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Age-Dependent Population Structures

Introduction

This chapter presents an analysis of the distribution of ages in a population. We begin
with a discussion of the aging process itself and then present some data on the age
structures of actual populations. We finish with a mathematical description of age
structures. Our primary interest is in humans, but the principles we present will apply
to practically any mammal and perhaps to other animals as well.

5.1 Aging and Death

The notion of aging is not simple. One must consider that oak trees, and perhaps
some animals like tortoises, seem to have unlimited growth potential, that a Pacific
salmon mates only once and then ages rapidly, and that humans can reproduce for
many years. In each case a different concept of aging may apply.

The reason that aging occurs, at least in mammals, is uncertain. The idea that
the old must die to make room for the new gene combinations of the young is in
considerable doubt. An alternative hypothesis is that organisms must partition their
resources between the maintenance of their own bodies and reproduction, and that
the optimal partitioning for evolutionary fitness leaves much damage unrepaired.
Eventually, the unrepaired damage kills the organism. We present several hypotheses
about how and why damage can occur.

What is meant by “aging’’ in an organism?

We will use a simple definition of aging, or senescence:1 it is a series of changes
that accelerate with age and eventually result in the death of an organism. This
definition is a loose one because it does not specify the source of the changes—the

1 There is much argument about definitions in the study of aging, and we wish to avoid being
part of the dispute. Our simplification may have the opposite effect!
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142 5 Age-Dependent Population Structures

only requirement is that they accelerate. We will adopt a common approach and not
regard predation, injury, and disease caused by parasites, e.g., microorganisms, as
causes of aging, even though their incidence may increase with age.

The effect of aging on survival is demonstrated in Figure 5.1.1 for a simple model
system of test tubes. Suppose that a laboratory technician buys 1000 test tubes and
that 70% of all surviving test tubes are broken each month. Curve (a) of Figure 5.1.1
shows the specific rate of breakage of the tubes—a constant 70% per month.2 Note
that a test tube surviving for three months would have the same chance of breakage
in the fourth month as would one at the outset of the experiment (because aging has
not occurred). Alternatively, suppose that the test tubes broke more easily as time
passed. A tube surviving for three months would have a much greater chance of
breakage during the fourth month than would one at the outset of the experiment
(because the older one has aged). Curve (b) shows the rate of breakage for these
tubes (doubling each month in this example).
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(a) Constant specific death rate
(= 70%/month)
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Fig. 5.1.1. Death rate, modeled on the breakage of test tubes. Curve (a) is obtained by assuming
a specific death (breakage) rate of 70% of survivors per month of test tubes surviving to that
point. This is equivalent to assuming that there is no aging, because the probability of death
(breakage) is independent of time. The data of curve (b) is obtained by assuming that the
specific death rate is 1% of the survivors in the first month and then doubles each month
thereafter. This is equivalent to assuming that the test tubes age, because the probability of
death (breakage) increases with time.

2 The specific death (= breakage) rate is the number dying per unit time among those of a
specific age. This is to be distinguished from the simple death rate, which is the death rate
irrespective of age. In this experiment, of course, all the test tubes are of the same age.
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Figure 5.1.2 shows survivorship curves for the two cases whose specific death rates
are described by Figure 5.1.1. You should compare them to Figures 4.1.2 and 4.1.4,
which are survivorship curves for r-strategists and K-strategists, respectively. It
should be clear that r-strategists do not show aging (because they are held in check
by climatic factors, which should kill a constant fraction of them, regardless of their
ages).3 The situation with regard to K-strategists is a bit more complex: Mammals,
for instance, are held in check by density-dependent factors. If they live long enough,
aging will also reduce their numbers. Both density-dependent factors and aging
become more important as time passes. Thus the survivorship curve for a mammalian
K-strategist should look somewhat like that shown in Figures 4.1.4 and 5.1.2(a).
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(a) Increasing specific  death rate
(starts at 1% and doubles monthly)
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Fig. 5.1.2. (a) A survivorship curve for a nonaging system, using the data of Figure 5.1.1(b).
(b) A survivorship curve for a system that exhibits aging, using the data of Figure 5.1.1(a).
Both curves assume an initial cohort of 1000 test tubes at time t = 0. Note the similarity of
curves (a) and (b) to Figures 4.1.2 and 4.1.4, which are survivorship curves for r-strategists
and K-strategists, respectively.

Why do organisms age and die?

When asking “why’’ of any biological process as profound as senescence, we should
immediately look to the Darwinian model of evolution for enlightenment and seek a
positive selective value of aging to a species. A characteristic conferring a positive
advantage is called an adaptation, and as we shall see, the adaptation we seek may
not exist.

A simple adaptive explanation for senescence is that the Darwinian struggle for
survival creates new organisms to fit into a changing environment. Thus the previous

3 This is admittedly an approximation.
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generation must die to make space and nutrients available for the new generation.
Thomas Kirkwood has made two objections to this hypothesis [1]. The first objection
is posed in the question, “How can aging have a positive selective value for a species
when it can kill all the members of the species?’’ Besides, many organisms show the
most evident aging only after their reproductive lives have ended. If the organism
should show genetically programmed deterioration in its old age, that would have
minimal (or no) selective value because the organism’s reproductive life would have
already ended anyway.

Kirkwood’s second objection is that most organisms live in the wild and almost
always die from disease and predation. Thus there is no need for selection based on
aging in most organisms—they die too soon from other causes.

There is another way to answer the question, “Why do organisms age?’’—one that
is nonadaptive in that aging does not have a positive selective value. First, recall that
in Section 4.1 we discussed how trees can partition each year’s energetic resources
and physical resources between asexual and sexual reproduction. For a year or two
a tree would add thick trunk rings (asexual growth) at the expense of reduced nut
production (sexual reproduction). Then for a year or two, the tree would reverse the
situation and produce lots of nuts at the expense of vegetative growth. There is a
hypothesis about aging that generalizes this situation; it is called the disposable soma
model.4

Kirkwood assumes that the organisms whose aging is of interest to us must par-
tition their finite resources between reproduction and the maintenance of the soma,
i.e., the body. In particular, somatic maintenance means the repair of the many insults
and injuries that are inflicted on the body by factors like ordinary wear and tear, toxin
production, radiation damage, and errors in gene replication and expression. The
two needs, reproduction and somatic maintenance, thus compete with one another. If
excessive resources are put into somatic maintenance, there will be no reproduction,
and the species will die out. If excessive resources are devoted to reproduction, there
will be insufficient somatic maintenance, and the species will die out. We thus assume
that there is an optimal partitioning of resources between somatic maintenance and
reproduction. The disposable soma model postulates that this optimal partitioning is
such that some somatic damage must go unrepaired and that the organism eventually
dies because of it. Thus the organism has a finite lifetime, one marked by increasing
rate of deterioration, i.e., aging.

The disposable soma model is nonadaptive in that aging is a harmful process. It
is, however, an essential process because it is a measure of the resources diverted
into reproduction. In a way, aging is a side effect, but, of course, it has powerful
consequences to the organism.

Aging of cells can provide insight into organismal aging.

The death of the only cell comprising an amoeba has consequences that are quite
different from those associated with the death of a single skin cell of a person; thus we
will have to distinguish between aging in single-celled and multicellular organisms.

4 “Soma’’ means “body.’’
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It is fine to study the processes that lead to the death of a cell, but what if that
cell is only one of many in an organ of a multicellular organism? To answer this
question, we must first understand that cell death is a natural part of the life and
development of organisms. Our hands are initially formed with interdigital webbing,
perhaps suggesting our aquatic ancestry. This webbing is removed in utero by the
death of the cells that comprise it in a process called apoptosis. There are many
other examples of cell death as a natural consequence of living: our red blood cells
live only about three months and our skin cells peel off constantly. Both are quickly
replaced, of course.

We can now return to the question of what happens if one, or even a small fraction,
of the cells in an organ die. Usually, nothing—we see that it happens all the time.
But if that cell dies for a reason connected to the possible deaths of other cells, then
the study of the one cell becomes very important. Thus the study of aging in cells
can contribute greatly to our knowledge of aging in multicellular organisms.

How do organisms become damaged?

Whether we accept Kirkwood’s disposable soma model or not, it is clear that our
cells age, and we must suggest ways that the relevant damage occurs. Numerous
mechanisms have been proposed, but no single one has been adequate, and in the end
it may be that several will have to be accepted in concert. Some examples of damage
mechanisms that have been proposed are the following:

(a) Wear and tear: A cell accumulates “insults,’’ until it dies. Typical insults are
the accumulation of wastes and toxins, as well as physical injuries like radiation
damage and mechanical injury. These are all well known to cause cell death.
Cells have several mechanisms by which insults can be repaired, but it may be
that these repair systems themselves are subject to damage by insults.

(b) Rate of living: This is the “live fast, die young’’ hypothesis. In general, the
higher a mammal’s basal metabolic rate, the shorter its life span is. Perhaps some
internal cellular resource is used up, or wastes accumulate, resulting in cell death.

(c) Preprogrammed aging: Our maximum life span is fixed by our genes. While
the average life span of humans has increased over the past few decades, the
maximum life span seems fixed at 100–110 years. Noncancerous mammalian
cell lines in test tube culture seem capable of only a fixed number of divisions.
If halfway through that fixed number of divisions, the cells are frozen in liquid
nitrogen for ten years and then thawed, they will complete only the remaining
half of their allotted divisions.

Cell reproduction seems to have a rejuvenating effect on cells.

It is a common observation that cells that reproduce often tend to age more slowly
than cells that divide infrequently. This effect is seen in both asexual and sexual
reproduction. Cancer cells divide rapidly and will do so in culture forever. Cells
of our pancreas divide at a moderate rate, and our pancreas seems to maintain its
function well into old age. Brain cells never divide and brain function deteriorates
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noticeably in old age. Even single-celled organisms can exhibit this effect: they may
show obvious signs of senescence until they reproduce, at which point those signs
disappear.

5.2 The Age Structure of Populations
Age-structure diagrams show the frequency distribution of ages in a population. The
data for males and females are shown separately. The shape of these diagrams can
tell us about the future course of population changes: The existence of a large pro-
portion of young people at any given time implies that there will be large proportions
of individuals of childbearing age 20 years later and of retirees 60 years later. The
shapes of age-structure diagrams are also dependent on migration into and out of a
population. Comparison of data for males and females can tell us about the inher-
ent differences between the genders and about the society’s attitude toward the two
genders.

Age-structure diagrams are determined by age-specific rates of birth, death, and
migration.

Figure 5.2.1 is a set of age-structure diagrams for the United States for 1955, 1985,
2015 (projected), and 2035 (projected) (see also [2]). They show how the population
is, or will be, distributed into age groups. Data are included for males and females.

Male
Female

1955 1985 2015 2035
Age
80+

10–19
20–29
30–39
40–49
50–59

60–69
70–79

0–9

24 2416 168 0 8
Millions

24 2416 168 0 8
Millions

24 2416 168 0 8
Millions

24 2416 168 0 8
Millions

Fig. 5.2.1. Past and future (projected) age-structure diagrams for the United States. Note the
growing proportion of elderly, compared to young, people. The cohort of “baby boomers’’ is
evident at the base of the 1955 data. That group moves up in the 1985 and 2015 diagrams. (Re-
drawn from “Age and Sex Composition of the U.S. Population,’’ in U.S. Population: Charting
the Change: Student Chart Book, Population Reference Bureau, Washington, DC, 1988. Used
with permission.)
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Fig. 5.2.2. Age-structure diagram for four countries for 1990. Each is labeled according to its
expected future growth rate. For instance, Kenya has a high proportion of young people, so
we expect its future growth rate to be high. (Redrawn from “Patterns of Population Change,’’
in World Population: Toward the Next Century, Population Reference Bureau, Washington,
DC, 1994, p. 5. Used with permission.)

These diagrams can convey a great deal of information. For example, look at the
data for 1955 and note the 20–30-year-old cohort.5 There are relatively fewer people

5 A cohort is a group of people with a common characteristic. Here the characteristic they
share is that they were born in the same decade.
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in this group because the birth rate went down during the Great Depression. On the
other hand, the birth rate went up dramatically after the Second World War, as the
20–40-year-old cohort in 1985 (the “baby boomers’’) shows clearly. Both of these
cohorts can be followed in the projected data. Note also how the population of elderly
people, especially women, is growing.

Figure 5.2.2 shows recent data for four countries—Kenya, China, the United
States, and Russia. Future population growth can be estimated by looking at the
cohort of young people, i.e., the numbers of people represented by the bottom part of
each diagram. In a few decades, these people will be represented by the middle part
of age-structure diagrams and will be having babies. Thus we can conclude that the
population of Russia will remain steady or even decrease, those of the United States
and China will grow slowly to moderately, and that of Kenya will grow rapidly.

Another factor besides births and deaths can change an age-structure diagram:
migration into and out of a population may change the relative numbers of people in
one age group. Figure 5.2.3 shows data for Sheridan and Durham Counties, North
Carolina, for 1990. Rural areas of the Great Plains have suffered a loss of young
people due to emigration, and the data for Sheridan County demonstrate it clearly.
On the other hand, Durham County is in the North Carolina Research Triangle, the site
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Fig. 5.2.3. An age-structure diagram showing the effects of migration. Many young people
in the 20–45-year-old age group have moved into Durham County, North Carolina, and many
young people in the 20–30-year-old age group have moved out of Sheridan County, North
Carolina. (Redrawn from “Age and Sex Profiles of Sheridan and Durham Counties, 1990,’’
in “Americans on the Move,’’ Population Bull., 48-3 (1993), 25 (published by Population
Reference Bureau, Washington, DC). Used with permission.)
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of several major universities and many research industries. It is therefore a magnet
for younger people, and its age-structure diagram reflects that fact.

Some populations have more men than women.

We are accustomed to the idea that there are more women than men in our country.
That (true) fact can be misleading, however. While the sex ratio at conception is
not known, there is evidence that a disproportionate number of female fetuses are
spontaneously aborted in the first trimester of pregnancy. On the other hand, in the
second and third trimesters, more male than female fetuses are lost. The ratio of sexes
at birth in the United States is about 106 males to every 100 females. The specific
death rate for males is higher than for women, and by early adolescence the sex ratio
is 100:100. You can refer back to Figure 5.2.1 to see the effect of males’ higher death
rate on the relative numbers of males and females in later life.
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Fig. 5.2.4. Age-structure diagram from the United Arab Emirates showing an unbalanced sex
ratio. The gender imbalance, males outnumbering females, is due to the importation of males
to work in the oil fields: these males are not accompanied by their families. (Redrawn from
“Unbalanced Sex Ratio: UnitedArab Emirates, 1985,’’ in “Population: ALively Introduction,’’
Population Bull, 46-2 (1991), 25 (published by Population Reference Bureau, Washington,
DC). Used with permission.)
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The fact that there are more females than males in the United States might lead
us to be surprised by the data of Figure 5.2.4, an age-structure diagram for the United
Arab Emirates. The unbalanced sex ratio, heavily tilted toward males, arises from
immigration: U.A.E. has brought in many men from other countries to work in its oil
fields, and the men seldom bring their families.

Another feature of gender ratios can be noted in age-structure diagrams of certain
countries. In the late 1980s, the ratio of men to women in advanced countries was
about 94:100; in developing countries, it was about 104:100.

5.3 Predicting the Age Structure of a Population

A graph of population size P as a function of age y visually documents the age struc-
ture, or profile, of a population. Over time, a population profile can change due to
periodic environmental conditions that may be favorable or unfavorable to the popu-
lation, and to occasional events such as natural diasters and epidemics. For human
populations, medical improvements have gradually increased the representation in
the higher age brackets.

But much greater use can be made of the population density function P . With a
knowledge of survival rates by age, �(y), the trend in P can be predicted. It can be
shown that if survival rates are relatively constant over time, then the age structure
of a population tends to a fixed profile within which the overall size of the population
may nonetheless increase or decrease.

Age structure is the distribution of a population by age.

The age structure of a population can be described by means of a function P(y)

giving the size of the population in the yth age group for a set of groups covering
all possible ages. Table 5.3.1 shows the age distribution of the U.S. population in
1990 refined to 20-year age brackets. Mathematically, it is more common to use one-
year age brackets, so that P(0) is the number of newborns less than one year of age,
P(1) counts the one-year-olds, and so on. We shall refer to P(y) as the age density
function. The total size of a population is calculated from its density by summing,

Table 5.3.1. U.S. population, 1990.

Age bracket Number bracket
(in millions)

0–20 71.8
20–40 103.4
40–60 60.3
60–80 20.9
80–100 .209

100 .001
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P =
∞∑

n=0

P(n). (5.3.1)

The use of infinity as the upper limit of this sum is a simplifying measure; for some
age, maybe ymax = 115, P(y) = 0 for y > ymax, so the indicated infinite sum is in
reality only from 0 to 115.

The age structure of the United States has gradually evolved over the last half
of the twentieth century, as seen in Figure 5.2.1. On the other hand, any of several
catastrophes can bring about rapid change to an age structure. We account for these
possibilities by regarding the age-density function as dependent on calendar time t

as well as age y, and in deference to these dual dependencies we write P(y, t). In
addition, including the reference to time provides a mechanism for describing births
year by year, namely, P(0, t). This is the birth rate of a population in year t . If the
birth rate is down in some year, say, t = t0, this affects the population in subsequent
years as well, as we have seen above. To begin with, the population of one-year-olds
cannot exceed the population of newborns in the previous year,

P(1, t0 + 1) ≤ P(0, t0),

assuming no immigration into the population, of course. This is generally true for
any age bracket; thus under the condition of no immigration,

P(y + 1, t + 1) ≤ P(y, t) for y ≥ 0 and for all t . (5.3.2)

While the population in an age bracket cannot increase in the following year, it can
decrease due to deaths that occur during the year. Let µ(y) denote the death rate, or
mortality, experienced by the population of age y. The death rate is dimensionless,
being the fraction of deaths per individual, or since it is usually a number in the
thousandths, it is frequently given as deaths per 1000 individuals. The actual number
of deaths that occur among the segment of the population of age y in year t is the
product of the death rate and the number of individuals at risk,

µ(y)P (y, t)

(µ must be deaths per individual here or P must be population in thousands).
Virtually all natural populations experience very high preadult mortality rates. In-

sect populations and other unnurtured species (r-strategists; cf. Chapter 4) experience
death rates similar to that shown in Figure 5.1.1(a). Notice that the newly hatched
young suffer the highest mortality rates, with improvement as the animal ages. By
contrast, nurtured species (K-strategists), such as mammals, experience much lower
preadult mortality rates, as seen in Figure 5.1.1(b).

A mortality table for the United States is given in Table 5.3.2. In most species,
mortality rates are lowest during the middle adult years.

Returning to (5.3.2), taking deaths into account yields the equality

P(y + 1, t + 1) = P(y, t)− µ(y)P (y, t), (5.3.3)
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Table 5.3.2. U.S. mortality table for 1991. (Source: U.S. Department of Health and Human
Services, Hyattsville, MD.)

Age Deaths (%)
0–10 1.2

10–20 .57
20–30 1.2
30–40 1.8
40–50 3.1
50–60 7.2
60–70 16.4

70+ 100

Table 5.3.3. U.S. mortality rates; rates per 1,000 population. (Source: U.S. Department of
Health and Human Services, Hyattsville, MD.)

Year Average mortality
1920 13.0
1930 11.3
1940 10.6
1950 9.6
1960 9.5
1970 9.5
1980 8.6
1990 8.6

provided there is no immigration or emigration. But this equation ignores the effect
of external events that may play havoc with death rates. For example, due to a catas-
trophic epidemic, death rates in the youth age groups may be high during the calendar
year in which it strikes. On the other hand, the U.S. population has experienced a
gradually decreasing death rate over this century as a result of improved medical care
(see Table 5.3.3). To account for these and other factors unrelated to age, we must
regard µ as a function of time as well as age. Thus (5.3.3) becomes

P(y + 1, t + 1) = P(y, t)− µ(y, t)P (y, t) = �(y, t)P (y, t), (5.3.4)

where �(y, t) = 1 − µ(y, t) is the fraction of the population of age y that will live
through year t . These factors �(·, ·) are called survival rates.

In the absence of external events, populations evolve to a stable age distribution.

While survival rates depend on calendar time in general, here we are interested in
predicting the population structure in the absence of external events. Consequently,
we will regard µ (and �) as a function of age only.

If we know yearly birth rates P(0, t) and age-specific survival rates �(y), (5.3.4)
allows us to calculate the course of the population through time, including its age
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distribution and size. We also need to know the present age distribution, P(y, 0),
where we may regard the present time as t = 0. Usually the calculation is done for
the female population of the species, since birth rates depend largely on the number
of females while being somewhat independent of the number of males. The birth
rates given will therefore pertain to the birth of females.

We illustrate this calculation for a K-strategist, specifically, for the gray seal,
whose (female) fecundity and survival rates are given in Table 5.3.4.

Table 5.3.4. Gray seal fecundity and survival rates. (Source: D. Brown and P. Rothery, Models
in Biology: Mathematics, Statistics, and Computing, Wiley, Chirchester, UK, 1993.)

Age 0 1 2 3 4 5 5+
Fecundity 0 0 0 0 0.08 0.28 0.42

Survival 0.657 0.930 0.930 0.930 0.935 0.935 0

To get it started, we make the assumption that the present population has uniform
age density. Actually, this assumption about the starting population is not important
in the long term, as we will see in the exercises. The key values are the birth and
survival rates in the table. Since the survival rate for age 0 is 0.657, from (5.3.4)
we have

P(1, t + 1) = 0.657P(0, t) for all t ≥ 0.

Similarly, for y = 1, 2, 3,

P(y + 1, t + 1) = 0.930P(y, t) for all t ≥ 0.

And for y = 4, 5,

P(y + 1, t + 1) = 0.935P(y, t) for all t ≥ 0.

In this we take 5+ 1 to be 5+. Since there is no category beyond “5+,’’ the survival
rate �(5+) is 0. The birth-rate calculation uses the fecundity entries and is only
slightly more complicated,

P(0, t + 1) = 0.08P(4, t)+ 0.28P(5, t)+ 0.42P(5+, t).

It is convenient to write the calculation in matrix form. Let p(t) be the vector
whose components are P(y, t),

p(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(0, t)

P (1, t)

P (2, t)

P (3, t)

P (4, t)

P (5, t)

P (5+, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then p(1) is given as the matrix product

p(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0.08 0.28 0.42
0.657 0 0 0 0 0 0

0 0.930 0 0 0 0 0
0 0 0.930 0 0 0 0
0 0 0 0.930 0 0 0
0 0 0 0 0.935 0 0
0 0 0 0 0 0.935 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(0, 0)

P (1, 0)

P (2, 0)

P (3, 0)

P (4, 0)

P (5, 0)

P (5+, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Lp(0).

(5.3.5)
Denote by L the 7× 7 matrix indicated. The first row reflects the births coming from
various age groups and has nonzero terms indicated by them. Except for the first row,
the only nonzero terms are the principal subdiagonal entries and those are the survival
rates �(y). This matrix is called the Leslie matrix, and it always has the same form:

L =

⎛
⎜⎜⎜⎜⎝

a1 a2 a3 · · · an

b1 0 0 · · · 0
0 b2 0 · · · 0
· · · · · · · · · · · · 0
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠.

To be specific, assume a starting density p(0). The new density p(1) in (5.3.5) can
be computed by inspection, or by using the computer:

MAPLE (symbolic calculation)
> with(LinearAlgebra):
> el:=Matrix(7,7); # Maple initializes the entries to 0

# symbolic maple calculations require rational numbers,
# .08 = 2/25, .28 = 7/25, and so on

> el[1,5]:=2/25: el[1,6]:=7/25: el[1,7]:=21/50: el[2,1]:=657/1000: el[3,2]:=93/100:
> el[4,3]:=93/100: el[5,4]:=93/100: el[6,5]:=935/1000: el[7,6]:=935/1000:
> el;
> evalm(el &* [P0,P1,P2,P3,P4,P5,P6]);

Either way, we get

p(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.08P(4, 0)+ 0.28P(5, 0)+ 0.42P(5+, 0),

0.657P(0, 0)

0.930P(1, 0)

0.930P(2, 0)

0.930P(3, 0)

0.935P(4, 0)

0.935P(5, 0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, the population size after one time period is simply the sum of the
components of p(1).

The beauty of this formulation is that advancing to the next year is just another
multiplication by L. Thus

p(2) = Lp(1) = L2p(0), p(3) = Lp(2) = L3p(0), etc.

The powers of a Leslie matrix have a special property, which we illustrate. For
example, compute L10:
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MAPLE

> el10:=evalf(evalm(elˆ10)):
> Digits:=2; evalf(evalm(el10)); Digits:=10;

MATLAB

> L=[0 0 0 0 .08 .28 .42; .657 0 0 0 0 0 0; 0 .930 0 0 0 0 0; 0 0 .930 0 0 0 0; 0 0 0 .930 0 0 0;…
0 0 0 0 .935 0 0; 0 0 0 0 0 .935 0]

> Lˆ(10)

The result, accurate to three places, is

L10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0018 0.018 0.058 0.094 0.71 0 0
0 0.0018 0.013 0.041 0.067 0.050 0
0 0 0.0018 0.013 0.041 0.066 0.050

0.11 0 0 0.0018 0.013 0.031 0.033
0.073 0.16 0 0 0.0018 0.0063 0.0094
0.021 0.10 0.16 0 0 0 0

0 0.030 0.10 0.16 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3.6)

Remarkably, the power Ln can be easily approximated, as predicted by the Perron–
Frobenius theorem [3], as we now describe. Letting λ be the largest eigenvalue of
L (see Section 2.6) and letting V be the corresponding normalized eigenvector, so
LV = λV , then

Lnp(0) ≈ cλnV,

where c is a constant determined by the choice of normalization; see (5.3.7). This
approximation improves with increasing n. The importance of this result is that
the long-range forecast for the population is predictable in form. That is, the ratios
between the age classes are independent of the initial distribution and scale as powers
of λ.

The number λ is a real, positive eigenvalue of L. It can be found rather easily
by a computer algebra system. The eigenvector can also be found numerically. It is
shown in [4] that the eigenvector has the following simple form:

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
b1
λ

b1b2
λ2

...
b1b2b3···bn

λn

⎞
⎟⎟⎟⎟⎟⎟⎠. (5.3.7)

To illustrate this property of Leslie matrices, we will find λ, V, and L10 for the gray
seal example. Other models are explored in the exercises.

MAPLE

> vel:=Eigenvectors(fel);
> vals:=vel[1]; lambda:=vals[1] # only one real e-value, should be the first

# grab the first e-vector and normalize it
> vects:=(Transpose(vel[2]): V:=vects[1]; V:=[seq(V[i]/V[1],i=1..7)]:
> V:=convert(V,Vector[column]);

MATLAB

> [evect,eval]=eig(L)
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> lambda=eval(1)
> pf=evect(:,1)

% get pf=0.8586 and eigenvector=[-0.3930 -0.3007 … -0.4532],
% multiply by a constant so leading term is 1

> pf=pf/pf(1)

The eigenvalue and eigenvector are given as

λ ≈ 0.8586 and V ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0
0.765
0.829
0.898
0.972
1.06
1.15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.3.8)

which is normalized to have first component equal to 1. The alternative formula
(5.3.7) for computing V can be used to check this result:

MAPLE

> chk:=[1,el[2,1]/lambda, el[2,1]*el[3,2]/lambdaˆ2, el[2,1]*el[3,2]*el[4,3]/lambdaˆ3,
el[2,1]*el[3,2]*el[4,3]*el[5,4]/lambdaˆ4, el[2,1]*el[3,2]*el[4,3]*el[5,4]*el[6,5]/lambdaˆ5,
el[2,1]*el[3,2]*el[4,3]*el[5,4]*el[6,5]*el[7,6]/lambdaˆ6];

MATLAB

> V=[1; L(2,1)/lambda; L(2,1)*L(3,2)/lambdaˆ2; L(2,1)*L(3,2)*L(4,3)/lambdaˆ3;…
L(2,1)*L(3,2)*L(4,3)*L(5,4)/lambdaˆ4; L(2,1)*L(3,2)*L(4,3)*L(5,4)*L(6,5)/lambdaˆ5;…
L(2,1)*L(3,2)*L(4,3)*L(5,4)*L(6,5)*L(7,6)/lambdaˆ6]

Evidently, we get the same vector V as (5.3.8). Next, we illustrate the approximation
of the iterates for this example. Take the intial value to be uniform, say, 1; then make
the following calculations:

MAPLE

> evalf(evalm(el10 &* [1,1,1,1,1,1,1]));
> evalm(lambdaˆ10*V);

MATLAB

> p=ones(7,1) % column vector of 1s
> (Lˆ10)*p
> lambdaˆ10*V

p(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, L10p(0) = α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

.24

.17

.17

.19

.25

.28

.29

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈ cλ10V = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

.22

.17

.18

.19

.21

.23

.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One implication of this structure is that the total population is stable if λ = 1, and
it increases or decreases depending on the comparative size of λ to 1.

Continuous population densities provide exact population calculations.

Any table of population densities, such as P(y, t) for n = 0, 1, . . . as above, will have
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limited resolution, in this case one-year brackets. Alternatively, an age distribution
can be described with unlimited resolution by a continuous age-density function,
which we also denote by P(y, t), such as we have shown in Figures 4.1.2 and 4.1.4.

Given a continuous age density P(y, t), to find the population size in any age
group, just integrate. For instance, the number in the group 17.6 to 21.25 is

number between age 17.6 and 21.25 =
∫ 21.25

17.6
P(y, t)dy.

This is the area under the density curve between y = 17.6 and y = 21.25. The total
population at time t is

P =
∫ ∞

0
P(y, t)dy,

which is the analogue of (5.3.1). For a narrow range of ages at age y, for example, y

to y+�y with �y small, there is a simpler formula: Population size is approximately
given by the product

P(y, t) ·�y

because density is approximately constant over a narrow age bracket.
The variable y in an age density function is a continuous variable. The period of

time an individual is exactly 20, for instance, is infinitesimal; so what does P(20, t)

mean? In general, P(y, t) is the limit as �y → 0 of the number of individuals in an
age bracket of size �y that includes y, divided by �y,

P(y, t) = lim
�y→0

population size between y and y +�y

�y
.

As above, the density is generally a function of time as well as age, and it is written
P(y, t) to reflect this dependence.

Table 2.7.3 gives the mortality rate forAlabama in 1990. From the table, the death
rate for 70-year-olds, i.e., someone between 70.0 and 70.999 . . . , is approximately
40 per 1000 individuals over the course of the year. Over one-half of the year it
is approximately 20 per 1000, and over �t fraction of the year the death rate is
approximately µ(70, 1990) · �t in deaths per 1000, where µ(70, 1990) is 40. To
calculate the actual number of deaths, we must multiply by the population size of
the 70-year-olds in thousands. On January 1, 1990, the number of such individuals
was

∫ 71
70 P(y, 1990)dy/1000. Thus the number of deaths among 70-year-olds over a

small fraction �t of time at the beginning of the year 1990 is given by

µ(70, 1990)�t

∫ 71

70
P(y, 1990)dy/1000. (5.3.9)

A calculation such as (5.3.9) works, provided the death rate is constant over the
year and the time interval �t is less than one year. But in general, death rates vary
continuously with age. In Figure 5.3.1, we show an exponential fit to the data of
Table 2.7.3. The approximate continuously varying death rate is
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µ(y, t) = Aeby,

which is drawn using the methods of Exercise 1 in Section 2.7. This equation assumes
that the death rate is independent of time; but as we have seen, it can depend on time
as well as age.

deaths
per

1000

age

0

20

40

60

80

0 20 40 60 80

Fig. 5.3.1. Least squares fit to the death rate table, Table 2.7.3.

To calculate a number of deaths accurately, we must account for the changing
death rate as well as the changing density. The term that calculates the number of
deaths to individuals of exact age y at time t over the interval of time �t is

P(y, t)µ(y, t)�t. (5.3.10)

The number of deaths among those individuals who are between y and y +�y years
old over this same period of time is

[P(y, t)�y]µ(y, t)�t.

Suppose we want to do the calculation for those between the ages of a1 to a2 over
the calendar time tt to t2. The approximate answer is given by the double sum of
such terms, ∑∑

µ(y, t)P (y, t)�y�t,

over a grid of small rectangles �y�t covering the range of ages and times desired. In
the limit as the grid becomes finer, this double sum converges to the double integral∫ t2

t1

∫ a2

a1

µ(y, t)P (y, t)dydt. (5.3.11)

Return to (5.3.10), which calculates the loss of population, �P , in the exact age
group y over the time interval �t ,
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�P = −µ(y, t)P (y, t)�t.

But by definition, the change in population is

�P = P(y +�y, t +�t)− P(y, t).

Equate these two expressions for �P , incorporating the fact that as time passes, the
population ages at the same rate, that is, �y = �t . Therefore, we have the continuous
analogue of (5.3.3),

P(y +�t, t +�t)− P(y, t) = −µ(y, t)P (y, t)�t.

Subtract the term P(y, t +�t) from both sides, transpose P(y, t), and divide by �t :

P(y +�t, t +�t)− P(y, t +�t)

�t
+ P(y, t +�t)− P(y, t)

�t
= −µ(y, t)P .

Finally, take the limit as �t → 0 to get

∂P

∂y
+ ∂P

∂t
= −µ(y, t)P . (5.3.12)

This is referred to as the Von Foerster equation. Its solution for y > t is

P(y, t) = P(y − t, 0)e−
∫ t

0 µ(y−t+u,u)du,

as can be verified by direct substitution.

MAPLE (symbolic, no MATLAB)
> P:=(n,t)–>h(n-t)*exp(-int(mu(n-t+u,u),u=0..t));
> diff(P(n,t),t)+diff(P(n,t),n)+mu(n,t)∗P(n,t);
> simplify(%);

This solution does not incorporate new births, however. Just as in the discrete case,
we must use experimental data to determine P(0, t) as a function of P(y, t), y > 0.

Exercises/Experiments

1. Consider the following discrete population model based on (5.3.1). Suppose the
initial population distribution (year t = 0) is given by

P(n, 0) = (100− n) · (25+ n), n = 0, . . . , 100.

Take the birth rate to be 1.9 children per couple per 10 years in the ten-year age
bracket from 21 to 30 years of age. Thus over the year t , the number of births
(number of people aged 0 in year t + 1) is

P(0, t + 1) = 1.9

2

30∑
i=21

P(i, t)

10
.
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(Assume that this formulation accounts for the complication of a 3
4 -year gestation

period.) Take the death rate for people of age n to be given by the exponential

µ(n) = 0.0524(exp(0.03n)− 1), n > 0.

The problem is to advance the population for three years, keeping track of the
total population:

Total(t) =
100∑
n=0

P(n, t).

Does the total population increase? (One can use the Leslie matrix approach or
(5.3.3) directly.)

MAPLE

> restart;
> for n from 0 to 100 do

P[n,0]:=(100-n)*(25+n); mu[n]:=.0524*(exp(.03*n)-1);
od:

> plot([seq([i,P[i,0]],i=0..100)]);
> plot([seq([i,mu[i]],i=0..100)]);
> for t from 1 to 3 do

P[0,t]:=(1.9/20)*sum(P[i,t-1],i=21..30);
for k from 1 to 100 do

P[k,t]:=(1-mu[k-1])*P[k-1,t-1];
od: od:

> for t from 0 to 3 do
total[t]:=sum(P[i,t],i=0..100);

> od;

MATLAB

> n=0:1:100;
> P0=(100-n).*(25+n);
> plot(n,P0);
> P=P0’; % rows=age, columns=time

% no base 0 indexing so P(n,t) = number aged n-1 in year t-1
> mu=.0524*(exp(.03.*n)-1); % mu(n) applies to age n-1
> plot(n,mu);
> for t=1:3

total(t)=sum(P(:,t));
P(1,t+1)=(1.9/20)*sum(P(22:31,t));
for n=2:101

P(n,t+1)=(1-mu(n-1))∗P(n-1,t);
end; end;

> total(1) %starting year
> total(4)=sum(P(:,4)) % 3 years later

2. For the following two Leslie matrices find λ and V as given in (5.3.4). What is
the ratio of the ages of associated populations?

L1 =
(

1 2
3

1
2 0

)
, L2 =

⎛
⎝0 4 3

1
2 0 0
0 1

4 0

⎞
⎠.

Questions for Thought and Discussion
1. Draw age-structure diagrams for the three cases of populations whose maximum

numbers are young, middle-aged, and elderly people. In each case, draw the
age-structure diagram to be expected 30 years later if birth and death rates are
equal and constant and if there is no migration.
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2. Repeat Question 1 for the situation in which the birth rate is larger than the death
rate and there is no migration.

3. Repeat Question 1 for the situation in which the birth and death rates are constant,
but there is a short but extensive incoming migration of middle-aged women at
the outset.
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