation.

10. Consider the fluid shown in the accompanying diagram. Assume that every
particle has the same velocity v.
(a) What is the flux of particles through the unit area dA? (Hint: Consider all

particles contained in an imaginary prism of length v At, where v is the
magnitude of v. During a time At they will have all crossed the wall dA.
Now use the definition of flux to show that (47) holds.

(b) Extend your reasoning in part (a) to the case where v varies over space
and time.

11. Suppose the diffusion coefficient of a substance is a function of its concentra-
tion; that is,

26 = f (c).
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dA

\\\\\\

^^/ vat

Figure for problem 10.

Show that c satisfies the equation

ac	 azc	 (ac\2
^t —  ßx2+g1\ax

where g = f'(c).

12. (a) Consider a radially symmetric region 26 in the plane, and let c (r, t) be
the concentration of substance at distance r from the origin and J (r, t) the
radical flux. Use the derivation of the conservation laws in Section 9.3
(subsection "Tubular Flow") to show that c (r, t) satisfies the following
relation:

ac
at= —I (Jr)±u(r,t)

Hint: consider a pie-shaped "tube," that is, a small sliver removed from a
circular disk—see Figure (a), and determine how its cross-sectional area
changes with radial distance.

li

r --^

Figure (a) for problem 12.	 Figure (b) for problem 12.

(b) Extend the idea in part (a) to a spherically symmetric region S in R', and
show that c (R, t), the concentration at distance R from the origin, satis-
fies the following:

ac _ _ 1 a(JR Z)
± o-(R, t).

at	 RZ aR
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422	 Spatially Distributed Systems and Partial Differential Equation Models

Hint: For the "tube," consider an element of volume of a sphere and de-
termine how its cross-sectional area depends on radial distance. See Fig-
ure (b).

(c) Use parts (a) and (b) to obtain the radially and spherically symmetric dif-
fusion equations given in Section 9.5.

13. The time to diffuse from source to sink depends on dimensionality as demon-
strated in equations (71a—c). Give conditions on the ratio L/a for which
T3 > T2 % T1.

14. (a) Show that the conclusions regarding diffusion transport into a cell hold
equally well if the cell is nonspherical (such as a cell that has length 1,
width w, and girth g), provided that as it grows all three dimensions are
expanded.

(b) Find the flatness ratio y for the following shapes:
(1) An ellipsoid of dimensions a X b X c.
(2) A sphere of radius R.
(3) A long cylinder of radius r and height h (neglect the top and bottom

caps).
(4) A cone whose radius is r when its height is h (neglect the top).

(c) Extended project. Make a summary of the various ways in which organ-
isms overcome diffusional limitations, and illustrate these with examples
drawn from the biological literature.

15. (a) Verify that equation (90) is a solution to equation (86).
(b) Determine what the restrictions are on K.
(c) Show that equations (91a,b) can only be satisfied by choosing

f(x) = sin (±V x), where \fl;: = L .
16. (a) Suppose that in a diffusion bioassay for the mutagen N-methyl-N- nitro-

N'-nitrosoguanidine, one finds that mutations occur at a radial distance
r = 0.4R, where R is the radius of the petri dish. Using constants quoted
in Section 9.9 determine Cm„,, the threshold concentration for mutation.

(b) Repeat part (a) for r = 0.6R.

17. (a) Explain equation (93) by expanding equation (61).
(b) Suppose the bioassay devised by Awerbuch et al. (1979) is performed in

a thin tube rather than a radially symmetric plate. What would the appro-
priate equations and conditions of the problem be?

(c) Referring to your answers to part (a), what solutions for c(x, t) would
then typically be encountered?

18. Propagated action potentials.
(a) Explain equation (42) based on the definitions given for charge density,

current, and charge "creation" o,.
(b) Explain equations (43) and (44). What would I ; depend on? (See Section

8.6.)
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(c) Ohm's law states that V = IR, where V = potential difference across a
resistance R, and I = current. How is equation (45) related to this law?

(d) Show that equations (42-45) together imply equation (46).

Problems 19 and 20 suggest generalized versions of mean diffusion transit times.
Solution requires familiarity with double and triple integration.

19. In two dimensions consider the radially symmetric region shown in Figure
9.7(b) with a sink of radius a and a source of radius L. Assume that

c (a) = 0,	 c (L) = Co .

(a) Solve the steady-state two-dimensional equation of diffusion

a ( ac l
0= r ar r ar)

(b) Define

if
	 2n jL

N= 	 cdA = fo
J c(r)rdrdO.

 a
disk

Compute this integral and interpret its meaning.
(c) Define

F = flux X circumference of circle

()2L)

Calculate F.
(d) Find T = N/F, and compare this with the value given in Figure 9.7.

20. In three dimensions consider the spherically symmetric region of Figure 9.7(c),
again taking the sink radius to be a and the source radius to be L, where
c (a) = 0 and c (L) = Co. Let p = radial distance from the origin.
(a) Solve the steady-state equation

(b) Define

N = fff cdV = 
f21r  J ir J L 

C(P)p 2 sin 0 dp do dO.

sphere

Compute this integral and interpret its meaning.
(c) Define

F = flux X surface area of sphere

_ (.)4L2
P

Find F.
(d) Find r = N/F.
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424	 Spatially Distributed Systems and Partial Differential Equation Models

21. Transit times for diffusion. Consider the steady-state equation

ax\^ äx) = 0

with boundary conditions c (L) = Co and c(0) = 0.

(a) Show that the solution is

x
c (x) = Co L .

(b) Explain why

N= I C(x)dx
0

is the number of particles in [0, L].
(c) If A is the average removal rate at the sink, explain why 1/A is the aver-

age diffusion transit time in example 2 in Section 9.6.

22. Random versus chemotactic motion of macrophages.
(a) Define

Ox = average distance traveled by a macrophage in a fixed direc-
tion,

e = time taken to move this distance,

s = Axle = speed of motion.

Justify the relationship eb = 2 es 2 based on the results of the random-
walk calculation in Section 9.4.

(b) How would the conclusions of Section 9.7 change under each of the fol-
lowing circumstances:
(1) The macrophage moves twice as fast.
(2) The target is twice as big.
(3) The area of the alveolus is half as big.
(4) The reproductive rate of the bacteria is twice as large.

(c) Define

T = time to reach bacterium based on random motion,

T = time to reach bacterium based on direct motion towards the
target,

Ro = T/T.

Find an expression for R o based on parameters of the problem. Is R o ever
equal to 1?
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APPENDIX TO CHAPTER 9
SOLUTIONS TO THE ONE-DIMENSIONAL DIFFUSION EQUATION

A.1 REMARKS ABOUT BOUNDARY CONDITIONS

Here we consider a number of boundary conditions that could be suitable for the diffusion
equation (86).

1. Infinite domains. In some problems one is interested in observing the changes in a finite
distribution of particles that are far away from walls or boundaries. See Figure 9.9(a).
It is then customary to assume that the concentration is "zero at infinity":

c(x, t) --^ 0	 as	 x —' ±.	 (95)

The approximation is valid provided that in the time scale of interest there is little or no
reflection at the boundaries.

2. Periodic boundary conditions. If diffusion takes place in an annular tube of length L,
the concentration at x has to equal that at x + L [see Figure 9.9(b)]. Thus periodic
boundary conditions lead to

c(x, t) = c(x + L, t),

or in particular,

	c (0, t) = c (L, t) .	 (96)

3. Constant concentrations at the boundary. The hollow tube in Figure 9.9(c) is sus-
pended between two large reservoirs whose concentrations are assumed to be fixed.
This leads to the following boundary conditions:

c(0, t) = C i ,	 (97a)

c(L, t) = C2 .	 (97b)

If C = C2 = 0, the boundary conditions are said to be homogeneous.
4. No flux through the boundaries. When the ends of the tube are sealed, no particles can

cross the barriers at x = 0 and x = L. This means that the flux, defined by (53) must
be zero; that is,

ac =0
	 at{'

= 0,
ax	 x = L.	

(98)

In general, it is true that the solution of the diffusion equation, or for that matter any
PDE, depends greatly on the boundary conditions that are imposed. Carslaw and Jaeger
(1959) show the derivations of solutions appropriate for many sets of boundary and initial
conditions.
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Figure 9.9 Boundary conditions often used in
solving the one-dimensional diffusion equation: (a)
no particles at infinity [equation (95)1; (b) periodic
boundary conditions [equation (96)); (c) constant
concentrations at one or both boundaries (equations
(97a,b); (d) no flux at the boundaries, i.e.,
boundaries impermeable to particles (equation
(98)1.

— 00 4 	x = 0
	 + 00

(a)

x=0

(b)

[I
Ci	 C2

J x=0	 x=L"

(c)

x=0	 x=L

(d)

A.2 INITIAL CONDITIONS

Different initial configurations may be of interest in studying the process of diffusion. These
may include the following:

1. Particles initially absent:

c(x, 0) = 0.	 (99)

This condition is suitable for problems in which particles are admitted through the
boundaries.

2. Single point release. If particles are initially "injected" at one location (considered the-
oretically of infinitesimal width), it is customary to write

c(x, 0) = Co 8(x).	 (100)

8(x) is the Dirac delta function, actually a generalized function called a distribution,
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428	 Spatially Distributed Systems and Partial Differential Equation Models

which has the property that

S(x)={0
	 ifx#0,	

(101)

and

J W S(x) dx = 1.	 (102)

See Figure 9.10(a).
3. Extended initial distribution. The initial configuration shown in Figure 9.10(b) would

be described by

c(x, 0) = S 
CO
	x ^ 0 . 	(103)

4. Release in a finite region. If the concentration is initially constant within a small subre-
gion of the domain [see Figure 9.10(c)], the appropriate initial condition is

c(x 0)—{Co	
—a<x<a,	

(104)
l0	 otherwise.

Figure 9.10 Typical initial conditions for which the
diffusion equation might be solved: (a) particles
initially at x = 0 [equation (100)]; (b) extended
initial distribution [equation (103)]; (c) release in a
finite region [equation (104)]; (d) arbitrary initial
distribution [equation (105)]. H0

	x

(a)

x
0

(b)

x
0

(c)

0

(d)
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5.	 More general initial conditions. It can more broadly be assumed that

c (x, 0) = f(x).	 (105)

See Figure 9.10(d). Such initial conditions must generally be handled by Fourier-trans-
form or Fourier-series methods unless f(x) is of an especially elementary form. (Jones
and Sleeman, 1983, discuss the details of this case.)

A.3 SOLVING THE EQUATION BY SEPARATION OF VARIABLES

In this section we briefly highlight a way of solving the one-dimensional diffusion equation
given a set of boundary and initial conditions. Since this is not meant to be a self-contained
guide but rather a quick introduction, the only method we discuss is separation of variables.
Serious applied mathematics students should plan on taking a course on partial differential
equations in which the more advanced and useful methods of Fourier transforms are taught.

We consider the equation

c = acs .	 (106)

We will discuss problems in which the general solution takes the form

c (X, t) = CT(X, t) + c (x)	 (107)

where CT(X, t) is a transient space- and time-dependent function that decays to zero and c(x) is
the steady-state solution. We use separation of variables to find CT .

Separation of Variables

Assume that CT(X, t) can be expressed as a product of two functions:

CT(X, t) = S(x)T(t),	 (108)

where S depends only on the spatial variable and T only on time. Substitute (108) into (106)
to obtain

S(x)T'(t) = 9S "(x)T(t).	 (109)

Rearranging (109) gives the following:

T'(t) _ 9 S"(x) = K.
	 (110)

T (t)	 S (x)

This is called separation of variables. In equation (110) we have equated both sides to a con-
stant K. This is the only possibility; otherwise by independently varying x and t, it would be
possible to change one or the other side of the equation separately and a contradiction would
be reached. Three distinct cases arise: K = 0, K < 0, and K > 0. In any of these the solu-
tions to T(t) and S(x) can be obtained by solving

T'(t) = KT(t), 	(lila)

S"(x) =	 S(x).	 (111b)

These are both linear ODEs since each function depends on a single variable. The case K = 0
will not concern us since it leads to the somewhat uninteresting situation T(t) = constant. If
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430	 Spatially Distributed Systems and Partial Differential Equation Models

K > 0, then by problem 24(c),

T(t) = exp Kt,	 (112a)

S(x) = exp(± v'Ix). 	(112b)

Observe that transient solutions to equation (106) are thus of the form

exp Kt exp(± \J1x).	 (113)

If K <0 then a more convenient way of expressing these is to set

K= —2A, N _ — A,

where A is a constant (previously called the eigenvalue in section 9.8). Then complex expo-
nentials lead to sinusoidal terms; one finds that by forming real-valued linear combinations, a
(real-valued) transient solution can be written in the form

cr(x, t) = exp (—At) (A cos	 + B sin \x).	 (114)

Note that CT(X, t) —+ 0 for t --> -. The values of A, A, and B depend on the boundary and ini-
tial conditions of the problem.

Example 5
Consider equation (106) with the following boundary (BC) and initial (IC) conditions:

BC:	 c(0, t) = c(L, t) = 0,	 (115a)

IC:	 c (x, 0) = f(x)	 (to be specified below). 	 (115b)

It is easily verified that c (x) = 0 is the steady-state solution (since the steady-
state solution must satisfy the boundary condition). The boundary condition further im-
plies that

T(t)S(0)  = T(t)S(L)  = 0.	 (116)

Otherwise, if T(t) = 0, one would get CT = 0 for all t. Then observe that equation
(11 lb) together with the first of these conditions leads to the conclusion that

S(x) = B sin \x, (117)

since sin (0) = 0. Thus the separation constant K is necessarily negative in this case.
The second condition can only be satisfied by choosing VA to be an integral multiple
of Ir/L:

	A 
=_ (niT

L J	 (n= 0,1,2,... ) .	 (118)

There is thus an infinite set of eigenfunctions that satisfy equation (106) and the
homogeneous boundary condition. From the previous discussion we must conclude that
the solution is of the form

	(  njr 2 	n7Tx

	

cr(x,t)=B exp l—( L )26t sin ( )	 (n=0,1,2,...).	 (119)D
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In treating this problem, we have thus far neglected the initial condition from consider-
ation. Notice that at t = 0 equation (119) reduces to the function

^n Zrxl
	cr(x, 0) = B sin	 L l ,

which is supposed to match the a priori specified initial condition (115b). Thus it would ap-
pear that the problem is consistent only with sinusoidal initial distributions. However, what
makes its applicability much broader is the fact that all well-behaved functions f(x) can be
represented as a superposition of possibly infinitely many trigonometric functions such as
sines, cosines or both. Such infinite superpositions are called Fourier series. We state this in
the following important theorem.

The Fourier Theorem

If f and its derivative are continuous (or piecewise so) on some interval 0 < x < L,
then on this interval f can be represented by an infinite series of sines:

	f(x) _	 (a sin ß.x).	 (120)
n=1

Equation (120) is called a Fourier sine series, and it converges to f(x) at all points
where f is continuous. The constants a, are then related to f by the formula

	2 fa„ = L 	 f(x) sin /3x dx.	 (121)

See Boyce and DiPrima (1969) for more details and for similar theorems about cosine
expansions.

Now recall that since equation (106) is linear, any linear superposition of solutions
such as equation (119) will be a solution. With this in mind, we return to example 5.

Example 5 (continued)
From the observations in the previous box, we are led to consider solutions of the form

  
 1\ L. ) •

n ^rx
cr(x, t) =	 a^ exp 

[(t.) 2 ]

  

sin    (122)

At t = 0 this must satisfy the initial condition. Then

	n orx	 n rrx
a„e ° sin—= a„sin— =f(x),

n_ i 	L	 ^_ 1 	L
According to Fourier's theorem this will hold provided that

(L

	

an = J f (x) sin nix dx.	 (123)

To find the full solution it then remains only to solve for the steady-state solu-
tion, c(x), which satisfies the equation

i

	0 = a1c .	 (124)
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Two integration steps lead to

F (x) = ax + ß,	 (125)

where a and ß are integration constants. To satisfy the boundary conditions it is neces-
sary to select F (0) and F (L) such that

F(0) = ß = 0,	 (126a)

F(L) = aL = 0. 	 (126b)

Thus a = ß = 0, and the steady state of this problem is the trivial solution

c(x) = 0.

The full solution is thus

c(x, t) = Cr(X, t),	 (127)

where cT(x, t) is given by (122). For a particularf(x) it is necessary to integrate the ex-
pression in equation (123) in order to obtain the values of the constants a„. For exam-
ples and further details see Boyce and DiPrima (1969).

General Summary of Methods

1. Assume the transient solution Cr(X, t) = S (x)T (t), and substitute this into the equation.
2. Separate variables to obtain ODEs for each part S and T separately.
3. Determine whether the separation constant K should be positive or negative by noting

which eigenfunctions will satisfy the boundary conditions. (K < 0 => sines or co-
sines; K > 0 => exponentials.)

4. Further determine which eigenvalues A will be consistent with the boundary conditions.
5. Write cT (x, t) as a (possibly infinite) superposition of solutions of the form SA(x)TA(t) as

in equation (122).
6. Find the constants a„ by using the initial condition of the problem along with equation

(123).
7. Find the steady-state solution F(x) of equation (106).
8. The general solution is then

C(X, t) = CT(X, t) + C(X).

Note: Other boundary conditions may call for other eigenfunctions. (For example,
boundary conditions of type 4 are only consistent with cosine eigenfunctions.) The general
solution will then consist of Fourier cosine series or possibly of a full Fourier series. Such
cases are described in greater detail in any text that treats boundary-value problems and the
heat equation.

A.4 OTHER SOLUTIONS

New solutions to equation (106) can always be generated from preexisting ones by forming
(1) linear combinations, (2) translations, or by (3) differentiation or integration with respect
to a parameter. Also important are the following special classes of solutions that we describe
without formal justification.
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1. Point release into an "infinite region." With initial conditions (101) and boundary con-
ditions (95), it can be shown that the solution to (106) is

2

	c(x, t) = M
21^1rlat

 exp x ,	 (128)
4^t

where M is the total number of particles:

M = J m c dx.

See Figure 9.11 for the time behavior of this function, which is known as the f inda-
mental solution of (106).

2. Extended initial distributions. An initial condition (103) with "far away" boundaries as
in class 1 can be treated by considering the contributions of a whole array of point
sources and summing these (integrating) over the appropriate region. This leads one to
define a quantity known as the error function:

erf z = 
V 
?'/ 

fz

	exp (—x') dx.	 (129)
it 

with the properties that

erf (—z) = —erf z, 	 (130a)

erf 0 = 0,	 (130b)

erfo= 1.

The solution of (106) can then be written in the form

c(x,t)=2co(1—erf 2Vat).	 (131)

While the integral in equation (129) cannot be reduced to more elementary functions, it
is a tabulated function of its argument. See most mathematics handbooks for such
tables.

3.	 Finite initial distributions. If the initial distribution is concentrated in a finite interval
—h <x < h, the integration of equation (129) over this domain leads to the solution

c(x, t) 2 Co [erf 2N/2t + erf 2^2eII .	 (132)

The problem is more complicated if the effects of boundaries are to be considered. See
Carslaw and Jaeger (1959) for the detailed treatment of such cases.
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Figure 9.11 Solutions of the diffusion equation for 	 x >_ 0]. (Parts (a) and (b) from Crank, J. (1979).
some discontinuous initial distributions: (a) point 	 The Mathematics of Diffusion. 2 ed. Oxford
release [c (x, 0) = b(x)]; (b) finite extended 	 University Press, London, Figs. 2.1 and 2.4. Part
distribution [c(x, 0)] = 1 for —1 <x < 1]; (c) 	 (c) from Shewmon, P. G. (1963). Diffusion in
infinite extended distribution [c (x, 0) = 1 for	 Solids, McGraw-Hill, New York, Fig. 1.5.1
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PROBLEMS FOR THE APPENDIX

Problems 23 to 27 are based on the Appendix to Chapter 9.

23. Determine the boundary and initial conditions appropriate for the diffusion of
salt in each of the following situations.
(a) A hollow tube initially containing pure water connects two reservoirs

whose salt concentrations are C, and 0 respectively.
(b) The tube is sealed at one end. Its other end is placed in a salt solution of

fixed concentration C 1 .

(c) The tube is sealed at both ends and initially has its greatest salt concen-
trations halfway along its length. Assume the initial distribution is a
trigonometric function.

24. In this problem we investigate certain details that arise in solving the diffusion
equation by separation of variables.
(a) Show that equation (108) implies (109).
(b) Determine the consequences of assuming K = 0 in equation (110).
(c) Show that for K > 0 solutions to (110) are given by equations (112a,b).
(d) Justify the assertion that for K < 0 solutions are of the form (114).

25. (a) What kind of boundary and initial conditions are used in (115)?
(b) Show that the steady-state solution of equation (106) is then trivially

c (x) = 0.
(c) Show that equations (110) and (115) lead to (117) .
(d) Justify the assumption (118).

26. Solve the one-dimensional diffusion equation subject to the following condi-
tions:
(a) c (0, t) = c (l , t) = 0,

c(x, 0) = sin irx.
(b) c (0, t) = c (L, t) = 0,

f2\ 	 1
c(x,0)=sin L x + sin

27. (a) Verify that (128) is a solution to the diffusion equation by performing
partial differentiation with respect to t and x.

(b) Similarly, verify that (131) is also a solution.
(c) Use your result in part (b) to argue that (132) is also a solution without

calculating partial derivatives. (Hint: Use the properties of solutions de-
scribed in the Appendix, Section A.4.)
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