
MATH 564: Final Examination
As a �tting capstone to this introduction to mathematical modeling in biology the exam

is inspired by a current research problem, the propagation and focalization of shear waves
in the brain as a possible mechanism for concussions. In this examination you will look at
some of the simplest models for this problem.

As usual, your examination solution will be submitted through Sakai. You can choose
to work in TeXmacs or directly in Mathematica. In both cases you will have to explain the
approach you are taking, so it might be preferable to use TeXmacs.

First steps. Save this �le as LastnameFinal.tm (or .nb if you choose to work in Mathe-
matica) for submission to Sakai. The questions below should take no more than 90 minutes
to solve. To allow for any unforseen di�culties with the electronic submission procedure,
the time limit for submitting your examination solution is set to 11:55PM, Monday May 7,
2018, but you should try to submit within the allotted 3 hour examination time period 12:00-
3:00PM. You are free to use any course materials in constructing your solution. Solutions
must re�ect your individual thinking, so do not discuss any aspect with anyone else. Have
fun carrying out mathematical modeling of a real-life problem!

� Set working directory

1 Background
In a collaboration I have with investigators Gianmarco Pinto and Bharat Tripathi from
the UNC Medical School, we are interested in the propagation of shear waves through the
brain (Published paper describing model). The brain can be considered to be a soft, gel-like
material, and the shear waves produce displacements of the tissue u(x; t) (a length, measured
in meters, with x spatial coordinate, t time) that satisfy the equation
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with parameters: �0= 103 kg/m3, �= 103 N/m3, and �= 1.5 (nondimensional).

2 Questions
1. Classify the equation (1). What type of equation? Give all relevant classi�cations we

have discussed in the course.
Solution. Equation (1) is a nonlinear, partial di�erential equation of second order.

2. Is the equation (1) dimensionally homogeneous?
Solution. Determine the units of each term in the equation, with [A] denoting the

units of quantity A �
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It is apparent that, as stated, (1) is not dimensionally homogeneous. An equation
cannot be valid if it is not dimensionally homogeneous, so there must be a mistake
somewhere in the formulation (a common feature in the �rst stages of mathematical
modeling!). Since both u and x are lengths, and kg/m3 are correct units for mass
density, backtrack what the units of � should be�
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Assume that �= 103N /m2= 103Pa henceforth.

3. Consider �=0. What changes in the classi�cation of equation (1)? Does the problem
become simpler for �=0? Why, and in what way?

Solution. The equation remains a partial di�erential equation of second order,
but is now linear. The problem becomes simpler since we can readily obtain simple
analytical solutions for linear equations.

4. For � = 0, verify that u(x; t) = af(x ¡ ct) + bg(x + ct) is a solution of (1), with
a; b arbitrary constants. Determine the expression for c in terms of the problem
parameters.

Solution. Start from dimensional homogeneity of x ¡ ct to deduce that [c] =
[x]/ [t]=m/s, hence c is a velocity. Now compute partial derivatives in (1), repeatedly
using rule for di�erentiation of composite functions
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Replace in (1) with c=0 to obtain

�0c2(af 00+ bg 00)= �(af 00+ bg 00);

and deduce that, indeed, u(x; t)= af(x¡ ct)+ bg(x+ ct) is a solution if

c2=
�
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Verify this conclusion by dimensional homogeneity:
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hence indeed c is a velocity, with value c=1 m/s for problem data

5. Let �=x¡ct, and consider that u(x;t)=af(�). Rewrite (1) as an ordinary di�erential
equation for f(�), and �nd its solutions. Interpret the signi�cance of each solution.
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Solution. From composite di�erentiation rule, and with c2= �/�0, obtain
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(a3(f 0)3)= �a3 3 (f 0)2f 00:

Gathering terms, the PDE (1) reduces to an ODE

(f 0)2f 00=0) f 0=0 or f 00=0

with solutions

f1(�)=C; f2(�)=A�+B:

The �rst solution states that u is constant along lines of constant values of �=x¡ ct.
The second solution states that u varies linearly as

u(x; t)= a(A (x¡ ct)+B):

6. Now consider the ODE from (5., above) and add on a forcing term sin(x). Find numer-
ical solutions to the resulting inhomogeneous ODE, and interpret the signi�cance of
the solution.

Solution. The equation from (5., above) becomes

(f 0)2f 00= sin(x)= sin(�¡ ct): (2)

In this formulation � is the independent variable, f is the dependent variable, and t is
a parameter, hence (2) is a family of second-order, nonlinear ODEs parametrized by
t (time). To solve the problem, two boundary conditions must be imposed (second-
order di�erential equation). Recall that u(x; t)=af(x¡ct)=af(�) is a displacement.
An interesting set of boundary conditions would be

f(0)= sin(t); f 0(0)= cos(t)

This corresponds to wiggling the end at �=0, with displacement sin(t) and velocity
cos(t). Here's a straightforward implementation of the above ideas.

In[11]:= eq[t_]:=(f'[csi])^2 f''[csi] == Sin[csi-t];
cond[t_]:={f[0]==Sin[t], f'[0]==Cos[t]};
sol[t_]:= NDSolve[ Flatten[{eq[t],cond[t]}], f, {csi,0,
1}][[1,1]];

Null

In[12]:=

Test the above implementation to �nd the solution at t=0

In[17]:= p0=Plot[Evaluate[f[csi] /. sol[0.]],{csi,0,1},Frame->True,
FrameLabel->{"csi","u[csi]"},GridLines->Automatic];
Export["p0.png",p0];

Null
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In[18]:=

Figure 1. Solution at t=0

Note: the above directly uses the syntax from the Mathematica NDSolve example.
And now generate a number of solutions at various values of the parameter t

In[30]:= plots=Table[ Plot[Evaluate[f[csi] /. sol[t]],{csi,0,
1},Frame->True,FrameLabel->{"csi","u[csi]"},GridLines-
>Automatic],{t,0.,.5,0.05} ];
Export["plots.png",Show[plots]];

In[31]:=

Figure 2. Solutions at t=0; 0.05; :::; 0.5

7. Change the forcing term to sin(kx), and investigate the e�ect on the numerical solu-
tion of varying k.

Solution. This is similar to above formulation

In[33]:= eq[t_,k_]:=(f'[csi])^2 f''[csi] == Sin[k(csi-t)];
cond[t_]:={f[0]==Sin[t], f'[0]==Cos[t]};
sol[t_,k_]:= NDSolve[ Flatten[{eq[t,k],cond[t]}], f, {csi,0,
1}][[1,1]];

Null

In[35]:= kplots=Table[ Plot[Evaluate[f[csi] /. sol[0.,k]],{csi,
0,1},Frame->True,FrameLabel->{"csi","u[csi]"},GridLines-
>Automatic],{k,0.,100.,10.} ];
Export["kplots.png",Show[kplots]];
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Null

In[36]:=

Figure 3. Solutions at t=0, for k=0; 10; :::; 100
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