- Intra-organism communication
- Basic physics of signal transmission along neurons
- Hodgkin-Huxley model

- Chemical signals transported by:
 - \rightarrow diffusion

$$\mathrm{RMS} = \sqrt{2\,\alpha\,t} \Rightarrow t = \frac{\mathrm{RMS}^2}{2\alpha}, v_{\mathrm{dif}} = \frac{\mathrm{RMS}}{t} = \sqrt{\frac{2\,\alpha}{t}}$$

Typical $v_{\rm dif} \sim 10^{-3} {\rm ~cm/sec}$

 $\rightarrow~$ convection: transport of a signal by blood flow

Typical $v_{\rm circ} \sim 10 - 100$ cm/sec

- Electrical signals traverse a nervous system at $v_{\rm nrv} \sim 100$ m/sec (10⁴ cm/sec)
 - $\rightarrow~$ Much slower than speed of light in vacuum $c\,{\sim}\,3\,{\times}\,10^5~{\rm km/sec}$
 - \rightarrow Much slower than speed of light in copper $c_{\rm Cu} \sim 3 \times 10^5$ km/sec
 - \rightarrow Much faster than diffusion of e^- in copper $v_{\rm Cu} \sim 0.02$ cm/sec

- Electrical signals are transmitted in the nervous system through a combination of diffusion and electromagnetic wave propagation
- A neuron is a cell specialized in electrical signal transmission

Figure 1.

- Neurons maintain electrical potential differences across membranes
- Electrical charge carriers are ions: Na⁺, K⁺, Cl⁻
- Nernst equation gives voltage to difference in/out concentrations

$$V = \frac{RT}{F} \ln \frac{C_i}{C_o}$$

 $R = 8.314 \,\mathrm{J/(mol\,K)}$, $F = 96,485 \,\mathrm{C}$

	Inside axon	Extracellular fluid	C_i/C_o	Nernst equivalent
Na^+	15	145	0.10	-55 mV
K^+	150	5	30.0	82 mV
CI^-	7.5	110	0.068	-68 mV

Table 1. Ion concentrations

- Electrical signals travel at high speed along axon
- At axon terminus the signal triggers release of a neurotransmitter

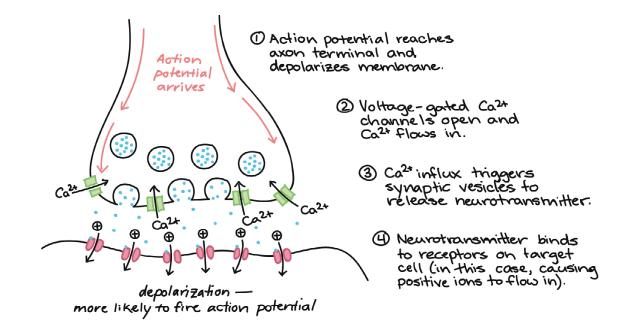


Figure 2.

• The relaying of the signal is modulated by ion channels in the dendrite membrane

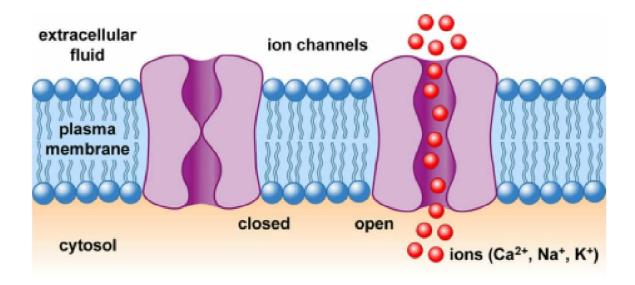


Figure 3.

• The action potential is the potential difference that stimulates ion channel opening/closing

Figure 4.

• The detailed molecular physics of each process is very difficult, but is now being carried out, e.g., ion channel from molecular dynamics

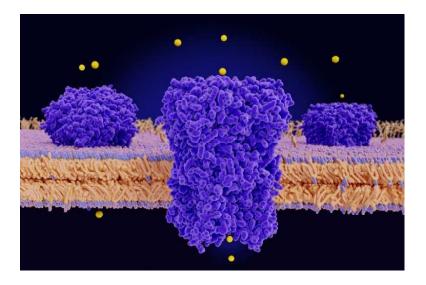


Figure 5.

• Hodgkin-Huxley model introduces approximations for each stage of the process