
2

Some Mathematical Tools

Introduction

This book is about biological modeling—the construction of mathematical abstrac-
tions intended to characterize biological phenomena and the derivation of predictions
from these abstractions under real or hypothesized conditions. A model must capture
the essence of an event or process but at the same time not be so complicated as to be
intractable or to otherwise dilute its most important features. In this regard, differ-
ential equations have been widely invoked across the broad spectrum of biological
modeling. Future values of the variables that describe a process depend on their rates
of growth or decay. These in turn depend on present, or past, values of these same
variables through simple linear or power relationships. These are the ingredients of a
differential equation. We discuss linear and power laws between variables and their
derivatives in Section 2.1 and differential equations in Section 2.4.

Sometimes a differential equation model is inappropriate because the phenomenon
being studied is quantified in discrete units such as population size. If such sizes are
very large, differential equations may still give correct results. Otherwise, difference
equations may be more appropriate. We take up the basic principles of difference
equations in Section 2.5.

Once formulated, a model contains parameters that must be specialized to the
particular instance of the process being modeled. This requires gathering and treating
experimental data. It requires determining values of the parameters of a model so
as to agree with, or fit, the data. The universal technique for this is the method of
least squares, which is the subject of Sections 2.2 and 2.3. Even though experimental
data is subject to small random variations, or noise, and imprecision, least squares is
designed to deal with this problem.

Describing noisy data and other manifestations of variation is the province of
statistics. Distributions of values can be graphically portrayed as histograms or dis-
tilled to a single number, the average or mean. The most widely occurring distribution
in the natural world is the normal, or Gaussian, distribution. These topics are taken
up in Section 2.7.
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10 2 Some Mathematical Tools

Finally, to a greater extent in biological phenomena than in other fields of science
and engineering, random processes play a significant role in shaping the course of
events. This is true at all scales from diffusion at the atomic level to random combi-
nations of genes to the behavior of whole organisms. Being in the wrong place at the
wrong time can mean being a victim (or finding a meal). In Section 2.8 we discuss
the basics of probabilities.

Fortunately, while an understanding of these mathematical tools is required for
this book, deep knowledge of mathematical techniques is not. This is a consequence
of the fruition of mathematical software. We will use the power of this software
to execute calculations, invoke special functions, simplify algebra, solve differential
equations, and generally perform the technical work. Above all, the software can
make pictures of what is happening within the phenomenon in detail. Thereby, the
curious are free to let their imaginations roam and focus on perfecting and exercising
the models themselves.

As noted in the preface, you will be executing a lot of mathematical software
code. As an aid to entering code, all the code in this book is posted on our webpages.
Springer maintains the webpage

www.springer.com/978-0-387-70983-3,

Professor Herod’s webpage is

www.math.gatech.edu/ ˜herod,

and Professor Shonkwiler’s webpage is

www.math.gatech.edu/ ˜shenk.

In addition, as an aid to creating your own code, we provide a “code index’’ at the
back of the book referencing the place in the text for syntax performing various
mathematical and computer housekeeping tasks.

2.1 Linear Dependence

The simplest, nonconstant, relationship between two variables is a linear one. The
simplest linear relationship is one of proportionality: if one of the variables doubles or
triples or halves in value, the other does likewise. Proportionality between variables
x and y is expressed as y = kx for some constant k. Proportionality can apply to
derivatives of variables as well as to variables themselves, since they are just rates
of change. Historically, one of the major impacts of calculus is the improved ability
to model by the use of derivatives in just this way.

Relationships among variables can be graphically visualized.

In studying almost any phenomenon, among the first observations to be made about
it are its changing attributes. A tropical storm gains in wind speed as it develops;
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the intensity of sound decreases with distance from its source; living things increase
in weight in their early period of life. The measurable quantities associated with a
given phenomenon are referred to as constants, variables, or parameters. Constants
are unchanging quantities such as the mathematical constant π = 3.14159 . . . or
the physical constant named after Boltzmann: k = 1.38 × 10−16 ergs per degree.
Variables are quantitative attributes of a phenomenon that can change in value, such
as the wind speed of a tropical storm or the intensity of sound or the weight of an
organism.

Parameters are quantities that are constant for a particular instance of a phe-
nomenon, but can be different in another instance. For example, the strength of hair
fibers is greater for thicker fibers and the same holds for spider web filaments, but
the latter has a much higher strength per unit cross-section.1 Strength per unit cross-
section is a property of material that tends to be constant for a given type of material
but varies over different materials.

Often two variables of a phenomenon are linearly related , that is, a graphical
representation of their relationship is a straight line. Temperature as measured on the
Fahrenheit scale, F , and on the Celsius scale, C, are related in this way; see Fig-
ure 2.1.1. Knowing that the temperatures C = 0 and C = 100 correspond to F = 32
and F = 212, respectively, allows one to derive their linear relationship, namely,

F = 9

5
C + 32. (2.1.1)

In this, both C and F have power or degree one, that is, their exponent is 1. (Being
understood, the 1 is not explicitly written.) When two variables are algebraically
related and all terms in the equation are of degree one (or constant), then the graph of
the equation will be a straight line. The multiplier, or coefficient, 9

5 of C in (2.1.1) is
the slope of the straight line, or the constant of proportionality,between the variables.
The constant term 32 in the equation is the intercept of the straight line, or translational
term of the equation. These parameters are shown graphically in Figure 2.1.1.

We can isolate the constant of proportionality by appropriate translation. Absolute
zero on the Celsius scale is −273.15C, which is usually expressed in degrees Kelvin
K . Translation from degrees K to degrees C involves subtracting the fixed amount
273.15:

C = K − 273.15. (2.1.2)

From (2.1.1), we calculate absolute zero on the Fahrenheit scale as

F = 9

5
(−273.15)+ 32 = −459.67,

or about −460 degrees Rankine R. That is,

F = R − 459.67. (2.1.3)

Hence, substituting equations (2.1.2) and (2.1.3) into (2.1.1), we find that R is related
to K by

1 The strength of a material per unit cross-section is known as Young’s modulus.
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MAPLE

#number sign # introduces a comment
#statements must be ended by a semicolon or by a colon (suppresses printing) but can span multiple lines

> plot([C,9/5*C+32,C=0..100],-10..100,-30..220,tickmarks=[5,2]);

MATLAB

% percent sign introduces a comment in Matlab
% an end of line completes a command, or semicolon ends a command and suppresses printing results

> C=(0:1:100); % C=vector of values from 0 to 100 by ones
> F=(9/5)*C+32; % F=vector, this arithmetic to each C value
> plot(C,F); % plot the Fs vs. the Cs
> xlabel(’Temperature degrees C’); %label horizontal axis
> ylabel(’Temperature degrees F’); %label vertical axis
> axis([-10,110,-30,220]); % x scale from -10 to 110, y from -30 to 220

212

32

Temp C

Temp F

0 20 40 60 80 100

Fig. 2.1.1. Temperature conversion.

R = 9

5
K.

Thus R is proportional to K and both are zero at the same time, so there is no
translational term.

One often observes that the relationship between two variables is one of propor-
tionality but the constant is not yet known. Thus if variables x and y are linearly
related (and both are zero at the same time), we write

y = kx

with the constant of proportionality k to be subsequently determined (see Section 2.2
on least squares).

Power laws can be converted to linear form.

The area of a circle does not vary linearly with radius but rather quadratically, A =
πr2; the power, or degree, of r is two. Heat radiates in proportion to the fourth power
of absolute temperature, gravitational force varies in proportion to the inverse square
power of distance, and diffusivity varies with the one-third power of density (see
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Chapter 6). These are examples in which the relationship between variables is by a
power law with the power different from one. There are many more.

In general, a power law is of the form

y = Axk (2.1.4)

for some constants A and k. Due to the particular ease of graphing linear relationships,
it would be advantageous if this equation could be put into linear form. This can be
done by taking the logarithm of both sides of the equation. Two popular bases for
logarithms are 10 and e = 2.718281828459 . . . ; the former is often denoted by log
and the latter by ln. (Matlab uses log for logarithm to the base e.) Either will work:

log y = k log x + log A; (2.1.5)

the relationship between log y and log x is linear. Plotting pairs of (x, y) data values
on special log-log paper will result in a straight line with slope k. Of course, on a
log-log plot there is no point corresponding to x = 0 or y = 0. However, if A = 1
then log y is proportional to log x and the graph goes through the point (1, 1). In
general, A appears on the graph of (2.1.4) as the value of y when x = 1.

Another frequently encountered relationship between variables is an exponential
one given by

y = Cax. (2.1.6)

Note that the variable x is now in the exponent. Exponential functions grow (or decay)
much faster than polynomial functions; that is, if a > 1, then as an easy consequence
of L’Hopital’s rule, for any power k,

lim
x→∞

xk

ax
= 0, (2.1.7)

or in Maple,
MAPLE

> assume(a>1); assume(k>0);
> limit(xˆk/aˆx,x=infinity);

Figure 2.1.2 demonstrates this with k = 3 and a = 2. We have drawn graphs of

y = x3, y = 2x , and y = 100 · x3

2x . The graphs of the first two cross twice, the last
time about x ≈ 10:

MAPLE

> sol:=solve(xˆ3=2ˆx,x);
> evalf({sol[1],sol[2]});

MATLAB

% make a file named fig212.m with the following two lines (without the % signs);
% MATLAB requires functions be defined in external files and finds them via the MATLAB PATH
% function y=fig212(x);
% y=x.ˆ3 - 2.ˆx;
% resume this calculation

> fzero(’fig212’,10) %no semicolon to print ans.

1.3734, 9.939.

Taking logarithms of (2.1.6) to base e gives
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MAPLE

> plot({[x,xˆ3,x=0..12],[x,2ˆx,x=0..12],[x,100*xˆ3/2ˆx,x=0..14]},x=0..14,y=0..4000);

MATLAB

> x=linspace(0,14); % 100 equally spaced values 0 to 14
> y=100*x.ˆ3./2.ˆx; % .ˆmeans term by term power, ./ and .* mean term by term div. and mult.
> plot(x,y)
> hold on % keep axis, scale, etc., of the graph fixed
> x=linspace(0,12);
> plot(x,x.ˆ3); % plot overlaid on the previous plot
> plot(x,2.ˆx); % ditto

(c)

(b)

(a)

0

1000

2000

3000

4000

20 4 6 8 10 12 14

Fig. 2.1.2. Exponential vs. polynomial rate of growth graphs of (a) x3, (b) 2x , and (c) 100 x3

2x .

ln y = x ln a + ln C. (2.1.8)

If the constant a is e, then ln a = ln e = 1. Also note that any positive number
can be written as some exponent of e, namely, ln a. Thus a = eln a = er if we put
r = ln a. In the form of (2.1.8), it is ln y that is proportional to x. A semilog plot
of exponentially related variables, as in (2.1.8), produces a straight line whose slope
is ln a.

By defining r = ln a and exponentiating both sides of (2.1.8), we get

y = Cerx, where r = ln a. (2.1.9)

This is an alternative form of the relationship given in equation (2.1.6) and shows
that an exponential relationship can be expressed in base e if desired.

Proportionality can pertain to derivatives, too.

A natural and simplifying assumption about the growth of a population is that the
number of offspring born at any given time is proportional to the number of adults
at that time (see Chapter 3). This expresses a linear relationship between the number
of offspring and the number of adults. Let y(t) (or just y in brief) denote the number
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of adults at time t . In any given small interval of time �t , the number of offspring
in that time represents the change in the population �y. The ratio �y

�t
is the average

rate of growth of the population over the time period �t . The derivative dy
dt

is the
instantaneous rate of growth at time t , or just the rate of growth at time t , instantaneous
being understood. Making the questionable, but simplifying, assumption that new
offspring are immediately adults leads to a mathematical expression of the italicized
statement above:

dy

dt
= ky

for some constant of proportionality k. That is, the derivative or rate of growth is
proportional to the number present.

This particular differential equation is easily solved by integration,

dy

y
= kdt or ln y = kt + ln A,

with constant of integration ln A. Exponentiating both sides gives

y = Aekt .

This situation is typical, and we will encounter similar ones throughout the book.

Exercises

1. Proportionality constants associated with changes in units are often used in mak-
ing conversions after measurements have been made. Convert from the specified
units to the indicated units.
(a) Convert the following: x inches to centimeters, y pounds per gallon to kilo-

grams per liter, z miles per hour to kilometers per hour.

MAPLE

#Change of units is built-in
#type: ?convert.

> convert(x*inches,metric);
> convert(y*pounds/gallon,metric,US);
> convert(z*miles/hour,metric);

MATLAB

% some US to metric conversions
% Length: 1 inch = 2.54 cm (exactly), 39.3700 inch = 1 meter
% Mass: 1 lb = .45359237 kg (avoirdupois pound)
% Volume: 1 gallon = 3.785411784 liter (US gallon)

> x=0:10; y=2.54*x; plot(x,y) % plot cm vs. inch
% to plot kg/liter vs. pounds/gallon one finds the number of the former per 1 of the latter;
% use this 1 lb/gal = (1 lb/gal)*(1 gal/3.78 lit)*(.453 kg/lb)
% cancel units so that 1 lb/gal = .45359237/3.785411784 kg/lit.

(b) Sketch three graphs similar to Figure 2.1.1 that show the changes in units
indicated above. Syntax similar to that which generated Figure 2.1.1 can be
used here.

2. In this exercise, we compare graphs of exponential and power law relations with
standard graphs, log graphs, and log-log graphs. For this exercise, please type
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the commands manually (rather than executing pretyped commands downloaded
from the Web) and view the results of each command one by one. This will help
internalize the commands and aid in connecting each with its action.

(a) Sketch the graphs of πr2 and 4
3πr3 on the same graph. Then sketch both of

these as log-log plots.

(b) Sketch the graphs of 3x5 and 5x3 on the same graph. Then sketch both these
as log plots.

MAPLE

> plot({Pi*rˆ2,4/3*Pi*rˆ3},r=0..1);
> plots[loglogplot]({Pi*rˆ2,4/3*Pi*rˆ3},r=0.1..1);
> plot({3*xˆ5,5*xˆ3},x=0..1);
> plots[logplot]({3*xˆ5,5*xˆ3},x=0..1);

MATLAB

> r=0:.1:1; % create vector of r values
> plot(r,pi*r.ˆ2)

% plot pi r squared vs. r, use .ˆ(dot hat, not ˆ)
% to get term by term r squared, no need for .* (dot star) since pi is a constant

> hold on % to overlay this graph
> plot(r,pi*(4/3)*r.ˆ3);
> hold off % begin new plot
> loglog(r,pi*r.ˆ2) % MATLAB automatically avoided r=0
> hold on
> loglog(r,(4/3)*pi*r.ˆ3)
> hold off
> x=linspace(0,1); % divide 0 to 1 into 100 subdivisions
> plot(x,3*x.ˆ5); hold on
> plot(x,5*x.ˆ3)

3. This exercise examines limits of quotients of polynomials and exponentials.
Sketch the graphs of 3x2 + 5x + 7 and 2x on the same axis. Also, sketch the
graph of their quotients. Evaluate the limit of this quotient.

MAPLE

> plot({3*xˆ2+5*x+7,2ˆx},x=0..7);
> plot((3*xˆ2+5*x+7)/2ˆx,x=0..10,y=0..10);
> limit((3*xˆ2+5*x+7)/2ˆx,x=infinity);

MATLAB

> x=linspace(0,7); % vector of 100 x values
> plot(x,3*x.ˆ2+5*x+7); hold on
> plot(x,2.ˆx)

% or make a matrix whose first row=polynomial and second row=exponential
> M=[3*x.ˆ2+5*x+7; 2.ˆx]; % note the semicolon in M
> hold off; plot(x,M) % and plot both at once
> plot(x,M(1,:)./M(2,:))

% quotient of first row/second row term by term
% observe the limit is 0 graphically

4. This exercise solves differential equations such as we encounter in Section 2.1.
Give the solution and plot the graph of the solution for each of these differential
equations:

dy

dt
= 3y(t), y(0) = 2,

dy

dt
= 2y(t), y(0) = 3,

dy

dt
= 2y(t), y(0) = −3,
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dy

dt
= −2y(t), y(0) = 3.

Here is syntax that will do the first problem and will undo the definition of y to
prepare for the remaining problems.

MAPLE

> eq:=diff(y(t),t)=3*y(t);
> sol:=dsolve({eq,y(0)=2},y(t));
> y:=unapply(rhs(sol),t); plot(y(t),t=0..1);
> y:=’y’;

MATLAB

% for the 1st DE make an m-file, ex214a.m, say, containing
% function yprime=ex214a(t,y); yprime=3*y;

> [t,y]=ode23(’ex214a’,[0 1],2);
> plot(t,y)

2.2 Linear Regression, the Method of Least Squares

In this section we introduce the method of least squares for fitting straight lines to
experimental data. By transformation, the method can be made to work for data
related by power laws and exponential laws as well as for linearly related data.

The method is illustrated with two examples.

The method of least squares calculates a linear fit to experimental data.

Imagine performing the following simple experiment: Record the temperature of
a bath as shown on two different thermometers, one calibrated in Fahrenheit and
the other in Celsius, as the bath is heated. We plot the temperature F against the
temperature C. Surprisingly, if there are three or more data points observed to high
precision, they will not fall on a single straight line because the mathematical line
established by two of the points will dictate infinitely many digits of precision for
the others—no measuring device is capable of infinite precision. This is one source
of error, and there are others. Thus experimental data, even data for linearly related
variables, are not expected to fall perfectly on a straight line.

How then can we conclude experimentally that two variables are linearly related,
and if they are, how can the slope and intercept of the correspondence be determined?
The answer to the latter question is by the method of least squares fit and is the
subject of this section; the answer to the first involves theoretical considerations and
the collective judgment of scientists familiar with the phenomenon.

Assume that the variables x and y are suspected to be linearly related and we have
three experimental points for them, for example C and F in the example above. For
the three data points (x1, y1), (x2, y2), and (x3, y3) shown in Figure 2.2.1, consider a
possible straight line fit, �(x). Let e1, e2, and e3 be the errors

ei = yi − �(xi), i = 1, . . . , 3,
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Fig. 2.2.1. The differences ei = yi − �(xi).

defined as the difference between the data value yi and the linear value �(xi) for each
point. Note that we assume that all x-data values are exact and that the errors are
in the y-values only. This is reasonable because x is the independent variable; the
x-values are the ones determined by the experimenter.

We want to choose a line � that minimizes all of the errors at the same time; thus
a first attempt might be to minimize the sum e1 + e2 + e3. The difficulty with this
idea is that these errors can cancel because they are signed values. Their sum could
even be zero. But squaring each error eliminates this problem. And we choose the
line � so as to minimize

E =
3∑

i=1

e2
i =

3∑
i=1

[yi − �(xi)]2,

that is, the least of the squared errors.

A line is determined by two parameters, slope m and intercept b, �(x) = mx + b.
Therefore the mathematical problem becomes, find m and b to minimize

E(m, b) =
n∑

i=1

[yi − (mxi + b)]2 (2.2.1)

for n equal to the number of data points, three in this example. We emphasize that
this error E is a function of m and b (not x and y; the xi and yi are specified numbers
at the outset). Solving such a minimization problem is standard practice: Set the
derivatives of E with respect to its variables m and b equal to zero and solve for
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m and b,2

0 = ∂E

∂m
= −2

n∑
i=1

[yi − (mxi + b)]xi,

0 = ∂E

∂b
= −2

n∑
i=1

[yi − (mxi + b)].

These equations simplify to

0 =
n∑

i=1

xiyi −m

n∑
i=1

x2
i − b

n∑
i=1

xi,

0 =
n∑

i=1

yi −m

n∑
i=1

xi − nb,

(2.2.2)

which may be easily solved.3 The least squares solution is

m = n
∑n

i=1 xiyi −
(∑n

i=1 xi

) (∑n
i=1 yi

)
n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2 ,

b =
(∑n

i=1 x2
i

) (∑n
i=1 yi

)− (∑n
i=1 xi

) (∑n
i=1 xiyi

)
n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2 .

(2.2.3)

The expression for b simplifies to4

b = ȳ −mx̄, where ȳ = 1

n

n∑
i=1

yi and x̄ = 1

n

n∑
i=1

xi.

We will illustrate the least squares method with two examples.

Example 2.2.1. Juvenile height vs. age is only approximately linear.

In Table 2.2.1, we show age and average height data for children.
With n = 7, age and height interpreted as x and y, respectively, in (2.2.1), and

using the data of the table, parameters m and b can be evaluated from the equations
in (2.2.3):

2 Since E is a function of two independent variables m and b, it can vary with m while b

is held constant or vice versa. To calculate its derivatives, we do just that: Pretend b is
a constant and differentiate with respect to m as usual; this is called the partial derivative
with respect to m and is written ∂E

∂m
in deference to the variables held fixed. Similarly,

hold m constant and differentiate with respect to b to get ∂E
∂b

. At a minimum point of E,
both derivatives must be zero, since E will be momentarily stationary with respect to each
variable.

3 Verify this solution by substituting m = nE−BF
nA−BC

and b = AF−cE
nA−BC

into mA+ bB = E and
mC + nb = F .

4 Starting from ȳ − mx̄ with m from (2.2.3), make a common denominator and cancel the
terms −(

∑
xi)

2ȳ + x̄
∑

xi

∑
yi , and the expression for b emerges.
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Table 2.2.1.Average height vs. age for children. (Source: D. N. Holvey, ed., The Merck Manual
of Diagnosis and Therapy, 15th ed., Merck, Sharp, and Dohme Research Laboratories, Rahway,
NJ, 1987.)

Height (cm) 75 92 108 121 130 142 155
Age 1 3 5 7 9 11 13

MAPLE

> ht:=[75,92,108,121,130,142,155]; age:=[1,3,5,7,9,11,13];
> sumy:=sum(ht[n],n=1..7); sumx:=sum(age[n],n=1..7);
> sumx2:=sum(age[n]ˆ2,n=1..7);
> sumxy:=sum(age[n]*ht[n],n=1..7);
> m:=evalf((7*sumxy-sumx*sumy)/(7*sumx2-sumxˆ2));
> b:=evalf((sumx2*sumy-sumx*sumxy)/(7*sumx2-sumxˆ2));

MATLAB

> ht=[75 92 108 121 130 142 155];
> age=[1 3 5 7 9 11 13];
> sumy=sum(ht);
> sumx=sum(age);
> age2=age.*age;
> sumx2=sum(age2);
> ageht=age.*ht;
> sumxy=sum(ageht);
> m=(7*sumxy-sumx*sumy)/(7*sumx2-sumxˆ2)
> b=(sumx2*sumy-sumx*sumxy)/(7*sumx2-sumxˆ2)

m = 6.46 and b = 72.3.

These data are plotted in Figure 2.2.2 along with the least squares fit for an assumed
linear relationship ht = m · age+ b between height and age.

height (cm)

80

100

120

140

160

0 5 10
age

Fig. 2.2.2. Height vs. age among children.
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Finding a least square fit is so important that it has its own routine in Maple called
fit[leastsquare]. In Matlab a least square fit is performed by a simple matrix
statement. The mathematics of the matrix approach is the subject of the next section.
Here then is the shortcut syntax for accomplishing what was done above.

MAPLE

> m:=’m’; b:=’b’; # clears m and b (single quotes/apostrophy)
# next create an array of (age,ht) pairs;

> pts:=[seq([age[i],ht[i]],i=1..7)]:
> with(plots): with(stats):
> Data:=plot(pts,style=POINT,symbol=CIRCLE):
> fit[leastsquare[[x,y],y=m*x+b]]([age,ht]);

# result in y=m*x+b form, m*x is the first operand on the right-hand side
> m:=op(1,op(1,rhs(%))); # strip off x too
> b:=op(2,rhs(%%)); # use %% to get second statement back
> Fit:=plot(m*x+b,x=0..14):
> display({Data,Fit});

MATLAB

% Now the matrix solution
% matrix of independent variable
% experimental values as columns

> MT=[1 3 5 7 9 11 13; 1 1 1 1 1 1 1]; % two rows
> M=MT’; % transpose to columns

% M = transpose of MT
% dependent variable data next, as col. vec.

>Y=[75; 92; 108; 121; 130; 142; 155];
> s=M\Y % MATLAB syntax for leastsquare
> m=s(1); b=s(2); % plot data and fit for comparison, Figure 2.2.2
> plot(age,ht,’o’) % point plot ht vs. age with circles
> hold on
> fit=m*age+b;
> plot(age,fit); xlabel(’age’); ylabel(’Height (cm)’);

This demonstrates the mechanics of the least squares method. But it must be kept
in mind that the method is merely statistical; it can demonstrate that data are consistent
or not with a linear assumption, but it cannot prove linearity. In this example, a linear
fit to the data is reasonably good, but no rationale for a linear relationship has been
provided.

Example 2.2.2. The number of AIDS cases increases cubically.

As we saw in the first part of this section, when the data are obviously not linear,
we can try to fit a power law of the form y = Axk . Consider the following data
as reported in the HIV/AIDS Surveillance Report published by the U.S. Department
of Health and Human Services concerning the reported cases of AIDS by half-year
shown in Table 2.2.2. The third column is the sum of all the cases reported to that
time, i.e., the Cumulative AIDS Cases (CAC).

This cumulativeAIDS cases data is shown later in Figure 2.2.4. The circle symbols
of the figure give the CAC data vs. year; the solid curve is the least squares fit, which
we discuss next. In this figure, CAC is measured in thousands and t is decades from
1980, that is, t = year−1980

10 .
We begin by first reading in the data:

MAPLE

> restart:
> AIDS:=([97, 206, 406, 700, 1289, 1654, 2576, 3392, 4922, 6343, 8359, 9968, 12990, 14397, 16604,

17124, 19585, 19707, 21392, 20846, 23690, 24610, 26228, 22768, 4903]);
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Table 2.2.2. Total and reported cases of AIDS in the U.S.

Year Reported cases of AIDS Cumulative AIDS cases (thousands)
1981 97 0.097
1981.5 206 0.303
1982 406 0.709
1982.5 700 1.409
1983 1289 2.698
1983.5 1654 4.352
1984 2576 6.928
1984.5 3392 10.320
1985 4922 15.242
1985.5 6343 21.585
1986 8359 29.944
1986.5 9968 39.912
1987 12990 52.902
1987.5 14397 67.299
1988 16604 83.903
1988.5 17124 101.027
1989 19585 12.0612
1989.5 19707 140.319
1990 21392 161.711
1990.5 20846 181.557
1991 23690 206.247
1991.5 24610 230.857
1992 26228 257.085
1992.5 22768 279.853

> CAC:=[seq(sum(AIDS[j]/1000.0, j=1..i),i=1..24)];
> Time:=[seq(1981+(i-1)/2,i=1..24)]:

MATLAB

% year by year cases; note that ellipses continue the line
> AIDS=[97 206 406 700 1289 1654 2576 3392 4922 6343 8359 9968 12990 14397 16604 17124 19585 …

19707 21392 20846 23690 24610 26228 22768];
> CAC=cumsum(AIDS)/1000; % cumulative sum (scaled down 1000)

% housekeeping to get the sequence 0,0.5,1,1.5,…
> s=size(AIDS); % number of half-years
> count=[0:s(2)-1];
> time =1981+count/2;

To produce the fit we proceed as before using (2.2.1), but this time performing
least squares on y = ln(CAC) vs. x = ln t :

ln(CAC) = k ∗ ln t + ln A. (2.2.4)

Here we rescale time to be decades after 1980 and calculate the logarithm of the data:
MAPLE

> LnCAC:=map(ln,CAC);
> Lntime:=map(ln,[seq((i+1)/2/10,i=1..24)]);

MATLAB

% shifted and scaled time
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> scaledTime=(time-1980)/10
% log the data to do a log-log plot

> lnCAC=log(CAC)
> lnTime=log(scaledTime)

It remains to calculate the coefficients:
MAPLE

> with(stats):
> fit[leastsquare[[x,y],y=k*x+LnA]]([Lntime,LnCAC]);
> k:=op(1,op(1,rhs(%))); LnA:=(op(2,rhs(%%))); A:=exp(LnA);

MATLAB

% form the coefficient matrix for lnCAC = k*lnTime + b fit
> MT=[lnTime; ones(1,24)] % second row is ones
> M=MT’;
> params=M\(lnCAC’) % do the leastsquares
> k=params(1)
> A=exp(params(2))

k = 3.29, and ln A = 5.04, A = 155.

We draw the graph of Ln(CAC) vs. Ln(time) to emphasize that their relationship is
nearly a straight line. The log-log plot of best fit is shown in Figure 2.2.3 and is drawn
as follows:

MAPLE

> Lndata:=plot([seq([Lntime[i],LnCAC[i]],i=1..24)],style=POINT,symbol=CIRCLE):
> Lnfit:=plot(k*x+ln(A),x=-2.5..0.5):
> plots[display]({Lndata,Lnfit});

MATLAB

% now compare the fit to the data in log-log space
> plot(lnTime,lnCAC,’o’)
> lnFit= params(1).*lnTime+params(2)
> plot(lnTime,lnFit)

The curve of best fit is, from (2.2.4),

CAC = 155t3.29.

Ln(CAC)

Ln(year-1980)
–2

0

2

4

6

–2.5 –2 –1.5 –1 -0.5 0 0.5

Fig. 2.2.3. Log-log plot of cumulative AIDS cases and its fit.
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But we want an integer exponent; hence the exponent for the comparative graph to
the data will be taken as

MAPLE

> n:=trunc(k);

n = 3,

CAC = 155t3 = 155

(
year− 1980

10

)3

.

Figure 2.2.4 is drawn as an overlay of the data and this fit.

MAPLE

> pts:=[seq([Time[i], CAC[i]], i=1..24)];
> Fit:=plot(A*((t-1980)/10)ˆn,t=1980..1993):
> Data:=plot(pts,style=POINT,symbol=CIRCLE):
> plots[display](Fit,Data);

MATLAB

% and compare in regular space
> hold off; plot(time,CAC)
> CACFit=exp(params(2)).*scaledTime.ˆparams(1)
> plot(time,CACFit)

year

0

100

200

300

CAC

1980 1985 1990

Fig. 2.2.4. Cumulative AIDS cases.

Again, we see that the fit is good. Turning from the mechanical problem of fitting
the data to the scientific problem of explaining the fit, why should a cubic fit so well?

In the studies of populations and infectious diseases, it is common to ask at what
rate an infected population is growing. Quite often, populations grow exponentially
in their early stages, that is, according to (2.1.6). We will investigate this idea in
Chapters 3 and 4.

In the first decade after the appearance ofAIDS and the associated HIV, an analysis
of the data for the total number of reported cases of AIDS led to the announcement
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that the population was growing cubically as a function of time. This was a relief of
sorts because the growth was not exponential as expected, since exponential growth
is much faster than polynomial growth; see (2.1.7).

Colgate et al. [2] constructed a model for HIV infection that led to the result that
the growth rate should be cubic in the early stages. A central idea in the model is the
recognition that the disease spreads at different rates in different “risk groups,’’ and
that there is a statistically predictable rate at which the disease crosses risk groups.

In the exercises, we attempt an exponential fit to these data.

Exercises

1. Ideal weights for medium-build males are listed in Table 2.2.3 from [3].

Table 2.2.3. Ideal weights for medium-build males.

Height (in) Weight (lb)
62 128
63 131
64 135
65 139
66 142
67 146
68 150
69 154
70 158
71 162
72 167
73 172

(a) Show that a linear fit for these data is

wt = 4.04 · ht + 124.14.

(b) In many geometric solids, volume changes with the cube of the height. Give
a cubic fit for these data.

(c) Using the techniques of Example 2.2.2, find n and A such that

wt = A · (ht − 60)n.

The following code can be used for Exercise 1(b). A modification of one line
can be used for 1(a). For 1(c), modify the code for Example 2.2.2.

MAPLE

> ht:=[62,63,64,65,66,67,68,69,70,71,72,73,74];
> wt:=[128,131,135,139,142,146,150,154,158,162,167,172,177];
> with(stats): fit[leastsquare[[x,y], y=a*xˆ3+b*xˆ2+c*x+d]]([ht,wt]);
> y:=unapply(rhs(%),x);
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> pts:=[seq([ht[i],wt[i]],i=1..13)];
> J:=plot(pts,style=POINT,symbol=CROSS):K:=plot(y(x),x=62..74):
> with(plots): display({J,K});
> errorLinear:=sum(’(4.04*ht[i]-124.14- wt[i])ˆ2’,’i’=1..13);
> errorcubic:=sum(’(y(ht[i])-wt[i])ˆ2’,’i’=1..13);
> evalf(%);

MATLAB

> ht=[62,63,64,65,66,67,68,69,70,71,72,73,74];
> wt=[128,131,135,139,142,146,150,154,158,162,167,172,177];
> MT=[ht.ˆ3; ht.ˆ2; ht; ones(1,13)];
> params=MT’\wt’; % MT prime, wt prime
> plot(ht,wt,’x’); hold on
> fit=params(1)*ht.ˆ3+params(2)*ht.ˆ2+params(3)*ht+params(4);
> plot(ht,fit)
> errorLinear=sum((4.04*ht-124.14-wt).ˆ2)
> errorcubic=sum((fit-wt).ˆ2)

2. Changes in the human life span are illustrated graphically on p. 110 of the October
1994 issue of Scientific American. These data appear in Table 2.2.4 in three rows:
The first row indicates the age category. The next two rows indicate the percentage
of people who survived to that age in the United States in the years 1900 and
1960. The last row is the percentage of people who survived to that age in ancient
Rome. Get a least squares fit for these data sets. Syntax that provides such a fit
is given for the 1960 data.

Table 2.2.4. Survival rates for recent U.S. and ancient Rome.

Age 0 10 20 30 40 50 60 80 100
1900 100 82 78 75 74 60 43 19 3
1960 100 98.5 98 96.5 95 92.5 79 34 4
Rome 90 73 50 40 30 22 15 5 0.5

MAPLE

> restart:
> age60:=[0,10,20,30,40,50,60,80,100]:
> percent60:=[100,98.5,98,96.5,95,92.5,79,34,4]:
> with(stats):
> fit[leastsquare[[x,y],y=a*xˆ4+b*xˆ3+c*xˆ2+d*x+e]]([age60,percent60]);
> yfit60:=unapply(rhs(%),x):
> pts60:=[seq([age60[i],percent60[i]],i=1..9)]:
> J6:=plot(pts60,style=POINT,symbol=CROSS):
> K6:=plot(yfit60(x),x=0..100):
> with(plots): display({J6,K6});

MATLAB

> age60=[0,10,20,30,40,50,60,80,100];
> percent60=[100,98.5,98,96.5,95,92.5,79,34,4];
> MT=[age60.ˆ4; age60.ˆ3;age60.ˆ2; age60; ones(size(age60))];
> parms=MT’\percent60’ % note the primes
> fit=parms(1)*age60.ˆ4+parms(2)*age60.ˆ3+parms(3)*age60.ˆ2+parms(4)*age60+parms(5);
> plot(age60,percent60,age60,fit)

3. We have found a fit for the cumulative U.S. AIDS data as a cubic polynomial.
We saw that, in a sense, a cubic polynomial is the appropriate choice. On first
looking at the data as shown in Figure 2.2.4, one might guess that the growth is
exponential. Find an exponential fit for those data. Such a fit would use (2.1.8).
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Computer code to perform the calculations is only slightly different from that for
the cubic fit:

MAPLE

> restart:
> AIDS:=([97, 206, 406, 700, 1289, 1654, 2576, 3392, 4922, 6343, 8359, 9968, 12990, 14397, 16604,
17124, 19585, 19707, 21392, 20846, 23690, 24610, 26228, 22768, 4903]);
> CAC:=[seq(sum(AIDS[j]/1000.0,j=1..i),i=1..24)];
> Time:=[seq(1981+(i-1)/2,i=1..24)]:
> pts:=[seq([Time[i],CAC[i]],i=1..24)]:
> LnCAC:=map(ln,CAC);
> Times:=[seq((i+1)/2/10,i=1..24)];
> with(stats):
> fit[leastsquare[[x,y],y=m*x+b]]([Times,LnCAC]);
> k:=op(1,op(1,rhs(%)));A:=op(2,rhs(%%));
> y:=t–>exp(A)*exp(k*t);
> J:=plot(y((t-1980)/10),t=1980..1992):
> K:=plot(pts,style=POINT,symbol=CIRCLE):
> plots[display]({J,K});

MATLAB

> AIDS=[97, 206, 406, 700, 1289, 1654, 2576, 3392, 4922, 6343, 8359, 9968, 12990, 14397, 16604,…
17124, 19585, 19707, 21392, 20846, 23690, 24610, 26228, 22768];

> CAC=cumsum(AIDS)/1000;
> s=size(AIDS); % number of half-years
> count=[0:s(2)-1];
> Time =1981+count/2;
> pts=[Time’ CAC’];
> plot(pts(:,1),pts(:,2)); hold on
> Times=(Time-1980)/10; LnCAC=log(CAC);
> MT=[Times; ones(1,s(2))]; % note the space
> params=MT’\LnCAC’
> k=params(1); A=params(2);
> y=exp(A)*exp(k.*Times);
> plot(10*Times+1980,y)

4. Table 2.2.5 presents unpublished data that was gathered by Dr. Melinda Millard-
Stafford at the Exercise Science Laboratory in the Department of Health and
Performance Sciences at Georgia Tech. It relates the circumference of the forearm
with grip strength. The first two columns are for a group of college women, and
the following two columns are for college men. Find regression lines (that is,
least square fits) for both sets of data:

MAPLE

> CW:=[24.2,22.9,27.,21.5,23.5,22.4, 23.8, 25.5, 24.5,25.5,22.,24.5];
> GSW:=[38.5,26.,34.,25.5,37.,30.,34.,43.5,30.5, 36.,29.,32];
> with(stats):
> fit[leastsquare[[x,y],y=m*x+b]]([CW,GSW]);
> pts:=[seq([CW[i],GSW[i]],i=1..12)];
> J:=plot(pts,style=POINT,symbol=CROSS):
> K:=plot(2.107*x-17.447,x=21..28):
> CM:=[28.5,24.5,26.5,28.25,28.2,29.5,24.5,26.9,28.2,25.6,28.1,27.8,29.5,29.5,29];
> GSM:=[45.8,47.5,50.8,51.5,55.0,51.,47.5,45.,56.0,49.5,57.5,51.,59.5, 58.,68.25];
> fit[leastsquare[[x,y],y=m*x+b]]([CM,GSM]);
> pts:=[seq([CM[i],GSM[i]],i=1..15)];
> L:=plot(pts,style=POINT,symbol=CIRCLE):
> M:=plot(2.153*x-6.567,x=24..30):
> with(plots): display({J,K,L,M});

MATLAB

> CW=[24.2,22.9,27.,21.5,23.5,22.4,23.8,25.5,24.5,25.5,22.,24.5];
> GSW=[38.5,26.,34.,25.5,37.,30.,34.,43.5,30.5,36.,29.,32];
> MT=[CW; ones(size(CW))];
> parmsW=MT’\GSW’;
> plot(CW,GSW,’x’); hold on
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Table 2.2.5. Forearm and grip strength, males/females.

Females Males
Circumference (cm) Grip (kg) Circumference (cm) Grip (kg)

24.2 38.5 28.5 45.8
22.9 26.0 24.5 47.5
27.0 34.0 26.5 50.8
21.5 25.5 28.25 51.5
23.5 37.0 28.2 55.0
22.4 30.0 29.5 51.0
23.8 34.0 24.5 47.5
25.5 43.5 26.9 45.0
24.5 30.5 28.2 56.0
25.5 36.0 25.6 49.5
22.0 29.0 28.1 57.5
24.5 32.0 27.8 51.0

29.5 59.5
29.5 58.0
29.0 68.25

> x=21:28; plot(x,parmsW(1)*x+parmsW(2))
%%%

> CM=[28.5,24.5,26.5,28.25,28.2,29.5,24.5,26.9,28.2,25.6,28.1,27.8,29.5,29.5,29];
> GSM=[45.8,47.5,50.8,51.5,55.0,51.,47.5,45.,56.0,49.5,57.5,51.,59.5,58.,68.25];
> MT=[CM; ones(size(CM))];
> parmsM=MT’\GSM’
> plot(CM,GSM,’o’)
> x=24:30;
> plot(x,parmsM(1)*x+parmsM(2))

2.3 Multiple Regression

The least squares method extends to experimental models with arbitrarily many pa-
rameters. However, the model must be linear in the parameters. The mathematical
problem of their calculation can be cast in matrix form, and as such, the parameters
emerge as the solution of a linear system. The method is again illustrated with two
examples.

Least squares can be extended to more than two parameters

In the previous section, we learned how to perform linear regression, or least squares,
on two parameters, to get the slope m and intercept b of a straight-line fit to data.
We also saw that the method applies to other models for the data than just the linear
model. By a model here we mean a mathematical formula of a given form involving
unknown parameters. Thus the exponential model for (x, y) data is

y = Aerx.
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And to apply linear regression, we transform it to the form

ln y = rx + ln A,

by taking the logarithm of both sides (cf. (2.1.8)). Here the transformed data is
Y = ln y and X = x, while the transformed parameters are M = r and B = ln A.
The key requirement of a regression model is that it be linear in the parameters.

Regression principle. The method of least squares can be adapted to calculate the
parameters of a model if there is some transformation of the model that is linear in
the transformed parameters.

Consider the Michaelis–Menten equation for the initial reaction rate v0 of the
enzyme-catalyzed reaction of a substrate having a concentration denoted by [S] (see
Section 8.6),

v0 = vmax[S]
Km + [S] ;

the parameters are vmax and Km. By taking the reciprocal of both sides of this
equation, we get the Lineweaver–Burk equation:

1

v0
= Km

vmax

1

[S] +
1

vmax
. (2.3.1)

Now the transformed model is linear in its parameters M = Km

vmax
and B = 1

vmax
, and

the transformed data are Y = 1
v0

and X = 1
[S] . After determining the slope M and

intercept B of a double reciprocal plot of 1
v0

vs. 1
[S] by least squares, then calculate

vmax = 1
B

and Km = M
B

.
So far we have looked only at two-parameter models; but the principles apply to

models of any number of parameters. For example, the Merck Manual (R. Berkow,
ed., The Merck Manual of Diagnosis and Therapy, 14th ed., Merck, Sharp, and
Dohme Research Laboratories, Rahway, NJ, 1982) gives a relationship between the
outer surface area of a person as a function of height and weight as follows:

surface area = c · wta · htb,

with parameters a, b, and c (a and b have been determined to be 0.425 and 0.725,
respectively). A transformed model, linear in parameters, for this is

ln(surface area) = a ln(wt)+ b ln(ht)+ ln c.

The transformed data are triples of values (X1, X2, Y ), where X1 = ln(wt), X2 =
ln(ht), and Y = ln(surface area).

We now extend the method of least squares to linear models of r generalized inde-
pendent variables X1, . . . , Xr and one generalized dependent or response variable Y ,

Y = a1X1 + a2X2 + · · · + arXr .
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Note that we can recover the two variable case of Section 2.2 by taking r = 2 and
X2 = 1. Assume that there are n data points (X1,i , . . . , Xr,i , Yi), i = 1, . . . , n. As
before, let ei denote the error between the experimental value Yi and the predicted
value,

ei = Yi − (a1X1,i + · · · + arXr,i), i = 1, . . . , n.

And as before, we choose parameter values a1, . . . , ar to minimize the squared error,

E(a1, . . . , ar ) =
n∑

i=1

e2
i =

n∑
i=1

[Yi − (a1X1,i + · · · + arXr,i)]2.

To minimize E, differentiate it with respect to each parameter aj and set the
derivative to zero,

0 = ∂E

∂aj

= −2
n∑

i=1

Xj,i[Yi − (a1X1,i + · · · + arXr,i)], j = 1, . . . , r.

The resulting linear system for the unknowns a1, . . . , ar can be rearranged to the
following form (compare with equations (2.2.2)):

a1

n∑
i

X1,iX1,i + · · · + ar

n∑
i

X1,iXr,i =
n∑
i

X1,iYi,

a1

n∑
i

Xr,iX1,i + · · · + ar

n∑
i

Xr,iXr,i =
n∑
i

Xr,iYi .

(2.3.2)

It is possible to write this system in a very compact way using matrix notation. Let
MT be the matrix of data values of the independent variables,

MT =

⎡
⎢⎢⎢⎣

X1,1 X1,2 . . . X1,n

X2,1 X2,2 . . . X2,n

...
... . . .

...

Xr,1 Xr,2 . . . Xr,n

⎤
⎥⎥⎥⎦.

The ith row of the matrix is the vector of data values of Xi . Represent the data values
of the dependent variable Y as a column vector and denote the whole column by Y,

Y =

⎡
⎢⎢⎢⎣

Y1
Y2
...

Yn

⎤
⎥⎥⎥⎦.

Denoting by M the transpose of MT , the system of equations (2.3.2) can be written
in matrix form as

MT Ma = MT Y, (2.3.3)

where a is the column vector of regression parameters.
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Example 2.3.1. Can body mass and skin fold predict body fat?

Sparling et al. [4] investigate the possibility of predicting body fat from height,
weight, and skin fold measurements for women. Percentage body fat can be estimated
by two methods: hydrostatic weighing and bioelectric impedance analysis. As in
standard practice, height and weight enter the prediction as the fixed combination of
weight divided by height squared to form a factor called body-mass index,

body-mass index = weight

height2
.

The assumed relationship is taken as

percent body fat = a ∗ body-mass index+ b ∗ skin fold+ c

for some constants a, b, and c.
Table 2.3.1 gives a subset of data of Sparling [4] that we will use for this example

to find these constants. The weight and height measurements were made in pounds
and inches respectively; body-mass index is to be in kilograms per square meter, so
the conversions 0.0254 meter = 1 inch and 2.2046 pounds = 1 kilogram have been
done to calculate the body-mass index column of the table.

Table 2.3.1. Height, weight, skin fold, and % body fat for women.

Height (in) Weight (lbs) Body mass (kg/m2) Skin fold % Body fat
63.0 109.3 19.36 86.0 19.3
65.0 115.6 19.24 94.5 22.2
61.7 112.4 20.76 105.3 24.3
65.2 129.6 21.43 91.5 17.1
66.2 116.7 18.72 75.2 19.6
65.2 114.0 18.85 93.2 23.9
70.0 152.2 21.84 156.0 29.5
63.9 115.6 19.90 75.1 24.1
63.2 121.3 21.35 119.8 26.2
68.7 167.7 24.98 169.3 33.7
68.0 160.9 24.46 170.0 36.2
66.0 149.9 24.19 148.2 31.0

We compute the third column of Table 2.3.1 from the first two:
MAPLE

> ht:=[63,65,61.7,65.2,66.2,65.2,70.0,63.9,63.2,68.7,68,66];
wt:=[109.3,115.6,112.4,129.6,116.7,114.0,152.2,115.6,121.3,167.7,160.9,149.9];

> convert([seq(wt[i]*lbs/(ht[i]/12*feet)ˆ2,i=1..12)],metric);

MATLAB

% (1 kg/2.2046 lb)/(0.0254 m/1 in)ˆ2 = 703.076 kg-inˆ2/lb-mˆ2
ht=[63,65,61.7,65.2,66.2,65.2,70.0,63.9,63.2,68.7,68,66];
wt=[109.3,115.6,112.4,129.6,116.7,114.0,152.2,115.6,121.3,167.7,160.9,149.9];
bodymass=(wt./(ht.*ht))*703.076;
% this is the M1 in the next step
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To apply (2.3.3), we take X1 to be body-mass index, X2 to be skin fold, and
X3 = 1 identically. From the table, MT is

MT =
⎡
⎣19.36 19.24 20.76 21.43 18.72 . . . 24.19

86.0 94.5 105.3 91.5 75.2 . . . 148.2
1 1 1 1 1 . . . 1

⎤
⎦,

and the response vector is

YT = [19.3 22.2 24.3 17.1 19.6 . . . 31.0
]
.

Solving the system of equations (2.3.3) gives the values of the parameters. We
continue the present example:

MAPLE

> BMI:=[19.36,19.24, 20.76, 21.43, 18.72, 18.85, 21.84, 19.90, 21.35, 24.98, 24.46, 24.19];
> SF:=[86.0, 94.5,105.3, 91.5, 75.2, 93.2, 156.0, 75.1, 119.8, 69.3, 170.0, 148.2];
> PBF:=[19.3, 22.2, 24.3, 17.1, 19.6, 23.9, 29.5, 24.1, 26.2, 33.7, 36.2, 31.0];
> with(stats):
> fit[leastsquare[[bdymass,sfld,c]]]([BMI,SF,PBF]);
> bdft:=unapply(rhs(%),(bdymass,sfld));

MATLAB

% matrix of X values (metric)
> M1=[19.36 19.24 20.76 21.43 18.72 18.85 21.84 19.9 21.35 24.98 24.46 24.19];
> M2=[86.0 94.5 105.3 91.5 75.2 93.2 156.0 75.1 119.8 169.3 170 148.2];
> MT=[M1; M2; ones(1,12)];

% now vector of corresponding Y values
>Y=[19.3; 22.2; 24.3; 17.1; 19.6; 23.9; 29.5; 24.1; 26.2; 33.7; 36.2; 31.0];

% do min. norm inversion (i.e., least squares)
> params=MT’\Y

a = .00656, b = .1507, c = 8.074.

Thus we find that

percent body fat

≈ .00656× body-mass index+ .1507× skin fold+ 8.074.
(2.3.4)

To test the calculations, here is a data sample not used in the calculation. The
subject is 64.5 inches tall, weighs 135 pounds, and has skin fold that measures 159.9
millimeters. Her body-fat percentage is 30.8 as compared to the predicted value
of 32.3:

MAPLE

> convert(135*lbs/((64.5/12*ft)ˆ2),metric);
> bdft(22.815,159.9);

MATLAB

% predict percent body fat for subject 64.5 inches tall, weight of 135 lbs, and skin fold of 159.9 mm
% 2.2046 lbs per kilogram and 39.37 inches per meter

> bmi= (135/2.2046)/(64.5/39.37)ˆ2
% so percent body fat is predicted as

> pbf=params(1)*bmi+params(2)*159.9+params(3)

bdft = 32.3.
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Example 2.3.2. Can thigh circumference and leg strength predict vertical jumping
ability?

Unpublished data gathered by Dr. Millard-Stafford in the Exercise Science Lab-
oratory at Georgia Tech relates men’s ability to jump vertically to the circumference
of the thigh and leg strength as measured by leg press. The correlation was to find a,
b, and c such that

jump height = a ∗ (thigh circumference)+ b ∗ (bench press)+ c.

Hence the generalized variable X1 is thigh circumference, X2 is bench press, and
X3 = 1.

Data from a sample of college-age men is shown in Table 2.3.2. From the table,

MT =
⎡
⎣58.5 50 59.5 58 . . . 56.25

220 150 165 270 . . . 200
1 1 1 1 . . . 1

⎤
⎦

and

YT = [19.5 18 22 19 . . . 29
]
.

Solutions for (2.3.3) for these data are approximately found:
MAPLE

> thigh:=[58.5, 50, 59.5, 58, 60.5, 57.5, 49.3, 53.6, 58.3, 51, 54.2, 54, 59.5, 57.5, 56.25];
> press:=[220,150,165,270,200,250,210,130,220,165,190,165,280,190,200];
> jump:=[19.5,18,22,19,21,22,29.5,18,20,20,25,17,26.5,23,29];

Table 2.3.2. Leg size, strength, and jumping ability for men.

Thigh average
circumference Leg press Vertical jump

(cm) (lbs) (in)
58.5 220 19.5
50.0 150 18.0
59.5 165 22.0
58.0 270 19.0
60.5 200 21.0
57.5 250 22.0
49.3 210 29.5
53.6 130 18.0
58.3 220 20.0
51.0 165 20.0
54.2 190 25.0
54.0 165 17.0
59.5 280 26.5
57.5 190 23.0
56.25 200 29.0
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> with(stats):
> fit[leastsquare[[x,y,z], z=a*x+b*y+c, {a,b,c}]]([thigh,press,jump]);

MATLAB

> M1=[58.5 50.0 59.5 58.0 60.5 57.5 49.3 53.6 58.3 51.0 54.2 54.0 59.5 57.5 56.25];
> M2=[220 150 165 270 200 250 210 130 220 165 190 165 280 190 200];
> MT=[M1; M2; ones(1,15)];

% now vector of corresponding Y values
>YT=[19.5 18.0 22.0 19.0 21.0 22.0 29.5 18.0 20.0 20.0 25.0 17.0 26.5 23.0 29.0];

% min norm inversion
> params=MT’\(YT’)

a = −.29, b = .044, c = 29.5.

Hence multilinear regression predicts that the height a male can jump is given by the
formula

jump height

≈ −.029× (thigh circumference)+ 0.044× (bench press)+ 29.5.
(2.3.5)

Surprisingly, the coefficient of the thigh circumference term is negative, which sug-
gests that thick thighs hinder vertical jumping ability.

Exercises

1. This exercise will review some of the arithmetic for matrices and vectors:
MAPLE

> with(LinearAlgebra);
> A:=Matrix([[a,b],[c,d],[e,f]]); C:=Vector([c1,c2]);

MATLAB

> a=1; b=2; c=3; d=4; e=5; f=6; c1=7; c2=8;
> A=[a,b; c,d; e,f]
> C=[c1; c2]

Multiplication of the matrix A and the vector c produces a vector:
MAPLE

> A.C;

MATLAB

> A*C

An interchange of rows and columns of A produces the transpose of A. A matrix
can be multiplied by its transpose:

MAPLE

> Transpose(A).A;

MATLAB

> A’*A

2. Compute the solution for Example 2.3.1 using the matrix structure. The following
syntax will accomplish this:

MAPLE

> with(LinearAlgebra):
> M:=Matrix([[19.36, 86, 1], [19.24, 94.5, 1], [20.76, 105.3, 1], [21.43, 91.5, 1], [18.72, 75.2, 1],

[18.85, 93.2, 1], [21.84, 156.0, 1], [19.9, 75.1, 1], [21.35, 119.8, 1], [24.98, 169.3, 1],
[24.46, 170., 1], [24.19, 148.2, 1]]);

> evalm(transpose(M)); # or Transpose(M)
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> A:=evalm(transpose(M).M);
> z:=vector([19.3, 22.2, 24.3, 17.1, 19.6, 23.9, 29.5, 24.1, 26.2, 33.7, 36.2, 31.0]);
> y:=evalm(transpose(M).z);
> evalm(Aˆ(-1).y);

MATLAB

> M1=[19.36 19.24 20.76 21.43 18.72 18.85 21.84 19.9 21.35 24.98 24.46 24.19];
> M2=[86.0 94.5 105.3 91.5 75.2 93.2 156.0 75.1 119.8 169.3 170 148.2];
> MT=[M1; M2; ones(1,12)];

% each row = multiplier of a parameter
> M=MT’ % transpose of MT
> A= MT*M % square 3x3 matrix
> z=[19.3; 22.2; 24.3; 17.1; 19.6; 23.9; 29.5; 24.1; 26.2; 33.7; 36.2; 31.0]; % 12x1 vector
> y=MT*z % 3x1 vector
> params=inv(A)*y
> MT’\z % same thing

3. (a) In this exercise, we get a linear regression fit for some hypothetical data
relating age, percentage body fat, and maximum heart rate. (See Table 2.3.3.)
Maximum heart rate is determined by having an individual exercise until near
complete exhaustion.

Table 2.3.3. Data for age, % body fat, and maximum heart rate.

Age (years) % Body fat Maximum heart rate
30 21.3 186
38 24.1 183
41 26.7 172
38 25.3 177
29 18.5 191
39 25.2 175
46 25.6 175
41 20.4 176
42 27.3 171
24 15.8 201

The syntax that follows will get a linear regression fit for these data. This
syntax will also produce a plot of the regression plane. Observe that it shows
a steep decline in maximum heart rate as a function of age and a lesser decline
with increased percentage body fat.

(b) As an example of the use of this regression formula, compare the predicted
maximum heart rate for two persons at age 40 where one has maintained 15%
body fat and the other has gained weight to 25% body fat. Also, compare
two people with 20% body fat where one is age 40 and the other is age 50:

MAPLE

> age:=[30,38,41,38,29,39,46,41,42,24];
> BF:= [21.3,24.1,26.7,25.3,18.5,25.2,25.6,20.4,27.3,15.8];
> hr:=[186,183,172,177,191,175,175,176,171,201];
> with(stats):
> fit[leastsquare[[a,b,c]]]([age,BF,hr]);
> h:=unapply(rhs(%),(a,b));
> plot3d(h(a,b),a=30..60,b=10..20,axes=NORMAL);
> h(40,15); h(40,25); h(40,20); h(50,20);
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MATLAB

> age=[30,38,41,38,29,39,46,41,42,24];
> BF=[21.2,24.1,36.7,25.3,18.5,25.2,25.6,20.4,27.3,15.8];
> hrt=[186,183,172,177,191,175,175,176,171,201];
> MT=[age;BF; ones(size(age))];
> parms=MT’\hrt’
> [Xage YBF]=meshgrid(age,BF);
> R=parms(1)*Xage+parms(2)*YBF+parms(3);
> C=ones(size(R)); % for a uniform color
> surf(age,BF,R,C) % surface graph
> h=[40 15 1]*parms
> h=[40 25 1]*parms
> h=[40 20 1]*parms
> h=[50 20 1]*parms

4. Table 2.3.4 contains further data to relate leg size, strength, and the ability to
jump. These data were gathered for college women.

Table 2.3.4. Leg size, strength, and jumping ability for women.

Thigh
circumference Leg press Vertical jump

(cm) (lbs) (in)
52.0 140 13.0
54.2 110 8.5
64.5 150 13.0
52.3 120 13.0
54.5 130 13.0
58.0 120 13.0
48.0 95 8.5
58.4 180 19.0
58.5 125 14.0
60.0 125 18.5
49.2 95 16.5
55.5 115 10.5

Find a least squares data fit for these data, which are from unpublished work
by Dr. Millard-Stafford in the Health and Performance Science Department at
Georgia Tech.

2.4 Modeling with Differential Equations

Understanding a natural process quantitatively often leads to a differential equation
model. Consequently, a great deal of effort has gone into the study of differential
equations. The theory of linear differential equations, in particular, is well known,
and not without reason, since this type occurs widely.

Besides their exact solution in terms of functions, numerical and asymptotic so-
lutions are also possible when exact solutions are not available.
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In differential equations, as with organisms, there is need of a nomenclature.

In Section 2.1, we proposed a simple differential equation for mimicking the growth
of a biological population, namely,

dy

dt
= ky. (2.4.1)

A differential equation refers to any equation involving derivatives. Other exam-
ples are

d2y

dt2
− 4

dy

dt
+ 4y = e−t (2.4.2)

and

dy

dt
= y − y2

2+ sin t
(2.4.3)

and many others. If only first-order derivatives appear in a differential equation, then
it is called a first-order equation. Both equations (2.4.1) and (2.4.3) are of first order,
but (2.4.2) is a second-order equation. Every first-order differential equation can be
written in the form

dy

dt
= f (t, y) (2.4.4)

for some function f of two variables. Thus f (t, y) = ky in the first equation above

and f (t, y) = y − y2

2+sin t
in the third.

A solution of a differential equation means a function y = y(t) that satisfies the
equation for all values of t (over some specified range of t values). Thus y = Aekt

is a solution of (2.4.1) because then dy
dt
= kAekt , and substitution into (2.4.1) gives

kAekt = k(Aekt ),

true for all t . Note that A is a parameter of the solution and can be any value, so
it is called an arbitrary constant. Recalling Section 2.1, A arose as the constant
of integration in the solution of (2.4.1). In general, the solution of a first-order
differential equation will incorporate such a parameter. This is because a first-order
differential equation is making a statement about the slope of its solution rather than
the solution itself.

To fix the value of the inevitable arbitrary constant arising in the solution of a
differential equation, a point in the plane through which the solution must pass is
also specified, for example at t = 0. A differential equation along with such a side
condition is called an initial value problem,

dy

dt
= f (t, y) and y(0) = y0. (2.4.5)

It is not required to specify the point for which t = 0. It could be any other value
of t for which y(t) is known. The domain of definition, or simply domain, of the
differential equation is the set of points (t, y) for which the right-hand side of (2.4.4)
is defined. Often this is the entire (t, y)-plane.
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Initial value problems can be solved analytically.

Exact solutions are known for many differential equations; cf. Kamke [5]. For the
most part, solutions derive from a handful of principles. Although we will not study
solution techniques here to any extent, we make two exceptions and discuss methods
for linear systems below and the method of separation of variables next.

Actually we have already seen variables separable at work in Section 2.1: The idea
is to algebraically modify the differential equation in such a way that all instances of
the independent variable are on one side of the equation and all those of the dependent
variable are on the other. Then the solution results as the integral of the two sides.
For example, consider

dy

dt
= ay − by2.

Dividing by the terms on the right-hand side and multiplying by dt separates the
variables, leaving only the integration to be done:∫

dy

y(a − by)
=
∫

dt.

Instead of delving into solution methods further, our focus in this text is deciding
what solutions mean and which equations should constitute a model in the first place.
Happily, some of the solution techniques, such as separation of variables, are suffi-
ciently mechanical that computers can handle the job, relieving us for higher-level
tasks. Here then are (symbolic) solutions to equations (2.4.2) and (2.4.3):

MAPLE

> restart:
> dsolve(diff(y(t),t,t)-4*diff(y(t),t)+4*y(t)=exp(-t),y(t));

y(t) = 1

9
+ C1e

2t + C2te
2t

and

MAPLE

> dsolve(diff(y(t),t)=y(t)-y(t)ˆ2/(2+sin(t)), y(t));

1

y(t)
= e−t

∫
et

2+ sin(t)
dt + e−tC1.

Initial value problems can be solved numerically.

As mentioned above, (2.4.4) specifies the slope of the solution required by the dif-
ferential equation at every point (t, y) in the domain. This may be visualized by
plotting a short line segment having that slope at each point. This has been done
in Figure 2.4.1 for (2.4.3). Such a plot is called a direction field . Solutions to the
equation must follow the field and cannot cross slopes. With such a direction field
it is possible to sketch solutions manually. Just start at the initial point (0, y(0)) and
follow the direction field. Keep in mind that a figure such as Figure 2.4.1 is only a
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MAPLE

> with(DEtools):
> dfieldplot(diff(y(t),t)=y(t)-y(t)ˆ2/(2+sin(t)),y(t), t=0..5,y=-1..5);
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Fig. 2.4.1. Direction field for (2.4.3).

representation of the true direction field, that is to say, it shows only a small subset
of the slope segments.

The mathematician Euler realized three centuries ago that the direction field could
be used to numerically approximate solutions of an initial value problem in a precise
way. Since Euler’s time, techniques have improved—Runge–Kutta methods are used
today—but the spirit of Euler’s method is common to most of them; namely, the
solution takes a small step �t to the right and �y up, where

�y = f (ti , yi) ·�t.

The idea is that �y
�t

approximates dy
dt

. These increments are stepped off one after
another,

yi+1 = yi +�y, ti+1 = ti +�t, i = 0, 1, 2, . . . ,

with starting values y0 = y(0) and t0 = 0. Figure 2.4.2 shows some numerical
solutions of (2.4.3).
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Fig. 2.4.2. Solutions and direction field for (2.4.3).

Code 2.4.1.
MAPLE

> with(DEtools):
> DEplot(diff(y(t),t)=y(t)-y(t)ˆ2/(2+sin(t)),y(t), t=0..5,{[0,1],[0,3],[0,5]}, linecolor=BLACK);

MATLAB

% make up an m-file, ode243.m, as follows
% function yprim=ode243(t,y)
% yprim = y - (y.ˆ2./(2+sin(t)));
% now for the solution with initial value=1

> tspan=[0 5];
> [t1,y1]=ode23(’ode243’,tspan,1);

% and for initial value=3
> [t3,y3]=ode23(’ode243’,tspan,3);

% and for initial value=5
> [t5,y5]=ode23(’ode243’,tspan,5);

% plot them all
> plot(t1,y1,t3,y3,t5,y5);

Linear differential equations are among the simplest kind.

A differential equation that can be put into the form

an(t)
dny

dtn
+ · · · + a2(t)

d2y

dt2
+ a1(t)

dy

dt
+ a0(t)y = r(t) (2.4.6)

is linear. The coefficients ai(t), i = 0, . . . , n, can be functions of t , as can the
right-hand side r(t). Equations (2.4.1) and (2.4.2) are linear but (2.4.3) is not. When
there are multiplications among the derivatives or the dependent variable y, such as
y2, the differential equation will not be linear. If y1(t) and y2(t) are both solutions
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to a linear differential equation with right-hand side 0, then so is Ay1(t)+By2(t) for
any constants A and B. Consider the first-order linear differential equation

dy

dt
= my + R(t), (2.4.7)

where we have taken m = − a0
a1

and R(t) = r(t)
a1

in (2.4.6). Its solution is

y = Aeg(t) +�(t), where g(t) =
∫

mdt. (2.4.8)

In this, A is the arbitrary constant and � is given below. To see this, first assume that
R is 0, and write the differential equation as

dy

y
= mdt.

Now integrate both sides, letting g(t) = ∫ mdt and C be the constant of integration,

ln y = g(t)+ C, or y = Aeg(t),

where A = eC . By direct substitution, it can be seen that

� = eg(t)

∫
e−g(t)R(t)dt (2.4.9)

is a solution.5 But it has no arbitrary constant, so add the two solutions, linearity
allows this, to get (2.4.8). If m is a constant, then

∫
mdt = mt .

To see that finding this solution is mechanical enough that a computer can handle
the job, try these commands:

MAPLE

> dsolve(diff(y(t),t)=m(t)*y(t)+R(t),y(t));

> dsolve(diff(y(t),t)=m*y(t)+R(t),y(t));

Systems of differential equations generalize their scalar counterparts.

Quite often, modeling projects involve many more variables than two. Consequently
it may require several differential equations to adequately describe the phenomenon.
Consider the following model for small deviations about steady-state levels of a
glucose/insulin system; g denotes the concentration of glucose and i the same for
insulin,

dg

dt
= −αg − βi + p(t),

di

dt
= γg − δi.

(2.4.10)

5 A clever idea is to try a solution of the form y = v(t)eg(t) with v(t) unknown and substitute
this into (2.4.7) to get v′eg(t) = R(t), since the term vg′eg(t) = vmeg(t) drops out. Now
solve for v.
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As discussed in Section 2.1, the second equation expresses a proportionality relation-
ship, namely, the rate of secretion of insulin increases in proportion to the concentra-
tion of glucose but decreases in proportion to the concentration of insulin. (Modeling
coefficients are assumed to be positive unless stated otherwise.) The first equation
makes a similar statement about the rate of removal of glucose, except that there is
an additional term, p(t), which is meant to account for ingestion of glucose. Because
glucose and insulin levels are interrelated, each equation involves both variables. The
equations define a system; the differential equations have to be solved simultaneously.

A system of differential equations can be written in vector form by defining a
vector, say Y, whose components are the dependent variables of the system. In
vector notation, (2.4.10) becomes

dY
dt
= MY + P, (2.4.11)

where the matrix M and vector P are

M =
[−α −β

γ −δ

]
, P =

[
p(t)

0

]
.

Since the system (2.4.10) is linear, its vector expression takes on the simple matrix
form of (2.4.11). Furthermore, this matrix system can be solved in the same way as
the scalar differential equation (2.4.7). We have

Y = eMtY0 + eMt

∫ t

0
e−MsP(s)ds. (2.4.12)

Just as the exponential of the scalar product mt is

emt = 1+mt + m2t2

2! + m3t3

3! + · · · , (2.4.13)

so the exponential of the matrix product Mt is

eMt = I +Mt + M2t2

2! + M3t3

3! + · · · . (2.4.14)

Since many properties of the exponential function stem from its power series
expansion equation (2.4.13), the matrix exponential enjoys the same properties, in
particular, the property that makes for the same form of solution,

d

dt
eMtV(t) = eMt d

dt
V(t)+ eMtMV(t).

As in the case of a scalar differential equation, the system solutions can be plotted
against t to help us understand how the variables behave. For example, we could plot
g(t) and i(t) using (2.4.12) (see Figure 2.4.3). But for a system there is an alternative;
we can suppress t and plot i(t) against g(t). This is done, conceptually, by making a
table of values of t and calculating the corresponding values of g and i. But we only
plot (i, g) pairs. The coordinate plane of i and g is called the phase plane and the
graph is called a phase portrait of the solution (see Figure 2.4.4).
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MAPLE

> GIdeq:= diff(g(t),t)=-g(t)-i(t), diff(i(t),t)=-i(t)+g(t);
> sol:=dsolve({GIdeq, g(0)=1, i(0)=0},{g(t),i(t)}):
> g:= unapply(subs(sol,g(t)),t); i:= unapply(subs(sol,i(t)),t);
> plot({g(t),i(t)},t=0..5);

MATLAB

% Make up an m-file, fig243.m, as follows
% function Yprime=fig243(t,x)
% Yprime = [-x(1) - x(2); x(1) - x(2)];
% for the solution with initial value g=1 and i=0

> [t,Y]=ode23(’fig243’,[0 5],[1;0]); % semicolon for column vector
> plot(t,Y) % plot both columns of Y vs. t

i(t)

g(t)

–0.2
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0.2

0.4
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0.8
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Fig. 2.4.3. Plot of solutions g(t), i(t) of (2.4.10).

Asymptotics predict the ultimate course of the model.

Often in science and engineering, we are interested in forecasting the future behavior
of an observed process, y(t). As t becomes large there are several possibilities; among
them are the following: y can tend to a finite limit y∞, known as an asymptotic limit,

lim
t→∞ y(t) = y∞;

y can tend to plus or minus infinity,

lim
t→∞ y(t) = ±∞;

y can oscillate periodically; y can oscillate unboundedly,

lim
t→∞ |y(t)| = ∞;
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MAPLE

> restart:
> with(DEtools):
> GIdeq:= diff(g(t),t)=-g(t)-i(t), diff(i(t),t)=-i(t)+g(t);
> inits:={[0,1,0],[0,2,0],[0,3,0],[0,4,0]};
> phaseportrait([GIdeq],[g,i],t=0..4,inits, stepsize=.1,g=-1..4,i=-1..1.3);

MATLAB

> [t,Y4]=ode23(’fig243’,[0 5],[4;0]);
> [t,Y3]=ode23(’fig243’,[0 5],[3;0]);
> [t,Y2]=ode23(’fig243’,[0 5],[2;0]);
> [t,Y1]=ode23(’fig243’,[0 5],[1;0]);
> plot(Y4(:,1),Y4(:,2)) % plot the first component of Y4 against the second
> hold on
> plot(Y3(:,1),Y3(:,2)) %ditto for Y3
> plot(Y2(:,1),Y2(:,2)) %ditto for Y2
> plot(Y1(:,1),Y1(:,2)) %ditto for Y1
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Fig. 2.4.4. Phase portrait for (2.4.10).

or y can oscillate chaotically. If y is part of a system, its fate will be linked to that of
the other variables; in this case, we inquire about the vector solution Y.

In the simplest case, Y has asymptotic limits. If the system is autonomous,
meaning t appears nowhere in the system (except, of course, in the form d

dt
), then to

find the asymptotic limits, set all the derivatives of the system to zero. Solutions of
the resulting algebraic system are called critical points or stationary points.6 In the
glucose/insulin example, suppose the glucose ingestion term, p(t), were constant at
p; then setting the derivatives to zero leads to the algebraic system

0 = −αg − βi + p,

0 = γg − δi.
(2.4.15)

6 These are also called equilibrium points by some authors.
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MAPLE

> solve({-alpha*g-beta*i+p=0,gamma*g-delta*i=0},{g,i});

Its one critical point is g = − δp
γβ+αδ

, i = γp
γβ+αδ

. If this point is taken as the initial

point of the system, then for all time, g will be δp
γβ+αδ

and i will be γp
γβ+αδ

.
It is not necessarily the case that a stationary point is also an asymptotic limit.

Exponential growth, dy
dt
= y, is an example, since y = 0 is a stationary point, but if

y(0) �= 0, then y → ∞ as t → ∞. On the other hand, when it can be shown that
the solution of a system tends to an asymptotic limit, a giant step has been taken in
understanding the system. For example, exponential decay, dy

dt
= −y, has asymptotic

limit 0 for any starting point y(0), for if y > 0, then dy
dt

is negative, so y will decrease.

Similarly, if y < 0, then dy
dt

> 0, so y will increase. Either way, 0 is the asymptotic
limit.

A complication here is that the existence or the value of the asymptotic limit can
often depend on the starting point Y(0). Given that there is an asymptotic limit, Y∞,
the set of all starting points for which the solution tends to Y∞ is called its basin of
attraction, BY∞ ,

BY∞ =
{

Y0 : lim
t→∞Y(t) = Y∞ when Y(0) = Y0

}
.

If the basin of attraction of a system is essentially the entire domain of definition, the
asymptotic limit is said to be global. By way of example, the differential equation
dy
dt
= −y(1−y) has asymptotic limit y = 0 for solutions starting from−∞ < y0 < 1;

but when the starting point is beyond 1, solutions tend to infinity.
Periodicity is a more complicated asymptotic behavior. Further, just as in the

asymptotic limit case, the solution can start out periodic, or can asymptotically tend
to periodicity. An example of the former is dy

dt
= cos t , while the latter behavior is

demonstrated by dy
dt
= −y + cos t . This second differential equation is solved by

(2.4.8), y = Ae−t + 1
2 (cos t + sin t); A depends on the initial condition, but the

whole term tends to zero. A well-known periodic system is the one due to Lotka and
Volterra modeling predator–prey interaction. We study this in Section 4.4.

Exercises

1. Here are four differential equations with the same initial conditions:

d2y

dt2
+ 6y(t) = 0, y(0) = 1, y′(0) = 0;

d2y

dt2
− 6y(t) = 0, y(0) = 1, y′(0) = 0;

d2y

dt2
+ 2

dy

dt
+ 6y(t) = 0, y(0) = 1, y′(0) = 0;

d2y

dt2
− 2

dy

dt
+ 6y(t) = 0, y(0) = 1, y′(0) = 0.
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While these differential equations have a similar appearance, they have radically
different behaviors. Sketch the graphs of all four equations with the same initial
values. Here is syntax that will draw the graphs:

MAPLE

> dsolve({diff(y(t),t,t)+6*y(t)=0, y(0)=1, D(y)(0)=0},y(t));
> y1:=unapply(rhs(%),t);
> dsolve({diff(y(t),t,t)-6*y(t)=0, y(0)=1, D(y)(0)=0},y(t));
> y2:=unapply(rhs(%),t);
> dsolve({diff(y(t),t,t)+2*diff(y(t),t)+6*y(t)=0, y(0)=1,D(y)(0)=0},y(t));
> y3:=unapply(rhs(%),t);
> dsolve({diff(y(t),t,t)-2*diff(y(t),t)+6*y(t)=0, y(0) = 1,D(y)(0)= 0},y(t));
> y4:=unapply(rhs(%),t);
> plot([y1(t),y2(t),y3(t),y4(t)],t=0..4,y=-5..5, color=[black,blue,green,red]);

MATLAB

% to deal with a second-order differential equation, it has to be made into a vector-valued first-order
% DE as follows: the first component Y1 is y and the second Y2 is dy/dt. Then dˆ2y/dtˆ2+6y=0
% becomes the vector system dY1/dt=Y2; dY2/dt = -6Y1;
% so make an m-file, exer241a.m, as follows:
% function Yprime=exer241a(t,Y);Yprime = [Y(2); -6*Y(1)];

> [t,Y]=ode23(’exer241a’,[0 4],[1; 0]);
> plot(t,Y(:,1))

%%%
% DE (b) converts to first-order vector system dY1/dt=Y2; dY2/dt=6*Y1;
% DE (c) converts to first-order vector system dY1/dt=Y2; dY2/dt=-6*Y1-2*Y2;
% DE (d) converts to first-order vector system dY1/dt=Y2; dY2/dt=-6*Y1+2*Y2;
% We leave it to the reader to obtain the numerical solutions and plot as above.

2. We illustrate four ways to visualize solutions to a single second-order differen-
tial equation in order to emphasize that different perspectives provide different
insights. We use the same equation in all four visualizations:

d2y

dt2
+ y(t)

5
= cos(t).

(a) Find and graph an analytic solution that starts at y(0) = 0.
MAPLE

> dsolve({diff(y(t),t,t)+y(t)/5=cos(t), y(0)=0,D(y)(0)=0},y(t));
> y:=unapply(rhs(%),t);
> plot(y(t),t=0..4*Pi);

MATLAB

% make an m-file, exer242.m, with
% function Yprime=exer242(t,Y);Yprime=[Y(2); -Y(1)/5+cos(t)];
% then solve and plot with

> [t,Y]=ode23(’exer242’,[0 4*pi],[0;0]);
> plot(t,Y(:,1))

(b) Give a direction field for the equation.
MAPLE

> restart: with(DEtools):
> dfieldplot(diff(y(t),t)+y(t)/5=cos(t),y(t),t=0..4*Pi,y=-1..5);

MATLAB

% No built-in direction field in Matlab; see DFIELD from http://math.rice.edu/˜dfield.

(c) Give several trajectories overlaid in the direction field.
MAPLE (direction field)

> restart:
> with(DEtools):
> DEplot(diff(y(t),t)+y(t)/5=cos(t),y(t),t=0..4*Pi,{[0,1],[0,3],[0,5]});

(d) Give an animation to show the effect of the coefficient of y(t) changing.
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MAPLE (animation)
> restart: with(plots):
> for n from 1 to 8 do

a:=n/10:
dsolve({diff(y(t),t,t)+a*y(t)/5=cos(t),y(0)=0},y(t)):
y:=unapply(rhs(%),t):
P[n]:=plot([t,y(t),t=0..10*Pi],t=0..10*Pi):
y:=’y’:
od:

> display([seq(P[n],n=1..8)],insequence=true);

3. Find the critical points for each of the following equations. Plot a few trajectories
to confirm where the basins of attractions are.
(a) dy

dt
= −y(t)(1− y(t)).

MAPLE

> solve(y*(1-y)=0,y);
> with(DEtools):
> de:=diff(y(t),t)=-y(t)*(1-y(t));
> DEplot(de,y(t),t=0..5,{[0,-1],[0,-1/2],[0,1/2]},y=-1..2);

MATLAB

% make an m-file, exer243a.m, with
% function yprime=exer243a(t,y); yprime=-y.*(1-y);

> p=[1 -1 0]; % coefficients of p(y)=-y(1-y)
> roots(p)
> [t,y]=ode23(’exer243a’,[0 5],-1);
> plot(t,y); hold on
> [t,y]=ode23(’exer243a’,[0 5],-1/2);
> plot(t,y)
> [t,y]=ode23(’exer243a’,[0 5],1/2);
> plot(t,y)

(b) x′ = 4x(t)− xˆ2(t)− x(t)y(t); y′ = 5y(t)− 2yˆ2(t)− x(t)y(t).
MAPLE

> solve({4*x-xˆ2-x*y=0, 5*y-2*yˆ2-y*x=0}, {x,y});
> with(DEtools):
> deq1:=diff(x(t),t)=4*x(t)-x(t)ˆ2-x(t)*y(t);
> deq2:=diff(y(t),t)= 5*y(t)-2*y(t)ˆ2-y(t)*x(t);
> inits:={[0,1,1],[0,1,4],[0,4,1],[0,4,4]};
> DEplot([deq1,deq2],[x,y],t=0..4,inits,x=-1..5,y=-1..5,stepsize=.05);

MATLAB

% contents of m-file, exer243b.m:
% function Yprime=exer243b(t,Y);
% Yprime=[4*Y(1)-Y(1).*Y(1)-Y(1).*Y(2); 5*Y(2)-2*Y(2).ˆ2-Y(1).*Y(2)];

> [t,Y]=ode23(’exer243b’,[0 4],[1;1]);
> hold off; plot3(t,Y(:,1),Y(:,2))
> grid
> xlabel(’x axis’); ylabel(’y axis’);
> zlabel(’z axis’); hold on
> [t,Y]=ode23(’exer243b’,[0 4],[1;4]);
> plot3(t,Y(:,1),Y(:,2))
> [t,Y]=ode23(’exer243b’,[0 4],[4;1]);
> plot3(t,Y(:,1),Y(:,2))
> [t,Y]=ode23(’exer243b’,[0 4],[4;4]);
> plot3(t,Y(:,1),Y(:,2))
> view(30,30) % 30 deg CCW from negative y-axis, 30 deg elevation
> view(-100,30) % 100 deg CW from negative y-axis, 30 deg elevation

4. The solution for Z′ = AZ(t), Z(0) = C, with A a constant square matrix and C

a vector is exp(At)C. Compute this exponential in the case

A =
(−1 −1

1 −1

)
.
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Evaluate exp(At)C, where C is the vector

C =
(

1

0

)
.

MAPLE

> with(LinearAlgebra):
> A:=Matrix([[-1,-1],[1,-1]]);
> MatrixExponential(A,t);
> evalm(%.[1,0]);

MATLAB

> A=[-1, -1; 1, -1]
> t=2; At=A*t; expm(At)
> t=5; At=A*t; expm(At)
> expm(At)*[1;0] % exp(At)*C, where C is a 2x1 column vector

2.5 Modeling with Difference Equations

Biological systems are not always continuous. Considering population growth, indi-
viduals come in discrete units, so a differential equation model for population growth
is only an approximation. When population size is large, the approximation is suf-
ficiently accurate to describe the model’s behavior and asymptotics. But there are
many biological phenomena whose analysis requires a treatment in terms of discrete
units.

Difference equations are similar to differential equations except that the inde-
pendent variable, time or space, is taken in discrete, indivisible units. Although
difference equation analysis is often more difficult than its continuous counterpart,
there is a striking analogy between the two theories.

Difference equations are one example of what is more generally known as recur-
rence relations. This refers to some quantity that is defined in terms of itself.

Just as numerical and asymptotic analyses are available for differential equations,
the same holds for difference equations as well.

A differential equation has a natural difference equation counterpart.

In Section 2.1 we mentioned a differential equation model for population growth,

dy

dt
= ky. (2.5.1)

This model postulates that infinitesimal units of population, dy, are added to the
general population over infinitesimal units of time, dt . Of course this can only be
an approximation. And indeed it is an adequate one in many cases, for example, for
describing a bacterial colony.

However, for a more accurate description, an approach respecting that biological
units are discrete and reproductive intervals are also discrete is called for. We are led
to the discrete version of (2.5.1),
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yt+1 − yt = ryt .

Here the variable t proceeds in discrete units t = 0, 1, 2, . . . . As in the differential
equation, a starting value y0 is required to complete the description.

To solve the difference equation we recast it as a recurrence relation together with
a starting value (denote this by y0),

yt+1 = (1+ r)yt , y0 = starting value.

The solution is easy to obtain by stepping through the generations recurrently,

y1 = (1+ r)y0,

y2 = (1+ r)y1 = (1+ r)2y0,

y3 = (1+ r)y2 = (1+ r)3y0,

and so on. It is easy to see that there is a closed (nonrecurrent) form for the yt , namely,

yt = (1+ r)ty0, t = 0, 1, 2, . . . .

Comparing this with the solution of the differential equation,

y = ekty0 = (ek)ty0,

shows that ek corresponds to 1+ r . The relationship between the per period growth
rate r and the instantaneous growth rate k is

r = ek − 1 , or k = log(1+ r). (2.5.2)

A second-order differential equation such as

d2y

dt2
− 4

dy

dt
+ 4y = 0 (2.5.3)

can be written as a difference equation by noting how the second derivative converts.

Since d2y

dt2 = d
dt

(
dy
dt

), we may write

d2y

dt2
→ dy

dt

∣∣∣∣
t+1
− dy

dt

∣∣∣∣
t

→ (yt+2 − yt+1)− (yt+1 − yt ) = yt+2 − 2yt+1 + yt .

Then (2.5.3) becomes

yt+2 − 2yt+1 + yt − 4(yt+1 − yt )+ 4yt = 0.

This may be written as the linear recurrence relation

yt+2 − 6yt+1 + 9yt = 0.
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Just as a second-order differential equation requires two initial values for a com-
plete solution, so also a second-order recurrence relation requires two initial values
for a complete solution.

The general second-order (homogeneous) recurrence relation is

c2yt+2 + c1yt+1 + c0yt = 0 (2.5.4)

for some constants c2, c1, and c0. On the strength of what we saw above, we expect
a solution of the form yt = Art for some r . Substitute this into (2.5.4):

c2Art+2 + c1Art+1 + c0Art = 0.

Factoring out Art gives

Art (c2r
2 + c1r + c0) = 0.

This is satisfied trivially if A = 0 or if r solves the quadratic equation

c2r
2 + c1r + c0 = 0. (2.5.5)

This is called the auxiliary equation.
Suppose (2.5.5) has two distinct real roots, r = r1 and r = r2, then the homoge-

neous equation has the solution

yt = Art
1 + Brt

2 (2.5.6)

for some constants A and B. These will be determined by the initial conditions.
Consider the equation due to Fibonacci for the growth of a rabbit population. He

stated that the size of the population in terms of reproducing pairs at generation t is
the sum of the sizes of the last two generations, that is,

yt = yt−1 + yt−2, t = 3, 4, . . . , (2.5.7)

or equivalently,

yt+2 = yt+1 + yt , t = 1, 2, . . . .

Starting with one (juvenile) pair, after one breeding period these become adults, so
there is still one pair. But in the next breeding period they produce one new juvenile
pair, so now there are two pairs of rabbits. In general, the population sequence
according to (2.5.7) is

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

To find a closed-form solution, we use the method above. Transpose the terms
on the right side of the equal sign to the left. That leads us to solve the quadratic
equation

r2 − r − 1 = 0.
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From the quadratic formula, the roots are

r = 1

2

(
1±√1− (−4)

)
,

and so the solution is

yt = A

(
1+√5

2

)t

+ B

(
1−√5

2

)t

. (2.5.8)

Using the starting values y1 = y2 = 1 as above, substitute into (2.5.8), first with
t = 1 and then with t = 2:

1 = A

(
1+√5

2

)
+ B

(
1−√5

2

)
,

1 = B

(
1+√5

2

)2

+ B

(
1−√5

2

)2

.

Finally, solve this system of two equations in two unknowns (using Code 2.5.1, for
example) to get A = 1√

5
and B = − 1√

5
.

Code 2.5.1.
MAPLE

> eq1:=1=A*((1+sqrt(5))/2)+B*((1-sqrt(5))/2);
> eq2:=1=A*((1+sqrt(5))/2)ˆ2+B*((1-sqrt(5))/2)ˆ2;
> solve({eq1,eq2},{A,B});

MATLAB

> M=[(1+sqrt(5))/2 (1-sqrt(5))/2; ((1+sqrt(5))/2)ˆ2 ((1-sqrt(5))/2)ˆ2]
> b=[1;1]
> sol=M\b

Hence

yt = 1√
5

((
1+√5

2

)t

−
(

1−√5

2

)t)
. (2.5.9)

What happens to yt as t → ∞? Since 1−√5
2 = −0.618 . . . is less than 1 in

absolute value, this quantity raised to the t th power tends to 0 as t →∞. Therefore,

yt ≈ 1√
5

(
1+√5

2

)t

for large t . In fact, rounding this approximation to the nearest integer is exact for
all t .

If the roots of the auxiliary equation are repeated, say r = r1 with multiplicity 2,
then one must use a solution of the form

yt = Art
1 + Btrt

1

instead of (2.5.6). As before, use the starting values to find the constants A and B.
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Systems of equations lead to a higher-order single-variable equation.

Consider the following system of two recurrence relations:

xt+1 = c11xt + c12yt , (2.5.10a)

yt+1 = c21xt + c22yt . (2.5.10b)

The first may be written as

xt+2 = c11xt+1 + c12yt+1.

Now the second may be substituted into this to give

xt+2 = c11xt+1 + c12(c21xt + c22yt ).

Finally, use (2.5.10a) to eliminate yt from this equation:

xt+2 = c11xt+1 + c12c21xt + c22(xt+1 − c11xt )

= (c11 + c22)xt+1 − (c11c22 − c12c21)xt .

Chaos

Consider the logistic recurrence relation

yt+1 = λyt (1− yt ), (2.5.11)

where λ is a constant. This equation arises in the study of population growth. For
values of λ less than 3, this equation converges to a unique asymptotic value. But if
λ is greater than 3, strange behavior is exhibited. For example, if λ is 4 or greater,
the yt s are seemingly random values. More precisely, this is called chaos rather than
random because the values are correlated; truly random values must be uncorrelated.
For 3 ≤ λ < 1 + √6, the yt s asymptotically oscillate between two values, called
a 2-cycle. For values of λ between 1 + √6 and 4, cycles of various periods are
encountered. The following code produces fully chaotic behavior:

MAPLE

> lam:=4:
> chaos:=proc() global y;
> y:= lam*y*(1-y);
> RETURN(y);
> end:
> y:=.05:
> for i from 1 to 24 do chaos();
> od;

MATLAB

> lam=4; y=0.05; for i=1:24 y=lam*y*(1-y)
> end

2.6 Matrix Analysis

The easiest kind of matrix to understand and with which to calculate is a diagonal
matrix J , that is, one whose ikth term is zero, jik = 0, unless i = k. The product of
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two diagonal matrices is again diagonal. The diagonal terms of the product are just
the products of the diagonal terms of the factors. This pattern extends to all powers,
J r , as well. As a consequence, the exponential of a diagonal matrix is just the matrix
of exponentials of the diagonal terms.

It might seem that diagonal matrices are rare, but the truth is quite to the contrary.
For most problems involving a matrix, say A, there is a change of basis matrix P such
that PAP−1 is diagonal. We exploit this simplification to make predictions about the
asymptotic behavior of solutions of differential equations.

Eigenvalues predict the asymptotic behavior of matrix models.

Every n × n matrix A has associated with it a unique set of n complex numbers,
λ1, λ2, . . . , λn, called eigenvalues. Repetitions are possible, so the eigenvalues for A

might not be distinct, but even with repetitions, there are always exactly n in number.
In turn, each eigenvalue λ has associated with it a nonunique vector e called an
eigenvector. An eigenvalue–eigenvector pair λ, e is defined by the matrix equation

Ae = λe. (2.6.1)

An eigenvector for λ such as e is not unique, because for every number a, the
vector e′ = ae is also an eigenvector, as is easily seen from (2.6.1).

Example 2.6.1. The matrix

A =
[

1 3
0 −2

]
has eigenvalues λ1 = 1 and λ2 = −2 with corresponding eigenvectors e1 = ( 1

0 ) and
e2 = ( 1−1 ). Before invoking the computer on this one (see Exercise 1 in this section),
work through it by hand.

Eigenvalues and eigenvectors play a central role in every mathematical model em-
bracing matrices.

This statement cannot be overemphasized. The reason is largely a consequence of
the following theorem.

Theorem 1. Let the n × n matrix A have n distinct eigenvalues; then there exists a
nonsingular matrix P such that the matrix

J = PAP−1 (2.6.2)

is the diagonal matrix of the eigenvalues of A,

J =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn

⎤
⎥⎥⎥⎦.

The columns of P are the eigenvectors of A taken in the same order as the list of
eigenvalues.
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If the eigenvalues are not distinct, then we are not guaranteed that there will be a
completely diagonal form; it can happen that there is not one. But even if not, there
is an almost diagonal form, called the Jordan canonical form (or just Jordan form),
which has a pattern of 1s above the main diagonal. By calculating the Jordan form of
a matrix, we get the diagonal form if the matrix has one. We will not need to discuss
Jordan form here, except to say that the computer algebra system can compute it.

The matrix product of this theorem, PAP−1, is a change of basis modification of
A; in other words, by using the eigenvectors as the reference system, the matrix A

becomes the diagonal matrix J . Note that if J = PAP−1, then the kth power of J

and A are related as the k-fold product of PAP−1,

J k = (PAP−1)(PAP−1) · · · (PAP−1) = PAkP−1, (2.6.3)

since the interior multiplications cancel.
Diagonal matrices are especially easy to work with; for example, to raise J to a

power J k becomes raising the diagonal entries to that power:

J k =

⎡
⎢⎢⎢⎣

λk
1 0 . . . 0

0 λk
2 . . . 0

...
... . . .

...

0 0 . . . λk
n

⎤
⎥⎥⎥⎦.

As a result, the exponential of J is just the exponential of the diagonal entries.
From (2.4.14),

eJ t = I + J t + J 2t2

2! + J 3t3

3! + · · ·

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1+ λ1t + λ2

1t
2

2! + · · ·
)

0 . . . 0

0

(
1+ λ2t + λ2

2t
2

2! + · · ·
)

. . . 0

...
... . . .

...

0 0 . . .
(
1+ λnt + λ2

nt2

2! + · · ·
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

eλ1t 0 . . . 0
0 eλ2t . . . 0
...

... . . .
...

0 0 . . . eλnt

⎤
⎥⎥⎥⎦. (2.6.4)

We illustrate the way in which these results are used.
The age structure of a population can be modeled so that it evolves as dictated by

a matrix L, such as the following (see Chapter 5):
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0.08 0.28 0.42
.657 0 0 0 0 0 0

0 .930 0 0 0 0 0
0 0 .930 0 0 0 0
0 0 0 .930 0 0 0
0 0 0 0 .935 0 0
0 0 0 0 0 .935 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After k generations, the pertinent matrix is the kth power of L. From the theorem,
there exists a matrix P such that J = PLP−1, and according to (2.6.3),

Lk = P−1J kP .

Letting λ1 be the largest eigenvalue of L in absolute value, it is easy to see that

1

λk
1

J k =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0
(

λ2
λ1

)k

. . . 0
...

... . . .
...

0 0 . . .
(

λn

λ1

)k

⎤
⎥⎥⎥⎥⎥⎦

−→

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0

⎤
⎥⎥⎥⎦ as k →∞.

In other words, for large k, Lk is approximately λk
1 times a fairly simple fixed matrix

related to its eigenvectors; thus it grows or decays like λk
1.

In another example, consider the matrix form of the linear differential equation
(2.4.11) of Section 2.4. From above, the matrix exponential eMt can be written as

eMt = P−1eJ tP ,

where eJ t consists of exponential functions of the eigenvalues. If all those eigenvalues
are negative, then no matter what P is, every solution will tend to 0 as t →∞. But if
one or more eigenvalues are positive, then at least one component of a solution will
tend to infinity.

In Chapter 9, we will consider compartment models. A compartment matrix C is
defined as one whose terms cij satisfy the following conditions:

1. All diagonal terms cii are negative or zero.
2. All other terms are positive or zero.
3. All column sums

∑
i cij are negative or zero.

Under these conditions, it can be shown that the eigenvalues of C have negative or
zero real parts and so the asymptotic result above applies.

The fact that the eigenvalues have negative real parts under the conditions of a
compartment matrix derives from Gershgorin’s circle theorem.
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Theorem 2. If A is a matrix and S is the following union of circles in the complex
plane,

S =
⋃
m

⎧⎨
⎩complex z : |amm − z| ≤

∑
j �=m

|ajm|
⎫⎬
⎭,

then every eigenvalue of A lies in S.

Notice that the mth circle above has center amm and radius equal to the sum of
the absolute values of the other terms of the mth column.

Exercises

1. For both the following matrices A, find the eigenvalues and eigenvectors. Then
find the Jordan form. Plot solutions [Z1, Z2, Z3] for Z′ = AZ. Note that the
Jordan structure for the two is different:

A1 =
⎛
⎝0 0 −2

1 2 1
1 0 3

⎞
⎠ and A2 =

⎛
⎝ 3 1 −1
−1 2 1
2 1 0

⎞
⎠.

Here is the syntax for A1. Define the following matrix:

MAPLE

> restart;
> with(LinearAlgebra):
> A:=Matrix([[0,0,-2],[1,2,1],[1,0,3]]);

MATLAB

> A=[0 0 -2; 1 2 1; 1 0 3]

(a) Find the eigenvalues and eigenvectors of A. (Note that both x1 = (−1, 0, 1)t

and x2 = (0, 1, 0)t are eigenvectors for the eigenvalue 2; therefore, so is
every linear combination ax1 + bx2.)

MAPLE

> ev:=Eigenvectors(A);
# first column = eigenvalues, second “column” = matrix whose columns are eigenvectors

> evals:=ev[1]; evects:=ev[2];
# evects[1] is a row, we want the column; transpose

> whattype(Transpose(evects)[1]); # a row vector, needs to be a colmn vector
> x1:=convert(Transpose(evects)[1],Vector[column]);
> x2:=convert(Transpose(evects)[2],Vector[column]);
> x3:=convert(Transpose(evects)[3],Vector[column]);

MATLAB

> [evect, eval]=eig(A)
% evect is P inverse and eval is J

(b) Find the Jordan form and verify that the associated matrix P has the prop-
erty that

PAP−1 = J.

MAPLE (symbolic derivative)
> J:=JordanForm(A);
> Q:=JordanForm(A, output=’Q’);
> Qˆ(-1).A.Q;



2.6 Matrix Analysis 57

MATLAB

> P=inv(evect)
> J=P*A*inv(P)

In order to get (2.6.2), take P to be Q−1.
MAPLE

> P:=Qˆ(-1); P.A.Pˆ(-1);

2. In a compartment matrix, one or more of the column sums may be zero. In this
case, one eigenvalue can be zero and solutions for the differential equations

Z′ = CZ(t)

may have a limit different from zero.
If all the column sums are negative in a compartment matrix, the eigenvalues
will have negative real part. All solutions for the differential equations

Z′ = CZ(t)

will have limit zero in this case.
The following matrices contrast these two cases:

C1 =
⎛
⎝−1 1 0

1 −1 0
0 0 −1

⎞
⎠ and

⎛
⎝−1 0 1

2
1
2 −1 0
0 1

2 −1

⎞
⎠.

Let C be the matrix defined below:

MAPLE

> with(LinearAlgebra):
C:=Matrix([[-1,1,0],[1,-1,0],[0,0,-1]]);

MATLAB

> C=[-1 1 0; 1 -1 0; 0 0 -1]

(a) Find the eigenvalues and eigenvectors for C.
MAPLE

> Eigenvectors(C);

MATLAB

> [evects, evals] = eig(C)

(b) Graph each component of z with z(0) = [1, 1, 1].
MAPLE

> exptC:=MatrixExponential(C,t);
> U:=evalm( exptC.[1,0,1]);
> u:=unapply(U[1],t); v:=unapply(U[2],t); w:=unapply(U[3],t);
> plot({u(t),v(t),w(t)},t=0..2, color=[black,blue,green]);

MATLAB

% contents of the m-file exer252.m
% function Zprime=exer252(t,Z);
% Zprime=[-1*Z(1)+1*Z(2); 1*Z(1)-1*Z(2); -1*Z(3)];

> [t,Z]=ode23(’exer252’,[0 10],[1; 0; 1]);
> plot(t,Z)
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2.7 Statistical Data

Variation impacts almost everything. Variation can be quantified by describing its
distribution. A distribution is the set of the fractions of observations having particular
values with respect to the number of the possible values. For example, the distribution
of word lengths of the previous sentence is 3 of length 1, 4 of length 2, 2 of length
3, and so on (all divided by 18, the number of words in the sentence). The graph of
a distribution with the observations grouped or made discrete to some resolution is
a histogram. Distributions are approximately described by their mean, or average,
value and the degree to which the observations deviate from the mean, their standard
deviation. A widely occurring distribution is the normal, or Gaussian. This bell-
shaped distribution is completely determined by its mean and standard deviation.

Histograms portray statistical data.

Given that the natural world is rife with variables, it is not surprising to find that
variation is widespread. Trees have different heights, ocean temperatures change
from place to place and from top to bottom, the individuals of a population have
different ages, and so on. Natural selection thrives on variation. Variation is often
due to chance events; thus the height of a tree depends on its genetic makeup, the soil
in which it grows, rainfall, and sunlight among other things. Describing variation is
a science all to its own.

Since pictures are worth many words, we start with histograms. Corresponding to
the phenomenon under study, any variation observed occurs within a specific range of
possibilities, a sample space. This range of possibilities is then partitioned or divided
up into a number of subranges, or classes. A histogram is a graph of the fraction of
observations falling within the various subranges plotted against those subranges.

Consider the recent age distribution data for the U.S. population, shown in Ta-
ble 2.7.1. The possible range of ages, 0 to infinity, is partitioned into subranges or
intervals of every five years from birth to age 84; a last interval, 85+, could be added
if necessary for completeness. The table lists the percentage of the total population
falling within the given interval; each percentage is also refined by sex. The cumula-
tive percentage is also given, that is, the sum of the percentages up to and including
the given interval. A histogram is a graph of these data; on each partition interval is
placed a rectangle, or bar, whose width is that of the interval and whose height is the
corresponding percentage (see Figure 2.7.1).

The resolution of a histogram is determined by the choice of subranges: Smaller
and more numerous intervals mean better resolution and more accurate determination
of the distribution; larger and fewer intervals entail less data storage and processing.

The cumulative values are plotted in Figure 2.7.2. Since the percentage values
have a resolution of five years, a decision has to be made about where the increments
should appear in the cumulative plot. For example, 7.2% of the population is in the
first age interval counting those who have not yet reached their fifth birthday. Should
this increment be placed at age 0, at age 5, or maybe at age 2.5 in the cumulative
graph?
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Table 2.7.1. Age distribution for the U.S. population.

Age % Female % Male % Population Cumulative
0–4 3.6 3.6 7.2 7.2
5–9 3.9 3.7 7.6 14.8

10–14 4.1 3.9 8.0 22.8
15–19 4.7 4.3 9.0 31.8
20–24 5.0 4.2 9.2 41.0
25–29 4.3 4.0 8.3 49.3
30–34 4.0 3.5 7.5 56.8
35–39 3.6 2.9 6.5 63.3
40–44 2.7 2.2 4.9 68.2
45–49 2.8 2.0 4.8 73.0
50–54 3.0 2.2 5.2 78.2
55–59 3.1 2.1 5.2 83.4
60–64 2.8 1.9 4.7 88.1
65–69 2.3 1.8 4.1 92.2
70–74 2.0 1.4 3.4 95.6
75–79 1.7 0.8 2.5 98.1
80–84 1.6 0.3 1.9 100

We have chosen to do something different, namely, to indicate this information as
a line segment that is 0 at age 0 and is 7.2 at age 5. In like fashion, we indicate in the
cumulative graph the second bar of the histogram of height 7.6% as a line segment
joining the points 7.2 at age 5 with 14.8 (= 7.2+7.6) at age 10. Continuing this idea
for the balance of the data produces the figure. Our rationale here is the assumption
that the people within any age group are approximately evenly distributed by age in
this group. A graph that consists of joined line segments is called a polygonal graph
or a linear spline.

This graph of accumulated percentages is called the cumulative distribution func-
tion, or cdf for short. No matter what decision is made about placing the cumulative
percentages, the cdf satisfies these properties:

1. it starts at 0,
2. it never decreases, and
3. it eventually reaches 1 (or, as a percentage, 100%).

The mean and median approximately locate the center of the distribution.

Sometimes it is convenient to summarize the information in a histogram. Of course,
no single number or pair of numbers can convey all the information; such a summary
is therefore a compromise, but nevertheless a useful one. First, some information
about where the data lie is given by the mean, or average; it is frequently denoted by
µ. Given the n values x1, x2, . . . , xn, their mean is
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MAPLE

> mcent:=[3.6, 3.7, 3.9, 4.3, 4.2, 4.0, 3.5, 2.9, 2.2,2.0, 2.2, 2.1, 1.9, 1.8,1.4, 0.8, 0.3]:
fcent:=[3.6, 3.9, 4.1, 4.7, 5.0, 4.3, 4.0, 3.6, 2.7, 2.8, 3.0, 3.1, 2.8, 2.3, 2.0, 1.7, 1.6]:
tot:=[seq(mcent[i]+fcent[i],i=1..17)]:

> ranges:=[0..5, 5..10, 10..15, 15..20, 20..25, 25..30, 30..35, 35..40, 40..45, 45..50, 50..55, 55..60, 60..65,
65..70, 70..75, 75..80, 80..85]:

> with(stats): with(plots):
> mpop:=[seq(Weight(ranges[i], 5*mcent[i]),i=1..17)]:
> fpop:=[seq(Weight(ranges[i], 5*fcent[i]),i=1..17)]:
> pop:=[seq(Weight(ranges[i], 5*tot[i]),i=1..17)]:
> statplots[histogram](pop);

MATLAB

> mcent=[3.6 3.7 3.9 4.3 4.2 4.0 3.5 2.9 2.2 2.0 2.2 2.1 1.9 1.8 1.4 0.8 0.3];
> fcent=[3.6 3.9 4.1 4.7 5.0 4.3 4.0 3.6 2.7 2.8 3.0 3.1 2.8 2.3 2.0 1.7 1.6];
> total=mcent+fcent;
> x=[5:5:85]; % 5, 10, 15, …, 85
> bar(x,total) % bars centered on the x values
> xlabel(’Age(years)’)
> ylabel(’Percent in age bracket’);
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Fig. 2.7.1. Histogram for the U.S. population distributed by age.

µ = x1 + x2 + · · · + xn

n
= 1

n

n∑
i=1

xi. (2.7.1)

Another popular notation for this quotient is x̄. It is necessarily true that some values
xi are smaller than the mean and some are larger. (Either that or all xs are equal.)
In fact, one understands the mean to be in the center of the x values in a sense made
precise by (2.7.1). Given x̄ and n, the sum of the xs is easily computed:

n∑
i=1

xi = nx̄.
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MAPLE

> age:=[2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5];
> cummale:=[seq(sum(’mcent[i]’,’i’=1..n),n=1..17)]:
> cumfale:=[seq(sum(’fcent[i]’,’i’=1..n),n=1..17)]:
> cumtot:=[seq(sum(’tot[i]’,’i’=1..n),n=1..17)]:
> ptsm:=[seq([age[i],cummale[i]],i=1..17)];
> ptsf:=[seq([age[i],cumfale[i]],i=1..17)]:
> ptsT:=[seq([age[i],cumtot[i]],i=1..17)]:
> plot({ptsm,ptsf,ptsT},color=BLACK);

MATLAB

> cumM=cumsum(mcent);
> cumF=cumsum(fcent);
> cumTot=cumsum(total)
> plot(x,cumTot,x,cumM,x,cumF)
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Fig. 2.7.2. Cumulative populations (% of the total vs. age).

Computing the mean of a histogram goes somewhat differently. Suppose the total
number of people referred to by Table 2.7.1 to be 100 million. (It no doubt corresponds
to many more than that, but it will be more convenient to calculate percentages using
100 million, and we will see that in the end, this choice is irrelevant.) Then the 7.2%
in the first group translates into 7.2 million people. We do not know their individual
ages, but as above, if they were evenly distributed over ages 0 to 4.999 . . . , then
counting all 7.2 million as 2.5 gives the same result. Hence in (2.7.1) these people
contribute a value of 2.5 for 7.2 million such people, or

contribution of “0 to 5’’ group = 2.5 · 7.2 = 0+ 5

2
· 7.2

in millions. Similarly the second group contributes
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contribution of “5 to 10’’ group = 7.5 · 7.8 = 5+ 10

2
· 7.8.

Continuing in this way we get, where we are counting in millions,

n∑
i=1

xi = 2.5 · 7.2+ 7.5 · 7.6+ 12.5 · 8.0+ · · · + 82.5 · 1.9 = 3431.0 (million).

Divide the result by 100 (million) to obtain the mean. But dividing by 100 million
means a quotient such as 7.2 million

100 million is just the fraction .072 (or 7.2%). In other words,
we do not need to know the total population size; instead, we just use the fractions,
such as .072, as multipliers or weights for their corresponding interval. Completing
the calculation, then, we have

x̄ = 2.5 · 0.072+ 7.5 · 0.076+ · · · + 82.5 · 0.019 = 34.31. (2.7.2)

Equation (2.7.2) illustrates a general principle for calculating the mean. It applies
to (2.7.1) as well:

µ =
∑

over possible
values x

x · fraction of values equal to x. (2.7.3)

In (2.7.2) the possible xs are 2.5, 7.5, and so on, while the fractions are .072, .076,
and so on. In (2.7.1) the possible xs are x1, x2, and so on, while the fraction of values
that are x1 is just 1 out of n, that is, 1

n
, and similarly for the other xis.

The median is an alternative to the mean for characterizing the center of a dis-
tribution. The median, x̂, of a set of values x1, x2, . . . , xn is such that one-half the
values are less than or equal to x̂ and one-half are greater than or equal to it. If n is
odd, x̂ will be one of the xs. If n is even, then x̂ should be taken as the average of
the middle two x values. For example, the median of the values 1, 3, 6, 7, and 15 is
x̂ = 6, while the median of 1, 3, 6, and 7 is 3+6

2 = 4.5.
The median is sometimes preferable to the mean because it is a more typical

value. For example, for the values 3, 3, 3, 3, and 1000, the mean is 506, while the
median is 3.

In the population data, the median age for men and women is between 29 and 30.
This can be seen from an examination of the last column of Table (2.7.1). Contrast
this median age with the average age; thus for men,

average age for men =
∑17

n=1[percentage men at age n] · [age [n]]
total percentage of men

= 32.17.

In a similar manner, the average age for women in this data set is about 35.5, and the
average age for the total population is about 33.8. The averages for these three sets of
data—male population age distribution, female population age distribution, and total
population age distribution—can be found with simple computer algebra commands
and agree with our paper-and-pen calculations.
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MAPLE

> Sum(’age[j]’*’tot[j]’,j=1..17)=sum(age[j]*tot[j],j=1..17);
> Sum(’mcent[n]*age[n]’,’n’=1..17)/Sum(’mcent[n]’,’n’=1..17)

=sum(’mcent[n]*age[n]’,’n’=1..17)/sum(’mcent[n]’,’n’=1..17);
> with(describe): mean(pop); median(pop);

MATLAB

> xmid=[2.5:5:82.5];
> pop=xmid.*total; % term by term mult. = percentage weighted ranges
> muTotal=sum(pop)/100 % divide by 100 as data is in percent
> muM=sum(xmid.*mcent)/sum(mcent)
> muF=sum(xmid.*fcent)/sum(fcent)

Variance and standard deviation measure dispersion.

As mentioned above, a single number will not be able to capture all the information
in a histogram. The data set 60, 60, 60, 60 has a mean of 60, as does the data set 30,
0, 120, 90. If these data referred to possible speeds in miles per hour for a trip across
Nevada by bus for two different bus companies, then we might prefer our chances
with the first company. The variance of a data set measures how widely the data is
dispersed from the mean; for n values x1, x2, . . . , xn, their variance v, or sometimes
σ 2, is defined as

v = 1

n

n∑
i=1

(xi − x̄)2, (2.7.4)

where x̄ is the mean as before.7 Thus the speed variance for bus company 1 is 0 and
that for bus company 2 is

1

4
[(30− 60)2 + (0− 60)2 + (120− 60)2 + (90− 60)2] = 2,250.

As before, a more general equation for variance, one suitable for histograms, for
example, is the following:

v =
∑

over possible
values x

(x − x̄)2 · fraction of values equal to x. (2.7.5)

A problem with variance is that it corresponds to squared data values, making
it hard to interpret its meaning in terms of the original data. If the data has units,
like miles per hour, then variance is in the square of those units. Closely related to
variance is standard deviation, denoted by σ . Standard deviation is defined as the
square root of variance,

standard deviation = √variance.
7 For data representing a sample drawn from some distribution, x̄ is only an estimate of the

distribution’s mean, and for that reason, this definition of variance is a biased estimator
of the distribution’s variance. Divide by n − 1 in place of n for an unbiased estimator.
Our definition is, however, the maximum likelihood estimator of the variance for normal
distributions. Furthermore, this definition is consistent with the definition of variance for
probability distributions (see Section 2.8), and for that reason we prefer it.
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Standard deviation is a measure of the dispersion of data on the same scale as the data
itself. The standard deviation of bus speeds for company 2 is 47.4 miles per hour.
This is not saying that the average (unsigned) deviation of the data from the mean is
47.4 (for that would be 1

n

∑n
1 |xi − x̄| = 45), but this is, in spirit, what the standard

deviation measures. For the bus companies, we make these calculations:

MAPLE

> bus1:=[60,60,60,60]; bus2:=[30,0,120,90];
> range(bus1), range(bus2);
> median(bus1), median(bus2);
> mean(bus1), mean(bus2);
> variance(bus1), variance(bus2);
> standarddeviation(bus1), standarddeviation(bus2);

MATLAB

> bus1=[60 60 60 60]; bus2=[30 0 120 90];
> max(bus1), min(bus1)
> max(bus2), min(bus2)
> median(bus1), median(bus2)
> mean(bus1), mean(bus2)
> cov(bus1), cov(bus2)
> std(bus1), std(bus2)

We can perform similar calculations for the U.S. census data of Table 2.7.1. The
results are given in Table 2.7.2.

MAPLE

> range(mpop), range(fpop), range(pop);
> median(mpop), median(fpop), median(pop);
> mean(mpop), mean(fpop), mean(pop);
> variance(mpop), variance(fpop), variance(pop);
> standarddeviation(mpop), standarddeviation(fpop),
> standarddeviation(pop);

MATLAB

> v=(xmid-muTotal).ˆ2 % unweighted vector of deviations squared
> var=sum(v.*total)/100 % variance of total population
> sqrt(var) % std dev of the total population

Table 2.7.2. Summary for the U.S. age distribution

Standard
Range Median Mean deviation

Male 0–84 29 31.7 21.16
Female 0–84 30 35.6 22.68
Total 0–84 29 33.8 22.10

The normal distribution is everywhere.

It is well known that histograms are often bell-shaped. This is especially true in
the biological sciences. The mathematician Carl Friedrich Gauss discovered the
explanation for this, and it is now known as the central limit theorem (see Hogg and
Craig [6]).
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Central limit theorem. The accumulated result of many independent random out-
comes, in the limit, tends to a Gaussian, or normal, distribution given by

G(x) = 1√
2πσ

e−
1
2 (

x−µ
σ

)2
, −∞ < x <∞,

where µ and σ are the mean and standard deviation of the distribution.

The normal distribution is a continuous distribution, meaning that its resolution
is infinitely fine; its histogram, given by G(x), is smooth (see Figure 2.7.3). The two
parameters mean µ and standard deviation σ completely determine the normal dis-
tribution. Likewise, even though a given histogram is not Gaussian, nevertheless its
description is often given in terms of just its mean and variance or standard deviation.

In Figure 2.7.3(a), we show three curves with the same mean but different standard
deviations. In Figure 2.7.3(b), the three curves have the same standard deviation but
different means.

MAPLE

> y:=(sigma,mu,x)–>exp(-(x-mu)ˆ2/(2*sigmaˆ2))/(sqrt(2*Pi)*sigma);
> plot({y(1,0,x),y(2,0,x),y(3,0,x)},x=-10..10);
> plot({y(1,-4,x),y(1,0,x),y(1,4,x)},x=-10..10);

MATLAB

% make up an m-file, gaussian.m:
% function y=gaussian(x,m,s);

%% m=mean, s=stddev
%% note 1/sqrt(2*pi)=.3989422803
% y=(.3989422803/s)*exp(-0.5*((x-m)./s).ˆ2);

> x=[-10:.1:10];
> y=gaussian(x,0,1); plot(x,y);hold on;
> y=gaussian(x,0,2); plot(x,y);
> y=gaussian(x,0,4); plot(x,y);
> hold off
> y=gaussian(x,0,1); plot(x,y);hold on
> y=gaussian(x,-5,1); plot(x,y);
> y=gaussian(x,5,1); plot(x,y);
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(a) Various σ . (b) Various µ.

Fig. 2.7.3.
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Exercises

1. In the February 1994 Epidemiology Report published by theAlabama Department
of Public Health, the data in Table 2.7.3 were provided as Age-Specific Mortality.
Make a histogram for these data. While the data are given over age ranges, get
a fit for the data so that one could predict the death rate for intermediate years.
Find the median, mean, and standard deviation for the data.

Table 2.7.3.

0–1 1122.4 40–45 287.8
1–5 55.1 45–50 487.2
5–10 27.5 50–55 711.2

10–15 33.4 55–60 1116.9
15–20 118.4 60–65 1685.1
20–25 139.6 65–70 2435.5
25–30 158.0 70–75 3632.4
30–35 196.4 75–80 5300.0
35–40 231.0 80–85 8142.0

85+ 15279.0

MAPLE

> with(stats): with (plots): with(describe):
> Mort:=[1122.4, 55.1, 27.5, 33.4, 118.4, 139.6, 158.0, 196.4, 231.0, 287.8, 487.2, 711.2, 1116.9,

1685.1, 2435.5, 3632.4, 5300.0, 8142.0, 15278.0]:
> MortRate:=[seq(Mort[i]/100000,i=1..19)];
> ranges:=[seq(5*i..5*(i+1),i=1..17)];
> mortdata:=[Weight(0..1,MortRate[1]), Weight(1..5,4*MortRate[2]),

seq(Weight(ranges[i],5*MortRate[2+i]), i=1..17)]:
> statplots[histogram](mortdata);

MATLAB

> Mort=[1122.4, 55.1, 27.5, 33.4, 118.4, 139.6, 158.0, 196.4, 231.0, 287.8, 487.2, 711.2, 1116.9, …
1685.1, 2435.5, 3632.4, 5300.0, 8142.0, 15278.0];

> MortRate=Mort/1000;
> x=[.5,2.5:5:87.5];
> bar(x,MortRate)
> x=x(2:19) % first point an outlier
> MortRate=MortRate(2:19) % ditto

(a) A polynomial fit:
MAPLE

> xcord:=[seq(3+5*(i-1),i=1..18)];
> mortrate:=[seq(MortRate[i+1], i=1..18)];
> plot([seq([xcord[i],mortrate[i]],i=1..18)], style=POINT, symbol=CROSS);
> fit[leastsquare[[x,y],y=a+b*x+c*xˆ2+d*xˆ3]]([xcord,mortrate]);
> approx:=unapply(rhs(%),x);approx(30)*100000;
> plot(approx(x),x=0..90);

MATLAB

% cubic fit rate = d*xˆ3+c*xˆ2+b*x+a
> p=polyfit(x,MortRate,3) % use built-in polynomial fitter, third order
> y=polyval(p,x); % fit evaluated at the xs
> plot(x,MortRate,’x’); hold on
> plot(x,y)

% or use the general leastsquares model
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> MT=[x.ˆ3; x.ˆ2; x; ones(size(x))];
> cubic=MT’\MortRate’
> y=polyval(cubic,x); plot(x,y)

(b) An exponential fit:
MAPLE

> Lnmortrate:=map(ln,mortrate);
> fit[leastsquare[[x,y],y=m*x+b]]([xcord,Lnmortrate]);
> k:=op(1,op(1,rhs(%))); A:=op(2,rhs(%%));
> expfit:=t–>exp(A)*exp(k*t); expfit(30)*100000;
> J:=plot(expfit(t),t=0..85):

K:=plot([seq([xcord[i],MortRate[i+1]],i=1..18)],style=POINT,symbol=CROSS):
> display({J,K});

MATLAB

% exponential fit log(MortRate)=a+b*x or MortRate=exp(a)*exp(bx)
> Lnmortrate=log(MortRate);
> MT=[ones(size(x)); x];
> expon=MT’\Lnmortrate’
> hold off
> plot(x,MortRate,’x’); hold on
> plot(x,exp(expon(1))*exp(expon(2)*x))

(c) A linear spline for the data (see the discussion in this section):
MAPLE

> readlib(spline):
> linefit:=spline(xcord,mortrate,x,linear):
> y:=unapply(linefit.x): y(30)*100000;
> J:=plot(y(t), t=0..85):
> display({J,K});

MATLAB

% linear spline fit = straight line between points, usual MATLAB method
> hold off
> plot(x,MortRate,x,MortRate,’x’)

Give the range, median, mean, and standard deviation of the mortality rates.
Note that the first entry is applicable to humans in an age group of width one
year and the second is in a group of width four years. Each of the others
applies to spans of five years. Thus we set up a weighted sum:

MAPLE

> summary:=[Weight(Mort[1],1),Weight(Mort[2],4),seq(Weight(Mort[i],5),i=3..19)];
> range(summary); median(summary); mean(summary);
> standarddeviation(summary);

MATLAB

% to interpolate any desired value, use interp1, e.g., rate=interp1(x,MortRate,70)
% interpolated value at x=70
% mean, median, and standard deviation (of Mortality weighted by age)

> size(Mort)
> wt=[1,4,5*ones(1,17)]
> wtSum = Mort*wt’ % dot product
> mu=wtSum/sum(wt)
> median(Mort) % picks out the middle value, no duplicates here
> v=(Mort-mu).ˆ2; % vector of squared differences
> var=sum(v.*wt)/sum(wt);
> std=sqrt(var)

2. What follows in Table 2.7.4 are data for the heights of a group of males. De-
termine a histogram for these data. Find the range, median, mean, and standard
deviation for the data. Give a normal distribution with the same mean and stan-
dard deviation as the data. Plot the data and the distribution on the same graph.
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Table 2.7.4.

Number of students 2 1 2 7 10 14 7 5 2 1
Height (in) 66 67 68 69 70 71 72 73 74 75

MAPLE

> with(stats): with(plots): with(describe):
> htinches:=[seq(60+i,i=1..15)];
> numMales:=[0,0,0,0,0,2,1,2,7,10,14,7,5,2,1];
> ranges:=[seq(htinches[i]..htinches[i]+1, i=1..15)];
> maledata:=[seq(Weight(ranges[i],numMales[i]), i=1..15)];
> statplots[histogram](maledata);
> range(maledata); median(maledata); mean(maledata); standarddeviation(maledata);

# note the use of back quotes in the next for formatted printing
> ‘The average height is’,floor(%%/12), ‘feet and’,floor(frac(%%%/12)*12), ‘inches’;
> ‘The standard deviation is’,floor(frac(%%%/12)*12), ‘inches’;

MATLAB

> htinches=61:75;
> numMales=[0,0,0,0,0,2,1,2,7,10,14,7,5,2,1];
> bar(htinches,numMales)
> min(htinches)
> max(htinches) % range = from min to max
> unrolled=[]; % dup. each height by its #cases
> s=size(htinches);
> for k=1:s(2)
> j=numMales(k);
> while j>0
> unrolled=[unrolled, htinches(k)];
> j=j-1;
> end
> end
> median(unrolled)
> mu=mean(unrolled+.5) % e.g., height 66 counts as 66.5

% alternatively
> mu=dot((htinches+.5),numMales)/sum(numMales)
> v=(htinches+.5-mu).ˆ2;
> var=sum(v.*numMales)/sum(numMales)
> std=sqrt(var)

In what follows, we give a normal distribution that has the same mean and standard
deviation as the height data:

MAPLE

> mu:=mean(maledata);
> sigma:=standarddeviation(maledata);
> ND:=x–>exp(-(x-mu)ˆ2/(2*sigmaˆ2))/(sigma*sqrt(2*Pi));
> J:=plot(mu*ND(x),x=60..76):
> K:=statplots[histogram](maledata):
> plots[display]({J,K});

MATLAB

> x=60:.1:76;
> y=exp(-((x-mu)/std).ˆ2/2)/(std*sqrt(2*pi));
> bar(htinches,numMales/sum(numMales))
> hold on; plot(x,y)

To the extent that the graph K is an approximation for the graph J , the heights
are normally distributed about the mean.
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3. Table 2.7.5 contains population data estimates for the United States (in thousands)
as published by the U.S. Bureau of the Census, Population Division, release PPL-
21 (1995).

Table 2.7.5.

Five-year Five-year
age groups 1990 1995 age groups 1990 1995

0–5 18,849 19,662 50–55 11,368 13,525
5–10 18,062 19,081 55–60 10,473 11,020

10–15 17,189 18,863 60–65 10,619 10,065
15–20 17,749 17,883 65–70 10,077 9,929
20–25 19,133 18,043 70–75 8,022 8,816
25–30 21,232 18,990 75–80 6,145 6,637
30–35 21,907 22,012 80–85 3,934 4,424
35–40 19,975 22,166 85–90 2,049 2,300
40–45 17,790 20,072 90–95 764 982
45–50 13,820 17,190 95–100 207 257

100+ 37 52

Find the median and mean ages. Estimate the number of people at ages 21, 22,
23, 24, and 25 in 1990 and in 1995. Make a histogram for the percentages of the
population in each age category for both population estimates.

4. In (2.7.3), we stated that the mean µ is defined as

µ =
∑

all possible xs

x · f (x),

where f (x) is the fraction of all values that are equal to x. If these values are
spread continuously over all numbers, µ can be conceived as an integral. In this
sense, this integral of the normal distribution given by (2.7.3) yields

µ =
∫ ∞

−∞
x

1

σ
√

2π
exp

(
−1

2

(
x − µ

σ

)2
)

dx.

In a similar manner,

σ 2 =
∫ ∞

−∞
(x − µ)2 1

σ
√

2π
exp

(
−1

2

(
x − µ

σ

)2
)

dx.

Here is a way to evaluate the integrals:
MAPLE

> sigma:=’sigma’: mu=’mu’:
> f:=x–>exp(-(x-mu)ˆ2/(2*sigmaˆ2))/(sigma*sqrt(2*Pi));
> assume(sigma > 0);
> int(x*f(x),x=-infinity..infinity);
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> int((x-mu)ˆ2*f(x),x=-infinity..infinity);

MATLAB

% to integrate with MATLAB one can use trapz(x,y) on x and y vectors or use Simpson’s rule, quad(), …
% but this requires an m-file.
% Here we will use the trapzoidal rule.

> x=linspace(-3,3); % simulates -infinity to +infinity here
> y=exp(-x.ˆ2/2)/sqrt(2*pi);
> trapz(x,y) % approximately 1

2.8 Probability

The biosphere is a complicated place. One complication is its unpredictable events,
such as when a tree will fall or exactly what the genome of an offspring will be. Prob-
ability theory deals with unpredictable events by making predictions in the form of
relative frequency of outcomes. Histograms portray the distribution of these relative
frequencies and serve to characterize the underlying phenomenon.

Statistics deals with the construction and subsequent analysis of histograms
retroactively, that is, from observed data. Probability deals with the prediction of
histograms by calculation. In this regard, important properties to look for in calcu-
lating probabilities are independence, disjointness, and equal likelihood.

Probabilities and their distributions.

Probability theory applies mathematical principles to random phenomena in order
to make precise statements and accurate predictions about seemingly unpredictable
events. The probability of an event E, written Pr(E), is the fraction of times E

occurs in an infinitely long sequence of trials. (Defining probability is difficult to do
without being circular and without requiring experimentation. A definition requiring
the outcome of infinitely many trials is obviously undesirable. The situation is similar
to that in geometry, where the term “point’’ is necessarily left undefined; despite this,
geometry has enjoyed great success.) For example, let an “experiment’’ consist in
rolling a single die for which each of the six faces has equal chance of landing facing
up. Take event E to mean a 3 or a 5 lands facing up. Evidently, the probability of E

is then 1
3 , Pr(E) = 1

3 , that is, rolling a 3 or 5 will happen approximately one-third of
the time in a large number of rolls.

More generally, by an event E in a probabilistic experiment, we mean some des-
ignated set of outcomes of the experiment. The number of outcomes, or cardinality,
of E is denoted by |E|. The set of all possible outcomes of an experiment is its
universe, and is denoted by U . Here are some fundamental laws.

Principle of universality. One of the possible outcomes of an experiment will occur
with certainty:

Pr(U) = 1. (2.8.1)

Principle of disjoint events. If events E and F are disjoint, E∩F = ∅, that is, they
have no outcomes in common, then the probability that E or F will occur (sometimes
written E ∪ F ) is the sum
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Pr(E or F) = Pr(E)+ Pr(F ). (2.8.2)

Principle of equal likelihood. Suppose each outcome in U has the same chance of
occurring, i.e., is equally likely. Then the probability of an event E is the ratio of the
number of outcomes making up E to the total number of outcomes,

Pr(E) = |E|
|U | . (2.8.3)

To illustrate, consider the experiment of rolling a pair of dice, one red and one
green. Any one of six numbers can come up on each die equally likely, so the total
number of possibilities is 36; the first possibility could be 1 on red and 1 on green,
the second: 1 on red and 2 on green and so on. In this scheme, the last would be 6 on
red and 6 on green. So |U | = 36. There are two ways to roll an 11, a 5 on red and 6
on green or the other way around. So letting E be the event that an 11 is rolled, we
have Pr(E) = 2

36 = 1
18 . Let S be the event that a 7 is rolled; this can happen in six

different ways, so Pr(S) = 6
36 = 1

6 . Now the probability that a 7 or 11 is rolled is
their sum

Pr(S ∪ E) = Pr(S)+ Pr(E) = 2+ 6

36
= 2

9
.

Since probabilities are frequencies of occurrence, they share properties with sta-
tistical distributions. Probability distributions can be visualized by histograms and
their mean and variance calculated. For example, let the variable X denote the out-
come of the roll of a pair of dice. Table 2.8.1 gives the possible outcomes of X along
with their probabilities. Figure 2.8.1 graphically portrays the table as a histogram.
Just as in the previous section, the rectangle on x represents the fraction of times a
dice roll will be x.

Table 2.8.1. Probabilities for a dice roll.

Roll 2 3 4 5 6 7 8 9 10 11 12
Probability 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

MAPLE

> with(stats): with(plots): with(describe):
> roll:=[seq(n,n=2..12)];
> prob:=[1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36];
> wtroll:=[seq(Weight(roll[i]-1/2..roll[i]+1/2, prob[i]),i=1..11)];
> statplots[histogram](wtroll);

MATLAB

> roll=ones(1,11);
> roll=cumsum(roll);
> roll=roll+1;
> prob=[1 2 3 4 5 6 5 4 3 2 1]/36;
> bar(roll,prob)

Equation (2.7.3) can be used to calculate the mean value X̄ of the random variable
X, also known as its expected value, E(X),



72 2 Some Mathematical Tools

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

2 4 6 8 10 12

Fig. 2.8.1. Histogram for Table 2.8.1.

X̄ =
∑

over all possible
values x of X

x · Pr(X = x). (2.8.4)

From Table 2.8.1,

E(X) = 2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36

+ 8 · 5

36
+ 9 · 4

36
+ 10 · 3

36
+ 11 · 2

36
+ 12 · 1

36
= 7.

MAPLE

> Sum(’roll[i]*prob[i]’,’i’=1..11)=sum(’roll[i]*prob[i]’,i=1..11);

MATLAB

> weightedRoll=prob.*roll;

Similarly, the variance is defined as

V (X) = E(X − X̄)2 =
∑

over all possible
values x of X

(x − X̄)2 · Pr(X = x). (2.8.5)

For a dice roll,

V (X) = (2− 7)2 1

36
+ (3− 7)2 2

36
+ (4− 7)2 3

36
+ (5− 7)2 4

36

+ (6− 7)2 5

36
+ (7− 7)2 6

36
+ (8− 7)2 5

36
+ (9− 7)2 4

36
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+ (10− 7)2 3

36
+ (11− 7)2 2

36
+ (12− 7)2 1

36
= 35

6
.

MAPLE

> Sum(’(roll[i]-7)ˆ2*prob[i]’,’i’=1..11)=sum(’(roll[i]-7)ˆ2*prob[i]’,’i’=1..11);
> mean(wtroll);variance(wtroll);

MATLAB

> m=sum(weightedRoll)
> v=(roll-m).ˆ2;

% sum of squared deviations
> var=sum(v.*prob)

Probability calculations can be simplified by decomposition and independence.

Consider the experiment of tossing a fair coin in the air four times and observing the
side landing up. Suppose we want to calculate the probability that heads will come
up three of the four times. This grand experiment consists of four subexperiments,
namely, the four individual coin tosses. Decomposing a probability experiment into
subexperiments can often simplify making probability calculations. This is especially
true if the subexperiments, and therefore their events, are independent. Two events
E and F are independent when the fact that one of them has or has not occurred has
no bearing on the other.

Principle of independence. If two events E and F are independent, then the prob-
ability that both will occur is the product of their individual probabilities,

Pr(E and F) = Pr(E) · Pr(F ).

One way three heads in four tosses can occur is by getting a head on the first
three tosses and a tail on the last one; we will denote this by HHHT . Since the four
tosses are independent, to calculate the probability of this outcome, we just multiply
the individual probabilities of an H the first time, an H the second and also the third,
and on the fourth, a T ; each of these has probability 1

2 ; hence

Pr(HHHT ) =
(

1

2

)4

= 1

16
.

There are three other ways that three of the four tosses will be H ; they are HHT H ,
HT HH , and T HHH . Each of these is also 1

16 probable; therefore, by the principle
of disjoint events,

Pr(three heads out of four tosses) = 4 · 1

16
= 1

4
.

Permutations and combinations are at the core of probability calculations.

The previous example raises a question: By direct enumeration, we found that there
are four ways to get three heads (or, equivalently, one tail) in four tosses of a coin,
but how can we conveniently calculate, for example, the number of ways to get eight
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heads in 14 coin tosses or, in general, k heads in n coin tosses? This is the problem
of counting combinations.

To answer, consider the following experiment: Place balls labeled 1, 2, and so
on to n in a hat and select k of them at random to decide where to place the H s. For
instance, if n = 4 and k = 3, the selected balls might be 3, then 4, then 1, signifying
the sequence HT HH .

As a subquestion, in how many ways can balls 1, 3, and 4 be selected—this is the
problem of counting permutations, the various ways to order a set of objects. Actu-
ally, there are six permutations here; they are (1, 3, 4), (1, 4, 3), (3, 1, 4), (3, 4, 1),
(4, 1, 3), and (4, 3, 1). The reasoning goes like this: There are three choices for the
first ball from the possibilities 1, 3, 4. This choice having been made, there are two
remaining choices for the second, and finally, only one possibility for the last. Hence
the number of permutations of three objects = 3 · 2 · 1 = 6.

MAPLE

> with(combinat):
> permute([1,3,4]);
> numbperm(3);

More generally, the number of permutations of n objects is

number of permutations of n objects = n · (n− 1) · (n− 2) · · · 2 · 1 = n!.
As indicated, this product is written n! and called n factorial.

So, in similar fashion, the number of ways to select k balls from a hat holding n

balls is
n · (n− 1) · (n− 2) · · · · · (n− k + 1).

As we said above, the labels on the selected balls signify when the heads occur in the
n tosses. But each such choice has k! permutations, all of which also give k heads.
Therefore, the number of ways of getting k heads in n tosses is

n(n− 1)(n− 2) · · · (n− k + 1)

k(k − 1) · · · 2 · 1 . (2.8.6)

MAPLE

> with(combinat):
> numbcomb(6,3);
> binomial(6,3);

The value calculated by (2.8.6) is known as the number of combinations of n objects
taken k at a time. This ratio occurs so frequently that there is a shorthand notation
for it, ( n

k ), or sometimes C(n, k), called n choose k. An alternative form of ( n
k ) is(

n

k

)
= n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 2 · 1 = n!
k!(n− k)! , (2.8.7)

where the third member follows from the second by multiplying numerator and de-
nominator by (n− k)!.

Some elementary facts about n choose k follow. For consistency in these formulas,
zero factorial is defined to be 1,
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0! = 1.

The first three combination numbers are(
n

0

)
= 1,

(
n

1

)
= n,

(
n

2

)
= n(n− 1)

2
.

There is a symmetry:(
n

k

)
=
(

n

n− k

)
for all k = 0, 1, . . . , n.

These numbers n choose k occur in the binomial theorem, which states that for any
p and q,

n∑
k=0

(
n

k

)
pkqn−k = (p + q)n. (2.8.8)

Finally, the probability of realizing k heads in n tosses of a fair coin is, denoting
it by Hn(k),

Hn(k) =
(

n

k

)(
1

2

)n

, k = 0, 1, . . . , n. (2.8.9)

The distribution Hn(k) is shown in Figure 2.8.2 for n = 60. If the coin is not fair, say
the probability of a heads is p and that of a tails is q = 1− p, then Hn(k) becomes

Hn(k) =
(

n

k

)
pkqn−k, k = 0, 1, . . . , n. (2.8.10)

0

0.02

0.04

0.06

0.08

0.1

010 02 03 04 05 06
x

Fig. 2.8.2.
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Continuous variations require continuous distributions.

In Figure 2.8.2, we show the heads distribution histogram H60(k) for 60 coin tosses.
Notice that the distribution takes on the characteristic bell shape of the Gaussian
distribution, as predicted by the central limit theorem, discussed in the previous
section:

G(x) = 1√
2πσ

e−
1
2 (

x−µ
σ

)2
, −∞ < x <∞, (2.8.11)

where µ and σ are the mean and standard deviation. In the figure, we have su-
perimposed the Gaussian distribution on top of the histogram. In order to get the
approximation right, we must match the means and variances of the two distribu-
tions. The mean of Hn(k) for a biased coin, (2.8.10), is given by8

µ = np. (2.8.12)

And the variance of Hn(k) is (see [8])

v = npq. (2.8.13)

With p = q = 1
2 and n = 60, we get µ = 30 and σ 2 = 15.

MAPLE

> n:=60;
> flip:=[seq(binomial(n,i)*(1/2)ˆi*(1-1/2)ˆ(n-i),i=0..n)]:
> wtflip:=[seq(Weight(i-1,flip[i]),i=1..n+1)]:
> with(stats); with(describe):
> mu:=evalf(mean(wtflip)); sigma:=standarddeviation(wtflip);
> sigmaˆ2;

MATLAB

% use the previous m-file, gaussian.m:
% function y=gaussian(x,m,s);
% m=mean, s=stddev
% note 1/sqrt(2*pi)=.3989422803
% y=(.3989422803/s)*exp(-0.5*((x-m)./s).ˆ2);

> x=[-10:.1:10];
> y=gaussian(x,30,sqrt(15)); plot(x,y)

Hence Figure 2.8.2 shows the graph of

G(x) = 1√
2 · 15 · π e−

1
2

(x−30)2
15 .

MAPLE

> G:=x–>exp(-(x-mu)ˆ2/(2*sigmaˆ2))/(sigma*sqrt(2*Pi));
> J:=plot(G(x),x=0..n):
> K:=statplots[histogram](wtflip):
> plots[display]({J,K});

8 Using the fact that k( n
k ) = n( n−1

k−1 ) and the binomial theorem, we have

µ =
n∑

k=0

k

(
n

k

)
pkqn−k =

n−1∑
r=0

n

(
n− 1

r

)
pr+1qn−r = np.
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The normal or Gaussian distribution is an example of a continuous distribution. Any
nonnegative function f (x) ≥ 0 with total integral 1,∫ ∞

−∞
f (x)dx = 1,

can define a probability distribution. The condition that the total integral be 1 is
dictated by the universality principle, equation (2.8.1). In this role, such a function
f is called a probability density function. Probabilities are given as integrals of f .
For example, let X denote the outcome of the probabilistic experiment governed by
f ; then the probability that X lies between 3 and 5, say, is exactly

Pr(3 ≤ X ≤ 5) =
∫ 5

3
f (x)dx.

Similarly, the probability that an outcome will lie in a very small interval of width dx

at the point x is9

Pr(X falls in an interval of width dx at x) = f (x)dx. (2.8.14)

This shows that outcomes are more likely to occur where f is large and less likely to
occur where f is small.

The simplest continuous distribution is the uniform distribution,

u(x) = constant.

Evidently, for an experiment governed by the uniform distribution, an outcome is
just as likely to be at one place as another. For example, butterflies fly in a kind of
random flight path that confounds their predators. As a first approximation, we might
hypothesize that a butterfly makes its new direction somewhere within 45 degrees of
its present heading uniformly. Let � denote the butterfly’s directional change; � is
governed by the uniform probability law

u(�) =
{

constant if −45 ≤ � ≤ 45,

0 otherwise.
(2.8.15)

By the universality principle,

∫ 45

−45
u(�)d� = 1;

therefore the constant must be 1
90 in (2.8.15).

9 This equation is interpreted in the same spirit as the concept “velocity at a point’’in dynamics,
which is the ratio of infinitesimals ds

dt
.
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Exercises

1. An undergraduate student in mathematics wants to apply to three of six graduate
programs in mathematical biology. She will make a list of three programs in
the order of her preferences. Since the order is important, this is a problem of
permutations. How many such choices can she make?

MAPLE

> restart;
> with(combinat):

#list the permutations and count
> permute([a,b,c,d,e,f],3);nops(%);

#calculate directly
> numbperm(6,3);

#use the formula
> 6!/3!;

MATLAB

% No built-in combinatorics in MATLAB but it is easy to do factorials and hence permutations and
% combination calculations
% permutations of six things taken three at a time

> n6=1:6; n3=1:3;
> perm6t3=prod(n6)/prod(n3)

The student must send a list of three references to any school to which she applies.
There are six professors who know her abilities well, of whom she must choose
three. Since the order is not important, this is a problem of combinations. How
many such lists can she make?

MAPLE

> with(combinat):
> choose([a,b,c,d,e,f],3);nops(%);
> numbcomb(6,3);
> 6!/(3!*(6-3)!);

MATLAB

% combinations of six things taken three at a time
> comb6t3=perm6t3/prod(n3)

2. Five patients need heart transplants and three hearts for transplant surgery are
available. How many ways are there to make a list of recipients? How many
ways are there to make a list of the two of the five who must wait for further
donors? (The answer to the previous two questions should be the same.) How
many lists can be made for the possible recipients in the order in which the surgery
will be performed?

MAPLE

> with(combinat):
> numbcomb(5,3); numbcomb(5,2);
> numbperm(5,3);

MATLAB

% combinations of five things taken two at a time
> comb5t2=prod(1:5)/(prod(1:2)*prod(1:3))
> comb5t3=prod(1:5)/(prod(1:3)*prod(1:2))
> perm5t3=prod(1:5)/prod(1:2)

3. Choose an integer in the interval [1, 6]. If a single die is thrown 300 times, one
would expect to get the number chosen about 50 times. Do this experiment and
record how often each face of the die appears.
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MAPLE

> with(stats): with(describe):
> die:=rand(1..6);
> for i from 1 to 6 do

count[i]:=0
od:

> for i from 1 to 300 do
n:=die():
count[n]:=count[n]+1:
od:

> for i from 1 to 6 do
print(count[i]);
od;

> i:=’i’:

MATLAB

% rand(1,300) is a random vector with components between 0 and up to but not including 1; then 6
% times this gives numbers from 0 up to 6; add 1 and get numbers 1 up to 7; finally, fix() truncates
% the fractional part

> die=fix(6*rand(1,300)+1);
% now count the number of 3s

> count3s=1./(die-3); % gives infinity at every 3
> count3s=isinf(count3s); % 1 for infinity, 0 otherwise
> number3s=sum(count3s)

4. Simulate throwing a pair of dice for 360 times using a random number generator
and complete Table 2.8.2 using the sums of the top faces.

Table 2.8.2.

Sums Predicted Simulated
2 10
3 20
4 30
5 40
6 50
7 60
8 50
9 40

10 30
11 20
12 10

Calculate the mean and standard deviation for your sample using the appropriate
equations of Section 2.7 and compare this with the outcome probabilities. Draw
a histogram for the simulated throws on the same graph as the normal distribution
defined by (2.8.11); use the mean and the standard deviation you just calculated.
The following syntax may help:

MAPLE

> with(stats): with(describe):
> red:=rand(1..6):

blue:=rand(1..6):
> for i from 2 to 12 do

count[i]:=0:
od:
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> for i from 1 to 360 do
n:=red()+blue():
count[n]:=count[n]+1;
od:

> for i from 2 to 12 do
print(count[i]);
od;

> inter:=seq(n-1/2..n+1/2,n=2..12);
> throws:=[seq(Weight(inter[i-1],count[i]),i=2..12)];
> mean(throws)=evalf(mean(throws));
> standarddeviation(throws)=evalf(standarddeviation(throws));
> theory:=[Weight(inter[1],10), Weight(inter[2],20), Weight(inter[3],30), Weight(inter[4],40),

Weight(inter[5],50), Weight(inter[6],60), Weight(inter[7],50), Weight(inter[8],40),
Weight(inter[9],30), Weight(inter[10],20), Weight(inter[11],10)];

> mu:=mean(theory);
> sigma:=standarddeviation(theory);evalf(sigma);
> y:=x–>360*exp(-(x-mu)ˆ2/(2*sigmaˆ2))/(sigma*sqrt(2*Pi));
> J:=statplots[histogram](throws):
> K:=plot([x,y(x),x=0..14]):
> plots[display]({J,K});

MATLAB

> red=fix(6*rand(1,360)+1);
> blue=fix(6*rand(1,360)+1);
> pairDice=red+blue;
> x=2:12;
> hist(pairDice,x)
> hold on
> h=hist(pairDice,x)
> mu=dot(x,h)/sum(h)

% weight each int by its fraction of outcomes, add
> v=(x-mu).ˆ2; % vector of diffs squared
> var = dot(v,h)/sum(h); % variance
> sigma=sqrt(var)
> t=linspace(2,12);
> y=360*exp(-(t-mu).ˆ2/(2*sigmaˆ2))/(sigma*sqrt(2*pi));
> plot(t,y)

% the theoretical probability for seeing 2 is 1/36, same for 12, for seeing 3 is 2/36, same for 11, etc.,
% for seeing 7 is 6/36.
% compare with h above

> theory=[10 20 30 40 50 60 50 40 30 20 10];
> mu=dot(x,theory)/sum(theory)
> v=(x-mu).ˆ2;var=dot(v,theory)/sum(theory);
> sigma=sqrt(var)
> y=360*exp(-(t-mu).ˆ2/(2*sigmaˆ2))/(sigma*sqrt(2*pi));
> hold off
> plot(t,y); hold on
> hist(pairDice,x)

5. This exercise is a study of independent events. Suppose a couple’s genetic
makeup makes the probability that a child they conceive will have brown eyes
equal to 3

4 . Assume that the eye color for two children is a pair of independent
events.
(a) What is the probability that the couple will have two blue-eyed children?

One blue-eyed and one brown-eyed? Two brown-eyed children? What is
the sum of these probabilities?

MAPLE

> binomial(2,0)*1/4*1/4;
> binomial(2,1)*3/4*1/4;
> binomial(2,2)*3/4*3/4;
> sum(binomial(2,j)*(3/4)ˆj*(1/4)ˆ(2-j),j=0..2);

MATLAB

% #ways for two blue eyed is C(2,2)
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% (2 choose 2)=2!/(2!*0!) so the probability is that times (1/4)ˆ2, etc.
> blublu=prod(1:2)/(prod(1:2)*1)*(1/4)ˆ2 % blu/blu children
> Bwnblu=prod(1:2)/(prod(1:1)*prod(1:1))*(3/4)*(1/4) % Bwn/Blu
> BwnBwn=prod(1:2)/(1*prod(1:2))*(3/4)ˆ2 % Bwn/Bwn children
> blublu+Bwnblu+BwnBwn

(b) Suppose that the couple have five children. What is the probability that
among the five, exactly two will have brown eyes?

MAPLE

> binomial(5,2)*(3/4)ˆ2*(1/4)ˆ3;

MATLAB

% exactly two are brown eyed is (5 choose 2)*(3/4)ˆ2*(1/4)ˆ3
> exact2=prod(1:5)/(prod(1:2)*prod(1:3))*(3/4)ˆ2*(1/4)ˆ3

(c) What is the probability that among the five children, there are at least two
with brown eyes?

MAPLE

> sum(binomial(5,j)*(3/4)ˆj*(1/4)ˆ(5-j),j=2..5);

MATLAB

> exact3=prod(1:5)/(prod(1:3)*prod(1:2))*(3/4)ˆ3*(1/4)ˆ2
> exact4=prod(1:5)/(prod(1:4)*prod(1:1))*(3/4)ˆ4*(1/4)ˆ1
> exact5=prod(1:5)/(prod(1:5)*1)*(3/4)ˆ5
> atleast2=exact2+exact3+exact4+exact5

References and Suggested Further Reading

[1] AIDS cases in the U.S.:
HIV/AIDS Surveillance Report, Division of HIV/AIDS, Centers for Disease Control, U.S.
Department of Health and Human Services, Atlanta, GA, July, 1993.

[2] Cubic growth of AIDS:
S. A. Colgate, E. A. Stanley, J. M. Hyman, S. P. Layne, and C. Qualls, Risk-behavior model
of the cubic growth of acquired immunodeficiency syndrome in the United States, Proc.
Nat. Acad. Sci. USA, 86 (1989), 4793–4797.

[3] Ideal height and weight:
S. R. Williams, Nutrition and Diet Therapy, 2nd ed., Mosby, St. Louis, 1973, 655.

[4] Georgia Tech Exercise Laboratory:
P. B. Sparling, M. Millard-Stafford, L. B. Rosskopf, L. Dicarlo, and B. T. Hinson, Body
composition by bioelectric impedance and densitometry in black women, Amer. J. Human
Biol., 5 (1993), 111–117.

[5] Classical differential equations:
E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, Chelsea, New York,
1948.

[6] The central limit theorem:
R. Hogg and A. Craig, Introduction to Mathematical Statistics, Macmillan, New York,
1965.

[7] Mortality tables for Alabama:
Epidemiology Report IX (Number 2),Alabama Department of Public Health, Montgomery,
AL, February, 1994.

[8] Basic combinatorics:
R. P. Grimaldi, Discrete and Combinatorial Mathematics, Addison–Wesley, New York,
1998.


	2 Some Mathematical Tools
	Introduction
	2.1 Linear Dependence
	Exercises

	2.2 Linear Regression, the Method of Least Squares
	Exercises

	2.3 Multiple Regression
	Exercises

	2.4 Modeling with Differential Equations
	Exercises

	2.5 Modeling with Difference Equations
	2.6 Matrix Analysis
	Exercises

	2.7 Statistical Data
	Exercises

	2.8 Probability
	Exercises

	References and Suggested Further Reading




