

Course overview:

- Models in the life sciences
- Software to formulate and solve models

Review of some mathematical tools:

• Linear dependence

- Living entities exhibit:
 - Spatial organization, they are separated from their environment
 - Metabolism, they undergo internal physico-chemical processes
 - Homeostasis, they maintain a quasi-stable internal state
 - Reproduction, they produce copies of themselves, perhaps mutated
 - Adaptation, favorable mutations multiply more rapidly, they evolve
 - Stimuli response, internal changes occur upon environment modification
- All the above exhibit regularity, and are therefore the object of scientific study
- Mathematical biology seeks development of well-formulated models to answer biological questions

- Biology identifies populations of distinct species that interact, e.g., predation
- Biological question: what are stable populations of predators/prey?
- Mathematical formulation: hypotheses
 - a population numbers y(t) (prey), z(t) (predator) are functions
 - b populations are large $y, z \gg 1$
 - c difference $y [y] \in [0, 1)$ is negligible ([y] is the integer part of y)
 - d (a)-(c) imply that y, z are continuous
 - e time scale of population change is much larger than predation time interval
 - f many possible predation encounters
 - g (e)-(f) imply that y(t), z(t) differentiable
 - h prey has positive natural growth rate a, predation decrease probability p
 - i predators have a negative growth rate -b, feeding increase probability q

• Hypotheses (a)-(i) lead to a system of first-order differential equations

$$\frac{\mathrm{d}y}{\mathrm{d}t} = ay - pyz$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = -bz + qyz$$

• As in many biological settings, the above system is nonlinear and typically does not admit an analytical solution so numerical approaches are required

- Though analytical solutions are either impossible or tedious to obtain, numerical and approximate solutions are possible
- Modern computational, symbolic software systems easily construct solutions
- Lotka-Volterra system formulation in Mathematica

```
In[66]:= PreyEq = y'(t] == a y(t) - p y(t) z(t);
    PredEq = z'(t) == -b y(t) + q y(t) z(t);
    LVparams = {a->0.7, b->1, p->1.3, q->1};
    ICs = {y(0)==1,z(0)==0.5};
    LVsystem =Flatten({PreyEq,PredEq,ICs} /. LVparams)
```

Numerical solution

```
In[79]:= sol = NDSolve[LVsystem, \{y[t], z[t]\}, \{t, 0, 1.5\}][[1]]
```

- - Though analytical solutions are either impossible or tedious to obtain, numerical and approximate solutions are possible
 - Modern computational, symbolic software systems easily construct solutions
 - Lotka-Volterra system formulation in Mathematica

```
In[66]:= PreyEq = y'(t) == a y(t) - p y(t) z(t);
    PredEq = z'(t) == -b y(t) + q y(t) z(t);
    LVparams = {a->0.7, b->1, p->1.3, q->1};
    ICs = {y(0)==1,z(0)==0.5};
    LVsystem =Flatten[{PreyEq,PredEq,ICs} /. LVparams]
```

```
\{y'(t) = 0.7 \ y(t) - 1.3 \ y(t) \ z(t), z'(t) = y(t) \ z(t) - y(t), y(0) = 1, z(0) = 0.5\}
```

Numerical solution

```
In[79]:= sol = NDSolve[LVsystem, \{y[t], z[t]\}, \{t, 0, 1.5\}][[1]]
```

- - Though analytical solutions are either impossible or tedious to obtain, numerical and approximate solutions are possible
 - Modern computational, symbolic software systems easily construct solutions
 - Lotka-Volterra system formulation in Mathematica

```
In[66]:= PreyEq = y'(t) == a y(t) - p y(t) z(t);
    PredEq = z'(t) == -b y(t) + q y(t) z(t);
    LVparams = {a->0.7, b->1, p->1.3, q->1};
    ICs = {y(0)==1,z(0)==0.5};
    LVsystem =Flatten[{PreyEq,PredEq,ICs} /. LVparams]
```

$$\{y'(t) = 0.7 \ y(t) - 1.3 \ y(t) \ z(t), z'(t) = y(t) \ z(t) - y(t), y(0) = 1, z(0) = 0.5\}$$

Numerical solution

```
In [79] := sol = NDSolve[LVsystem, {y[t], z[t]}, {t,0,1.5}][[1]] \{y(t) \rightarrow InterpolatingFunction[](t), z(t) \rightarrow InterpolatingFunction[](t)\}
```


• Graphical presentation

Graphical presentation


```
In[81]:=
```

• $m{x} \in \mathbb{R}^n$ independent, $m{y} \in \mathbb{R}^m$ dependent variables, $m{A} \in \mathbb{R}^{m \times n}$ a matrix

$$y(x) = Ax \tag{1}$$

is a linear relationship that satisfies

$$\boldsymbol{y}(\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2) = \alpha_1 \boldsymbol{y}(\boldsymbol{x}_1) + \alpha_2 \boldsymbol{y}(\boldsymbol{x}_2)$$

$$\boldsymbol{A}(\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2) = \alpha_1 \boldsymbol{A} \boldsymbol{x}_1 + \alpha_2 \boldsymbol{A} \boldsymbol{x}_2$$

for any scalars $\alpha_1, \alpha_2 \in \mathbb{R}$

• For m=n=1, scalar linear relation y=kx, e.g., $y=\frac{9}{5}x$, with y=F-32 the Fahrenheit temperature above the melting point of ice at standard atmospheric pressure and x=C the Celsius temperature.

```
In[84]:= SetDirectory[$HomeDirectory <> "/courses/MATH564/lessons"];
        p = Plot[9c/5+32, \{c,0,100\},
                   Frame->True,FrameLabel->{"Temp C","Temp F"},
                   GridLines->Automatic];
         Export["CelsiusToFahrenheit.png",p]
```


Figure 1. Linear dependence plot

CelsiusToFahrenheit.png

Figure 2. Linear dependence plot

$$\log y = k \log x + \log A$$

```
In[87]:= y = A x^k
In[88]:= PowerExpand[Log[y]]
In[89]:= {Expand[(a+b)^3], TrigExpand[Cos[a+b]]}
In[90]:=
```

$$\log y = k \log x + \log A$$

```
In[87] := y = A x^k
Ax^k
In[88] := PowerExpand[Log[y]]
In[89] := \{Expand[(a+b)^3], TrigExpand[Cos[a+b]]\}
In[90] :=
```


$$\log y = k \log x + \log A$$

```
In[87] := y = A x^k
```

 $A x^k$

In[88] := PowerExpand[Log[y]]

 $\log\left(A\right) + k\log\left(x\right)$

In[89]:= {Expand[(a+b)^3],TrigExpand[Cos[a+b]]}

In[90]:=

$$\log y = k \log x + \log A$$

$$In[87] := y = A x^k$$

 $A x^k$

In[88]:= PowerExpand[Log[y]]

 $\log\left(A\right) + k\log\left(x\right)$

 $In[89] := \{Expand[(a+b)^3], TrigExpand[Cos[a+b]]\}$

 $\{a^3 + 3a^2b + 3ab^2 + b^3, \cos(a)\cos(b) - \sin(a)\sin(b)\}\$

In[90]:=