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A Biomathematical Approach to HIV and AIDS

Introduction

Acquired immunodeficiency syndrome (AIDS) is medically devastating to its victims,
and wreaks financial and emotional havoc on everyone, infected or not. The purpose
of this chapter is to model and understand the behavior of the causative agent of
AIDS—the human immunodeficiency virus (HIV). This will necessitate discussions
of viral replication and immunology. By the end of this chapter, the student should
have a firm understanding of the way that HIV functions and be able to apply that
understanding to a mathematical treatment of HIV infection and epidemiology.

Viruses are very small biological structures whose reproduction requires a host
cell. In the course of viral infection the host cell is changed or even killed. The host
cells of HIV are specific and very unique: They are cells of our immune system. This
is of monumental importance to the biological and medical aspects of HIV infection
and its aftermath. HIV infects several kinds of cells, but perhaps its most devastating
cellular effect is that it kills helper T-lymphocytes. Helper T-lymphocytes play a
key role in the process of gaining immunity to specific pathogens; in fact, if one’s
helper T-lymphocytes are destroyed, the entire specific immune response fails. Note
the irony: HIV kills the very cells that are required by our bodies to defend us from
pathogens, including HIV itself! The infected person then contracts a variety of
(often rare) diseases to which uninfected persons are resistant, and that person is said
to have AIDS.

10.1 Viruses

Viruses are small reproductive forms with powerful effects. A virus may have only
four to six genes, but those genes enable it to take over the synthetic machinery
of a normally functioning cell, turning it into a small biological factory producing
thousands of new viruses. Some viruses add another ability: They can insert their
nucleic acid into that of the host cell, thus remaining hidden for many host cell
generations prior to viral reproduction.
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HIV is an especially versatile virus. It not only inserts its genetic information
into its host’s chromosomes, but it then causes the host to produce new HIV. Thus
the host cells, which are immune system components, produce a steady stream of
HIV particles. Eventually, this process kills the host cells and the patient becomes
incapable of generating critical immune responses.

A virus is a kind of parasite.

Each kind of virus has its own special anabolic (“building up’’) needs, which, because
of its genetic simplicity, the virus may be unable to satisfy. The host cell then must
provide whatever the virus itself cannot. This requires a kind of biological matching
between virus and host cell analogous to that between, say, an animal parasite and
its host. Host specificity is well developed in viruses: As examples, the rabies virus
infects cells of our central nervous system, cold viruses affect cells of our respiratory
tract, and the feline leukemia virus affects certain blood cells of cats (see [1]).

The basic structure of a virus is a protein coat around a nucleic acid core.

Simple viruses may have only four to six genes, but most viruses have many more
than that. In the most general case the viral nucleic acid, either DNA or RNA, is
surrounded by a protein coat, called a capsid (see Figure 10.1.1). In addition, many
viruses have outer layers, or envelopes, which may contain carbohydrates, lipids, and
proteins. Finally, inside the virus there may be several kinds of enzymes along with
the nucleic acid.

Envelope

Capsid

Nucleic acid

Enzyme
molecules

Fig. 10.1.1. A generalized drawing of a virus. In a given real case the envelope and/or enzyme
molecules may be absent and the nucleic acid may be DNA or RNA.

A virus cannot reproduce outside a host cell, which must provide viral building
materials and energy. All the virus provides is instructions via its nucleic acids and,
occasionally, some enzymes. As a result, viruses are not regarded as living things.
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Fig. 10.1.2. Some models of viral infection. (a) A virus whose host is a bacterium recognizes
some molecular feature of the correct host, attaches to it, and injects its nucleic acid into it. (A
virus whose host is a bacterium is called a bacteriophage.) (b) A virus whose host is an animal
cell recognizes some molecular feature of the correct host cell and is then drawn into the host
cell, where the capsid is removed.

Viral nucleic acid enters the host cell and redirects the host cell’s metabolic apparatus
to make new viruses.

A virus attaches to its specific host’s outer covering, host–virus specificity being en-
sured by host-to-viral molecular recognition. The molecules involved are proteins or
glycoproteins, a sugar–protein combination. At this point the viral nucleic acid enters
the host cell, the precise means of entry depending on the nature of the virus (see
Figure 10.1.2). For instance, viruses called bacteriophages infect bacteria. Bacte-
riophages have no envelope and seem to inject their nucleic acid into the bacterium,
leaving the viral protein capsid outside. Alternatively, nucleic acids from viruses that
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infect animals can enter the host cell by fusion, in which a virus joins its envelope to
the cell membrane of the host cell and the entire viral capsid is drawn into the host
cell. Fusion is facilitated by the fact that the viral envelope is chemically similar
to the cell membrane. The capsid is then enzymatically removed, thus exposing its
contents—the viral nucleic acid and possibly certain viral-specific enzymes.

What happens next depends on the identity of the virus, but it will ultimately
lead to viral multiplication. Viral replication requires the production of viral-specific
enzymes, capsid proteins, and, of course, viral nucleic acid. The synthesis of these
components is carried out using the host cell’s anabolic machinery and biochemical
molecules. To do this, the host cell’s nucleic acid must be shut down at an early
stage in the infection, after which the viral nucleic acid takes control of the cellular
machinery. It is said that the host cell’s metabolic apparatus is changed from “host
directed’’ to “viral directed.’’ An analogue can be found in imagining a computer-
controlled sofa-manufacturing plant. We disconnect the original (host) computer and
install a new (viral) computer that redirects the existing construction equipment to
use existing materials to manufacture chairs instead of sofas.

Typically a virus uses the enzymes of the host cell whenever possible, but there
are important situations in which the host cell may lack a critical enzyme needed by
the virus. For example, some viruses carry single-stranded nucleic acids, which must
become double stranded shortly after being inserted into the host. The process of
forming the second strand is catalyzed by a particular polymerase enzyme, one that
the host lacks. The viral nucleic acid can code for the enzyme, but the relevant gene
is on the nucleic acid strand that is complementary to the one strand the virus carries.
Thus the gene is unavailable until the viral nucleic acid becomes double stranded—
but of course the nucleic acid cannot become double stranded until the enzyme is
available! The virus gets around this problem by carrying one or more copies of the
actual enzyme molecule in its capsid and injecting them into the host at the time it
injects the nucleic acid.1

As the virus’s various component parts are constructed, they are assembled into
new, intact viruses. The nucleic acid is encapsulated inside the protein capsid, per-
haps accompanied by some critical viral enzymes. The assembly of the capsid is
spontaneous, like the growth of a crystal. The newly assembled viruses then escape
from the host cell and can start the infection process anew.

Many RNA viruses do not use DNA in any part of their life cycle.

The central dogma was presented in Chapter 8 to show the path of genetic informa-
tion flow:

1 Recall from Chapter 8 that in a given segment of DNA, only one of the two DNA strands
actually codes for RNA. That strand is called the coding strand . In the example given
above, the coding strand would be the strand formed after infection. Thus its genes would
not be available until after the nucleic acid became double stranded.
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DNA RNA protein

Note that because RNAis complementary to DNA, it should be possible to skip the
DNApart of the scheme. All that is necessary to justify this assertion is to demonstrate
that RNA can code for its own self-replication. While this does not seem to happen in
cellular systems, it is well known in viruses: Viral RNA replicates just as DNA does,
using complementary base-pairing. After replication, the RNA is packaged into new
viruses.2

Our revised statement of the central dogma, accounting for RNA self-replication,
now looks like this:

DNA RNA protein

There are several variations in the host-cell-escape mechanism for viruses.

Some viruses merely replicate their nucleic acid, translate out the necessary proteins,
encapsulate, and then burst out of the host cell an hour or two after infection. This
bursting process kills the host cell and is called lysis; the virus is said to be lytic.

Other viruses, said to be lysogenic, delay the lytic part of their reproductive
process. For example, the DNA of some DNA viruses is inserted into the host cell
body and then into the host’s DNA. Thus when the host’s DNA is replicated at cell
division, so is the viral DNA. The inserted viral DNA is called a provirus, and it can
remain inserted in the host DNAfor many cell generations. Sooner or later, depending
on the lysogenic virus, host, and culture conditions, the provirus begins to replicate
its nucleic acid and produces RNA, which then produces viral proteins. New viruses
are then assembled and lyse the host to get out.

There is an alternative to lysis in the escape process: When the viruses exit the
host cell, they may instead bud off from the host cell, in a process that is the reverse
of fusion. In the process, they take a piece of the cell membrane for an envelope,
but do not kill the host cell. Cells that release viruses by budding can therefore act
as virtually unending sources of new viruses. This, in fact, is the behavior of certain
blood cells infected with HIV.

2 There are single-stranded and double-stranded RNA viruses, just as there are single- and
double-stranded DNA viruses. HIV is a single-stranded RNA virus—its conversion to
double-stranded form will be described in Section 10.3.
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10.2 The Immune System

Our bodies fight off pathogens by two means. One is a general defense system that
removes pathogens without much regard to their biological nature; stomach acid is
such a system.

Of more concern to us in our considerations of HIV is a second, specific response
to pathogens (and other foreign substances); this response is tailored to each infec-
tive agent. Specialized blood cells called lymphocytes have the ability to recognize
specific molecular parts of pathogens and to mount a chemical response to those
fragments. Initially, we have at most only a few lymphocytes that can recognize each
such fragment, but upon contact with the fragment, the lymphocyte will start to divide
extensively to provide a clone of cells. Thus there results a large clone of identical
lymphocytes, all of which are chemically “tuned’’ to destroy the pathogen.

In this section, we describe the means by which lymphocytes respond to foreign
substances to keep us from getting diseases and from being poisoned by toxins. This
subject is of great importance to our understanding of HIV because certain lympho-
cytes are hosts for HIV. Thus HIV infection destroys an infected person’s ability to
resist pathogens.

Some responses to pathogens are innate, or general.

We possess several general mechanisms by which we can combat pathogens. These
mechanisms have a common property: They are essentially nondiscriminatory. Each
one works against a whole class of pathogens and does not need to be adapted for
specific members of that class. For example, tears and egg white contain an enzyme
that lyses the cell walls of certain kinds of bacteria. Stomach acid kills many pathogens
that we eat. Damaged tissue attracts blood- clotting agents and dilates capillaries to
allow more blood to approach the wound. Finally, there are blood cells that can
simply engulf pathogens; these cells are granulocytes and macrophages.

The problem with the innate response is that it cannot adapt to new circumstances,
whereas many pathogens are capable of rapid genetic change. Thus many pathogens
have evolved ways to circumvent the innate response. For such pathogens, we need
an immune response that can change in parallel with the pathogen (see [1] and [2]).

Blood cells originate in bone marrow and are later modified for different functions.

Humans have bony skeletons, as do dogs, robins, snakes, and trout, but sharks and
eels have cartilaginous skeletons. In the core, or marrow, of our bones is the blood-
forming tissue, where all of our blood cells start out as stem cells. Repeated division
of stem cells results in several paths of cellular specialization, or cell lines, as shown
in Figure 10.2.1. Each cell line leads to one of the various kinds of mature blood
cells described in Section 9.6. One cell line becomes red blood cells. Another line
generates cells involved in blood clotting. Still other lines have the ability to engulf
and digest pathogens. Finally, there is a cell line that generates cells capable of
specifically adapted defenses to pathogenic agents. They are called lymphocytes.
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Fig. 10.2.1. A flow chart showing the development of mammalian blood cells from their
generalized state to their final, differentiated state.

Some immune responses are adaptive, or specific, to the pathogen.

Our immune system is capable of reactions specifically tailored to each foreign sub-
stance, or antigen; in other words, each and every antigen elicits a unique response.
At first glance, we might think that the finite amount of information that a cell can
contain would place a ceiling on the number of specific responses possible. We will
see that the restriction is not important because the specific immune system works
against as many as 1012 distinct antigens!3

Certain cell lines, derived from bone marrow stem cells, mature in our lymphatic
system to become lymphocytes. For example, T-lymphocytes, or T-cells, mature in the
thymus gland, which is found prominently under the breastbone of fetuses, infants,
and children. B-lymphocytes, or B-cells, mature in bone marrow. These two kinds
of lymphocytes are responsible for the adaptive immune responses, but they play
different and complementary roles.

T-cells are responsible for the cell-mediated immune response.

We will be especially interested in two groups of T-cells: helper T-cells and cytotoxic
T-cells (see Figure 10.2.2). After they mature in the thymus of neonatal and prena-
tal animals, these T-cells are inactive. On their outer surfaces, inactive T-cells have
recognition proteins that can bind to antigens (via hydrogen bonds and other interac-

3 The size of this number, even its order of magnitude, is subject to some debate. In any case,
it is very big.
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Fig. 10.2.2. A flow chart showing the events and interactions surrounding the specific immune
response. The cell-mediated response begins at the top left and the humoral response begins at
the top center. The two responses interact at the center of the page. The details are described
in the text.
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tions). This binding cannot take place, however, unless some preliminary steps have
already occurred: First, one or more antigen-presenting cells, or macrophages, must
ingest the pathogen. Second, the antigen-presenting macrophages must then break
off various molecular pieces of the pathogen and move them to their own surface,
i.e., present the various antigenic fragments (called epitopes) to inactive T-cells. This
presentation activates the T-cells and causes them to divide repeatedly into clones,
each of which consists of identical, active helper T-cell or cytotoxic T-cells. In fact,
there should result a clone of active helper and cytotoxic T-cells for each of the vari-
ous epitopes that the antigen-presenting cells display, one clone originating from each
activated T-cell.4 An important point: The active helper T-cells are required in the
activation of the cytotoxic T-cells. The active cytotoxic T-cells then approach and kill
cells infected with the pathogen, thus killing the pathogen at the same time. The cyto-
toxic T-cell recognizes the infected cells because the infected cells, like macrophages,
present epitopes on their surfaces. The T-cell response is often called cell-mediated
immunity because the effect requires the direct and continued involvement of intact
T-cells.

The concept of an adaptive response, or immunological specificity, is associated
with the recognition of an infected antigen-presenting cell by a helper T-cell or cyto-
toxic T-cell. An inactive T-cell will be activated only if its specific receptors recognize
the specific antigenic fragment being presented to it. Evidence suggests that the sur-
face receptors of each individual inactive T-cell are unique, numerous, and of a single
kind. Because there are upward of a trillion or so different inactive T-cells in our
bodies, the presented parts of virtually every pathogen should be recognized by at
least a few of the T-cells.

B-cells are responsible for the humoral immune response.

Like T-cells, B-cells are inactive at the time they mature and have recognition proteins
on their surfaces. As with helper T-cells, these surface receptors vary from cell to cell
and can recognize antigens. However, while helper T-cells require that the antigen
appear on an antigen-presenting cell, B-cells can recognize an antigen that is free in
the liquid fraction of the blood. When an inactive B-cell recognizes and binds to the
antigen to which its surface proteins are complementary, the B-cell is then activated,
and it subsequently divides many times to form a clone of identical active B-cells,
sometimes called plasma cells. Active B-cells then secrete large quantities of a single
kind of protein molecule, called an antibody, into the blood. These antibodies are
able to bind to the antigen, an act that “labels’’ the antigen for destruction by either
of two mechanisms: A set of chemical reactions, collectively called complement,
can kill certain antibody-tagged bacteria, or tagged antigens can attract macrophages,
which devour the antigen. The B-cell response is often called the humoral immune
response, meaning “liquid-based.’’

4 When antigen-presenting cells cut up a pathogen, many different antigenically active epi-
topes may result. Potentially, each epitope can activate a different T-cell upon presentation.
Thus a single infecting bacterium could activate many different T-cell clones.
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The concept of specificity for B-cell activation arises in a way similar to that for T-
cells, namely in the recognition of the antigen by B-cell surface receptors. Evidently,
all or most of our approximately one trillion inactive B-cells have different surface
receptors. The recognition by a B-cell of the exact antigen for which that particular B-
cell’s surface is “primed’’ is an absolute requirement for the activation of that B-cell.
Fortunately, most pathogens, bacteria, and viruses, for example, have many separate
and distinct antigenic regions; thus they can trigger the activation of many different
B-cells.

Intercellular interactions play key roles in adaptive immune responses.

The specificity of both T- and B-cell interactions with pathogens cannot be overem-
phasized; no adaptive immune response can be generated until receptors on these
lymphocytes recognize the one specific antigen to which they can bind.

Note how T- and B-cells provide interlocking coverage: The cytotoxic T-cells
detect the presence of intracellular pathogens (by the epitopes that infected cells
present), and B-cells can detect extracellular pathogens. We would therefore expect
T-cells to be effective against already-infected cells and B-cells to be effective against
toxins, such as snake venom, and free pathogens, such as bacteria, in the blood.

Our discussion so far has emphasized the individual roles of T- and B-cells. In
fact, correct functioning of the adaptive immune system requires that these two kinds
of cells interact with each other. It was pointed out earlier that the activation of
cytotoxic T-cells requires that they interact with active helper T-cells. In fact, helper
T-cells are also needed to activate B-cells, as shown in Figure 10.2.2. Note the pivotal
role of active helper T-cells: They exercise control over cell-mediated immunity and
humoral immunity as well, which covers the entire adaptive immune system.

Lymphocytes diversify their receptor proteins as the cell matures.

At first glance, the central dogma of genetics would seem to suggest that the infor-
mation for the unique surface protein receptor of each inactive lymphocyte should
originate in a different gene. In other words, every inactive lymphocyte would merely
express a different surface receptor gene. In each person, there seem to be about 1012

unique inactive lymphocytes, and therefore there would have to be the same number
of unique genes! Actually, independent estimates of the total number of genes in a
human cell indicate that there are only about 30,000; see Section 14.3.

The many variant forms of lymphocyte surface receptor proteins originate as the
cell matures, and are the result of the random scrambling of genetic material—which
leads to a wide variety of amino acid sequences without requiring the participation of
a lot of genetic material. As an example, Figure 10.2.3 shows a length of hypothetical
DNA that we will use to demonstrate the protein diversification process. We imagine
the DNA to consist of two contiguous polynucleotide strings, or classes, labeled A
and B. Each class has sections 1 through 4. The protein to be coded by the DNA will
contain two contiguous polypeptide strings, one coded by a single section of A and
one coded by a single section of B. Thus there are 16 different proteins that could
result. To generate a particular protein, the unneeded sections of genetic material
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Fig. 10.2.3. A simplified picture of the creation of a specific antibody by a single lymphocyte.
The final antibody molecule is coded from one section each of DNA regions A and B. Because
the two sections are picked at random there are 16 possible outcomes. This figure shows how
many possible antibodies could be coded from a limited amount of DNA. In a real situation,
there would be many sections in many DNA regions, and the final, functional antibody would
contain contributions coded by several regions.

will be enzymatically snipped out, either at the DNA stage or the mRNA stage. The
protein that ultimately results in the figure is derived from DNA sections A2 and
B4. The selection of A2 and B4 was random; any of the other 15 combinations was
equally likely.

In a real situation, namely, the DNA coding for one of the proteins in B-cell
antibodies, there are about 240 sections distributed among four classes. Of these,
perhaps seven sections are actually expressed in a given cell, meaning that there are
thousands of combinations of seven sections that were not expressed in that cell.
These other combinations will be expressed in other B-cells, thereby generating a
large number of lymphocytes with different surface proteins.

There are still other ways that lymphocytes generate diverse recognition pro-
teins. For example, B-cells form antibodies by combining two completely separate
polypeptides, each of which uses the random “pick and choose’’ method described in
the previous two paragraphs. Further, when maturing, the nucleic acid segments that
code for lymphocyte surface recognition proteins mutate very rapidly, more so than
do other genes. All of this leads to the great variability in recognition proteins that
is so crucial to the functioning of the adaptive immune system, and it does so while
requiring a minimum amount of DNA for its coding.
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The adaptive immune system recognizes and tolerates “self’’ (clonal deletion).

The whole idea behind the immune system is to recognize foreign material and rid
the body of it. On the other hand, it would be intolerable for a person’s adaptive
immune system to treat the body’s own tissues as foreign. In order to prevent such
rejection of self-products, or autoimmune reactions, the adaptive system must have
some way to distinguish “self’’ from “nonself.’’ This distinction is created during
fetal development and continues throughout postnatal development.

The organ systems of a human fetus, including the blood-forming organs, are
formed during the organogenetic period of fetal development, as discussed in Chap-
ter 9. Most organogenesis is completed at least a month or two before birth, the
remaining fetal period being devoted to enlargement and maturation of the fetus.
Embryonic (immature) lymphocytes, which are precursors to inactive T- and B-cells,
are present during the time of organogenesis. Each one will have a unique kind of
recognition protein across its surface, inasmuch as such proteins are essentially gen-
erated at random from cell to cell. We could thus expect that among these embryonic
lymphocytes there would be not only those that can bind to foreign substances, but
also many that can bind to the embryo’s own cells. The clonal deletion model ex-
plains how these self-reactive lymphocytes can be neutralized: Because there are no
pathogens in a fetus, the only cells capable of binding to lymphocytes would be the
fetus’s own cells. Therefore, embryonic B- or T-cells that bind to any cell in the fetus
are killed or inactivated. Only self-reacting embryonic lymphocytes should be deleted
by this mechanism. This reduces the possibility of maturation of a lymphocyte that
could subsequently generate an autoimmune response.

There is good evidence for clonal deletion: Mouse embryos can be injected early
in utero with a virus or other material that would normally be antigenic in a postnatal
mouse. After birth, the treated mouse is unable to respond immunologically to subse-
quent injections of the virus. The mouse has developed an acquired immunological
tolerance to the antigen. What has happened at the cellular level is that any embry-
onic mouse lymphocytes that reacted with the prenatally injected virus were killed
or inactivated by clonal deletion—the virus was treated as “self.’’ Thus there can be
no mature progeny of these lymphocytes after birth to react to the second exposure
to the virus.

There is another mechanism for killing self-reacting lymphocytes.

Clonal deletion reduces the possibility of an autoimmune response, but does not
eliminate it. Recall that clonal deletion requires that self-products meet up with
embryonic lymphocytes; mature lymphocytes will not do. The fact is that some
embryonic lymphocytes slip through the clonal deletion net by not meeting the self-
products that would have inactivated them. In addition, lymphocytes seem to mutate
frequently, a process that postnatally may give them receptors that can react with
self-products. Finally, the thymus gland, while much reduced in adults, continues
to produce a limited number of new T-cells throughout life. These new cells, with
receptors generated at random, may be capable of reacting with self-products.
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There is a mechanism for getting rid of mature T-cells that can react with their own
body’s cells: Recall that a T-cell is activated when an infected antigen-presenting cell
presents it with a piece of antigen. In fact, this activation has another requirement:
The antigen-presenting cell must also display a second receptor, one that is found only
on infected antigen presenters. If a mature T-cell should bind to an uninfected antigen
presenter, one lacking the second receptor, the T-cell itself is inactivated (because
that binding is a sign that the T-cell receptors are complementary to uninfected self-
products). On the other hand, if a mature T-cell binds to an infected antigen presenter,
the infection being signaled by the second receptor, that binding is acceptable, and
the normal activation of the T-cell ensues.

Inactive lymphocytes are selected for activation by contact with an antigen (clonal
selection).

The clonal deletion system described above results in the inactivation or killing of
immature T- and B-cells if they react with any antigen. This process provides the
individual with a set of lymphocytes that can react only with nonself products. These
surviving T- and B-cells then remain in our blood and lymphatic circulatory systems
in an inactive state until they come into contact with the antigens to which their surface
receptors are complementary. This will be either as free, extracellular antigens for
B-cells or on an antigen-presenting cell in the case of T-cells.

Once the proper contact is made, the lymphocyte is activated and begins to divide
rapidly to form a clone of identical cells. But what if the correct antigen never appears?
The answer is an odd one—namely, the lymphocyte is never activated and remains
in the blood and lymphatic systems all of our life. What this means is that only a
tiny fraction of our lymphocytes ever become activated in our lifetimes; the rest just
go around and around our circulation or remain fixed in lymph nodes. This process
of activating only those few lymphocytes whose activity is needed, via contact with
their appropriate antigens, is called clonal selection.

The notion of clonal selection suggests an immense amount of wasted effort on
the part of the immune system. For example, each of us has one or more lymphocytes
capable of initiating the rejection of a skin transplant from the seventieth president
of the United States (in about a century), and others that would react against a cold
virus that people contracted in Borneo in 1370 AD. None of us will ever need those
capabilities, but we have them nevertheless. It might seem that a simpler mechanism
would have been the generation of a single generic kind of lymphocyte and then its
adaptation to each individual kind of antigen. This process is called the instructive
mechanism, but it is not what happens.

The immune system has a memory.

Most people get mumps or measles only one time. If there are no secondary compli-
cations these diseases last about a week, which is the time it takes for the activation of
T- and B-cells by a pathogen and the subsequent destruction of the pathogen. Surely
these people are exposed to mumps and measles many times in their lives, but they
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seem to be unaffected by the subsequent exposures. The reason for this is well un-
derstood: First, they have antibodies from the initial exposure, and second, among
the results of T- and B-cell activation are “memory’’ cells, whose surface recognition
proteins are complementary to the antigenic parts of the activating pathogen (refer
back to Figure 10.2.2). These memory cells remain in our blood and lymphatic sys-
tems for the rest of our lives, and if we are infected by the same pathogen again, they
mount a response just like the original one, but much more intensely and in a much
shorter time. The combination of preexisting antibodies from the initial exposure and
the intense, rapid secondary response by memory cells usually results in our being
unaware of the second exposure.

Why, then, do we get so many colds if the first cold we get as babies generates
memory cells? The answer lies in two facts: The adaptive immune response is very
specific, and the cold virus mutates rapidly. The memory cells are as specific for
antigen as were their original inactive lymphocyte precursors. They will recognize
only the proteins of the virus that caused the original cold; once having gotten a cold
from that particular strain of cold virus, we won’t be successfully infected by it again.
The problem is that cold viruses mutate rapidly, and one effect of mutation is that viral-
coat proteins (the antigens) change their amino acid sequences. Once that happens,
the memory cells and antibodies from a previous infection don’t recognize the new,
mutated strain of the virus and therefore can’t respond to it. The immune response
must start all over, and we get a cold that requires a week of recovery (again). If it is
possible to say anything nice about mumps, chicken pox, and such diseases, it is that
their causative agents do not mutate rapidly and we therefore get the diseases only
once, if at all. We shall see in the next section that rapid mutation characterizes HIV,
allowing the virus to stay one step ahead of the specific immune system’s defenses.

Vaccinations protect us by fooling the adaptive immune system.

The idea behind immunization is to generate the immune response without generating
the disease. Thus the trick is to inactivate or kill the pathogen without damaging its
antigenic properties. Exposure to this inactive pathogen then triggers the immune
responses described earlier, including the generation of memory cells. During a
subsequent exposure, the live, active pathogen binds to any preexisting antibody and
activates memory cells; thus the pathogen is inactivated before disease symptoms
can develop. As an example, vaccination against polio consists in swallowing live-
but-inactivated polio virus. We then generate memory cells that will recognize active
polio viruses if we should be exposed to them at a later date.

Exposure to some pathogenic substances and organisms is so rare that vaccination
of the general population against them would be a waste of time and money. Poisonous
snake venom is a case in point: The active agent in snake venom is a destructive
enzyme distinctive to each kind of snake genus or species, but fortunately almost no
one ever gets bitten by a snake. Snake venom is strongly antigenic, as we would expect
a protein to be, but the symptoms of snake bite appear so rapidly that the victim could
die long before the appropriate lymphocytes could be activated. Unless the snakebite
victim already has preexisting antibodies or memory T-cells against the venom, say,
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from a previous survivable exposure to the venom, he or she could be in a lot of trouble.
The way around this problem is to get another animal, like a horse, to generate the
antibodies by giving it a mild dose of the venom. The antivenom antibodies are then
extracted from the horse’s blood and stored in a hospital refrigerator until a snakebite
victim arrives. The antibodies are then injected directly into the bitten area, to tag the
antigenic venom, leading to its removal.

A snakebite victim probably won’t take the time to identify the species of the
offending reptile, and each snake genus or species can have an immunologically dis-
tinctive venom. To allow for this, hospitals routinely store mixtures of antibodies
against the venoms of all the area’s poisonous snakes. The mixture is injected at
the bite site, where only the correct antibody will react with the venom—the other
antibodies do nothing and eventually disappear without effect.5 This kind of immu-
nization is said to be passive, and it has a very important function in prenatal and
neonatal babies, who get passive immunity via interplacental transfer of antibodies
and from the antibodies in their mother’s milk. This protects the babies until their
own immune systems can take over.

10.3 HIV and AIDS

The human immunodeficiency virus defeats the immune system by infecting, and even-
tually killing, helper T-cells. As a result, neither the humoral nor the cell-mediated
specific immune responses can function, leaving the patient open to opportunistic
diseases.

As is true of all viruses, HIV is very fussy about the host cell it chooses. The
problem is that its chosen hosts are immune system cells, the very same cells that are
required to fend it off in the first place. Initially, the victim’s immune system responds
to HIV infection by producing the expected antibodies, but the virus stays ahead of
the immune system by mutating rapidly. By a variety of mechanisms, some poorly
understood, the virus eventually wears down the immune system by killing helper T-
cells, which are required for the activation of killer T-cells and B-cells. As symptoms
of a low T-cell count become manifested, the patient is said to have AIDS.

In this section, we will describe the reproduction of HIV as a prelude to a mathe-
matical treatment of the behavior of HIV and the epidemiology of AIDS.

The human immunodeficiency virus (HIV) infects T-cells and macrophages, among
others.

The outer coat of HIV is a two-layer lipid membrane, very similar to the outer mem-
brane of a cell (see Figure 10.3.1). Projecting from the membrane are sugar–protein
projections, called gp120. These gp120 projections recognize and attach to a pro-
tein called CD4, which is found on the surfaces of helper T-cells, macrophages, and
monocytes (the latter are macrophage precursors). The binding of gp120 and CD4

5 Note that the unneeded antibodies do not provide a “memory’’because there is no activation
of lymphocytes—hence no memory cells.
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Fig. 10.3.1. A model of the human immunodeficiency virus (HIV). The outer membrane of the
HIV is derived from the outer membrane of the host cell. Thus an antibody against that part
of the HIV would also act against the host cell. Note that the HIV carries copies of the reverse
transcriptase enzyme.

leads to the fusion of the viral membrane and the cell membrane. Then the viral
capsid is brought into the blood cell (see [3] and [4]).

HIV is a retrovirus.

The HIV capsid contains two identical single strands of RNA(no DNA). The capsid is
brought into the host cell by fusion between the viral envelope and the cell membrane,
as described in Section 10.1. The capsid is then enzymatically removed. The HIV
RNA information is then converted into DNA information, a step that is indicated by
the straight left-pointing arrow in the following central dogma flow diagram:6

6 This is our final alteration to “dogma.’’
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DNA RNA protein

The conversion of RNA information into DNA information involves several steps
and is called reverse transcription: First, the single-stranded HIV RNA acts as a
template for the creation of a strand of DNA. This process entails complementary
H-bonding between RNA nucleotides and DNA nucleotides, and it yields a hybrid
RNA-DNA molecule. The RNA is then removed and the single-strand of DNA acts
as a template for the creation of a second, complementary, strand of DNA. Thus a
double helix of DNA is manufactured, and it carries the HIV genetic information.

The chemical process of covalently polymerizing DNA nucleotides and depoly-
merizing RNA nucleotides, like most cellular reactions involving covalent bonds,
requires enzymatic catalysis to be effective. The enzyme that catalyzes reverse tran-
scription is called reverse transcriptase. Reverse transcriptase is found inside HIV,
in close association with the viral RNA, and it enters the host cell right along with the
RNA, ready for use. Once HIV DNA is formed it is then spliced into the host cell’s
own DNA; in other words, it is a provirus.

In a general sense, a provirus becomes an integral part of the host cell’s genetic
material; for instance, proviruses are replicated right along with the host cell’s genome
at cell division. It should therefore not be surprising that the physiology and mor-
phology of the host cell changes as a result of the incorporated provirus. For example,
one important consequence of HIV infection is that gp120 projections appear on the
lymphocyte’s surface.

Once in the form of a provirus, HIV starts to direct the host cell’s anabolic ma-
chinery to form new HIV. As the assembled viruses exit the host cell by budding,
they pick up a part of the cell’s outer lipid bilayer membrane, along with some of the
gp120 placed there by the provirus. The newly formed virus is now ready to infect a
new cell.

The budding process does not necessarily kill the host cell. In fact, infected
macrophages seem to generate unending quantities of HIV. T-cells do eventually die
in an infected person, but as explained below, it is not clear that they die from direct
infection by the virus.

The flow of information from RNA to DNA was omitted when the central dogma
was first proposed because at the time, no one believed that information flow in that
direction was possible. As a consequence, subsequent evidence that it existed was
ignored for some years—until it became overwhelming. The process of RNA-to-
DNA informational flow is still called “reverse transcription,’’ the key enzyme is
called “reverse transcriptase,’’ and viruses in which reverse transcription is important
are still called “retroviruses,’’ as though something were running backward. Of
course, there is nothing actually “backward’’ about such processes; they are perfectly
normal in their natural context.
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HIV destroys the immune system instead of the other way around.

As Figure 10.3.2 shows, the number of helper T-cells in the blood drops from a normal
concentration of about 800 per ml to zero over a period of several years following
HIV infection. The reason for the death of these cells is not well understood, because
budding usually spares the host cell, and besides, only a small fraction of the T-cells
in the body ever actually become infected by the HIV in the first place. Nevertheless,
all the body’s helper T-cells eventually die. Several mechanisms have been suggested
for this apparent contradiction: Among them, the initial contact between HIV and a
lymphocyte is through the gp120 of the HIV and CD4 of the T-cell. After a T-cell
is infected, gp120 projections appear on its own surface, and they could cause that
infected cell to attach to the CD4 receptors of other, uninfected T-cells. In this way,
one infected lymphocyte could attach to many uninfected ones and disable them all.
In fact, it has been observed that if cells are artificially given CD4 and gp120 groups,
they clump together into large multinuclear cells (called syncitia).
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Fig. 10.3.2. A graph of the helper T lymphocyte count of an HIV-infected person. Clinical
symptoms are indicated along the top of the figure. Note the correlation between the decrease
in T-cell count and the appearance of the clinical symptoms. (Redrawn from R. Redfield and
D. Burke, HIV infection: The classical picture,’’ Sci. Amer., 259-4 (1988), 90–98; copyright
©1988 by Scientific American, Inc. All rights reserved.)

A second possible way that helper T-cells might be killed is suggested by the
observation that the infected person’s lymph nodes atrophy. The loss of those parts
of the lymphatic system may lead to the death of the T-cells.
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Third, a normal function of helper T-cells is to stimulate killer T-cells to kill
viral-infected cells. It may be that healthy helper T-cells instruct killer T-cells to
kill infected helper T-cells. Eventually, this normal process could destroy many of
the body’s T-cells as they become infected, although, as noted earlier, only a small
fraction of helper T-cells ever actually become infected.

Fourth, it has been demonstrated that if an inactive HIV-infected lymphocyte is
activated by antigen, it yields greatly reduced numbers of memory cells. In fact, it
seems that the activation process itself facilitates the reproduction of HIV by providing
some needed stimulus for the proper functioning of reverse transcriptase.

HIV infection generates a strong initial immune response.

It is shown in Figure 10.3.3 that the immune system initially reacts vigorously to HIV
infection, producing antibodies as it should.7

Effectiveness of natural
immune response to HIV

Viable HIV in body

Time (years)

1 2 3 4 5 6 7 8 90 10

Fig. 10.3.3. A graph of immune response and viral appearance vs. time for an HIV-infected
person. The initial infection generates a powerful immune response. That response, however,
is later overwhelmed by the virus, which kills the helper T-lymphocytes that are required by
the humoral and cell-mediated immune responses. (Redrawn from R. Redfield and D. Burke,
HIV infection: The classical picture, Sci. Amer., 259-4 (1988), 90–98; copyright ©1988 by
Scientific American, Inc. All rights reserved.)

7 The presence of antibodies against HIV is the basis for the diagnosis of HIV infection. Note
that it takes several months to get a measurable response.
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Nonetheless, the circulating helper T-cell count soon begins an irreversible de-
crease toward zero, as discussed above. As helper T-cells die off, the ability of the
adaptive immune system to combat any pathogen, HIV or other, also vanishes.

In Section 10.4, we will describe a mathematical model for the interaction between
helper T-cells and HIV.

The high mutability of HIV demands continued response from the adaptive immune
system.

Mutations occur commonly in HIV RNA, and the reason is reasonably well under-
stood: Reverse transcriptase lacks a “proofreading’’ capacity. This proofreading
ability is found in enzymes that catalyze the polymerization of DNA from a DNA
template in the “forward’’ direction of the central dogma. Thus the occasional mis-
matching of H-bonds between nucleotides, say the pairing of A opposite G, gets
corrected. On the other hand, reverse transcriptase, which catalyzes DNA formation
from an RNA template, seems not to be able to correct base-pairing errors, and this
leads to high error rates in base placement—as much as one mismatched base out of
every 2000 polymerized. The two RNA polynucleotides of HIV have between 9000
and 10000 bases distributed among about nine genes, so this error rate might yield
up to five changed bases, and perhaps three or four altered genes, per infection.

We are concerned here especially with the effects of mutated viral surface antigens,
e.g., proteins and glycoproteins, on immune system recognition. Every new antigenic
version of these particular viral products will require a new round of helper T-cell
activation to defeat the virus. The problem there is that, as pointed out earlier,
activation of an HIV-infected helper T-cell seems to help the HIV inside it to replicate
and, further, leads to the formation of stunted memory T-cell clones. Thus each new
antigenic form of HIV causes the immune system to stimulate HIV replication, while
simultaneously hindering the immune system’s ability to combat the virus. The HIV
stays just ahead of the immune system, like a carrot on a stick, affecting helper T-
cells before the T-cells can respond properly, and then moving on to a new round of
infections. One could say, “The worse it gets, the worse it gets!’’

The mutability of HIV has another unfortunate effect for its victims. Current
therapy emphasizes drugs that interfere with the correct functioning of reverse tran-
scriptase; AZT is an example. The high mutation rate of HIV can generate new
versions of reverse transcriptase, and sooner or later, a version will appear that the
drug cannot affect.

In Section 10.5, we will model the mutability of HIV and its eventual overwhelm-
ing of the immune system.

HIV infection leads to acquired immunodeficiency syndrome (AIDS).

A person infected with HIV is said to be “HIV positive.’’ Such people may be asymp-
tomatic for a considerable time following infection, or the symptoms may be mild
and transient; the patient is, however, infectious. Eventually, the loss of helper T-cells
will leave the person open to infections, often of a rare kind (see Figure 10.3.2). As
examples, pneumonia caused by a protozoan called Pneumocystis carinii and a cancer
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of blood vessels, called Kaposi’s sarcoma, are extremely rare in the general popu-
lation, yet they frequently are found in HIV-positive people. Everyone is exposed
to the pathogens that cause these diseases, but people do not get the disease if their
immune systems are working properly. When HIV-positive persons exhibit unusual
diseases as a result of low helper T-cell counts, they are said to have AIDS.

10.4 An HIV Infection Model

A model for HIV infection involves four components: normal T-cells, latently infected
T-cells, infected T-cells actively replicating new virus, and the virus itself. Any pro-
posed model should incorporate the salient behavior of these components and respect
biological constraints. In this section, we present such a model and show that it has a
stationary solution. This model was developed and explored by Perelson, Kirschner,
and coworkers.

T-cell production attempts to maintain a constant T-cell serum concentration.

In this section, we will be presenting a model for T-cell infection by HIV, as described
in Section 10.2 (see [5, 6, 7, 8]). This model tracks four components, three types
of T-cells and the virus itself, and therefore requires a four-equation system for its
description. As a preliminary step toward understanding the full system of equations,
we present first a simplified version, namely, the equation for T-cells in the absence
of infection. In forming a mathematical model of T-cell population dynamics based
on the discussion of Section 10.2, we must incorporate the following assumptions:

• Some immunocompetent T-cells are produced by the lymphatic system; over rel-
atively short periods of time, their production rate is constant and independent of
the number of T-cells present. Over longer periods of time their production rate
adjusts to help maintain a constant T-cell concentration, even in adulthood. Denote
this supply rate by s.

• T-cells are produced through clonal selection if an appropriate antigen is present,
but the total number of T-cells does not increase unboundedly. Model this using a
logistic term, rT (1− T

Tmax
), with per capita growth rate r (cf. Section 4.3).

• T-cells have a finite natural lifetime after which they are removed from circulation.
Model this using a death rate term, µT , with a fixed per capita death rate µ.

Altogether, the differential equation model is

dT

dt
= s + rT

(
1− T

Tmax

)
− µT . (10.4.1)

In this, T is the T-cell population in cells per cubic millimeter.
We want the model to have the property that solutions, T (t), that start in the

interval [0, Tmax] stay there. This will happen if the derivative dT
dt

is positive when
T = 0 and negative when T = Tmax. From (10.4.1),
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dT

dt

∣∣∣∣
T=0

= s,

and since s is positive, the first requirement is fulfilled. Next, substituting T = Tmax
into (10.4.1), we get the condition that must be satisfied for the second requirement,

dT

dt

∣∣∣∣
T=Tmax

= s − µTmax < 0,

or, rearranged,

µTmax > s. (10.4.2)

The biological implication of this statement is that when the number of T-cells has
reached the maximum value Tmax, then there are more cells dying than are being
produced by the lymphatic system.

Turning to the stationary solutions of system (10.4.1), we find them in the usual
way, by setting the right-hand side to zero and solving for T :

− r

Tmax
T 2 + (r − µ)T + s = 0.

The roots of this quadratic equation are

T = Tmax

2r

(
(r − µ)±

√
(r − µ)2 + 4s

r

Tmax

)
. (10.4.3)

Since the product 4sr
Tmax

is positive, the square root term exceeds |r − µ|,
√

(r − µ)2 + 4sr

Tmax
> |r − µ|,

and therefore one of the roots of the quadratic equation is positive, while the other is
negative. Only the positive root is biologically important, and we denote it by T0, as
the “zero virus’’ stationary point (see below). We now show that T0 must lie between
0 and Tmax. As already noted, the right-hand side of (10.4.1) is positive when T = 0
and negative when T = Tmax. Therefore, it must have a root between 0 and Tmax,
and this is our positive root T0 calculated from (10.4.3) by choosing the + sign. We
will refer to the difference p = r − µ as the T-cell proliferation rate; in terms of it,
the globally attracting stationary solution is given by

T0 = Tmax

2r

(
p +

√
p2 + 4s

r

Tmax

)
. (10.4.4)

This root T0 is the only (biologically consistent) stationary solution of (10.4.1).
Now consider two biological situations.
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Table 10.4.1. Parameters for Situation 1.

Parameter Description Value

s T-cell from precursor supply rate 10/mm3/day
r normal T-cell growth rate 0.03/day

Tmax maximum T-cell population 1500/mm3

µ T-cell death rate 0.02/day

Situation 1: Supply rate solution. In the absence of an infection, or at least an
environmental antigen, the clonal production rate r can be small, smaller than the
natural death rate µ, resulting in a negative proliferation rate p. In this case, the
supply rate s must be high in order to maintain a fixed T-cell concentration of about
1000 per cubic millimeter. The data in [6] confirm this.

With these data, calculate the stationary value of T0 using (10.4.3) as follows:
MAPLE

> f:=T–>s+r*T*(1-T/Tmax)- mu *T;
> s:= 10; r:=.03; mu:=.02; Tmax:=1500;
> fzero:=solve(f(T) = 0,T);
> T0:=max(fzero[1],fzero[2]);

MATLAB

> s=10; r=.03; mu=.02; Tmax=1500;
> p=[-r/Tmax (r-mu) s];
> T0=max(roots(p))

Next calculate and display trajectories from various starting points:
MAPLE

> deq:={diff(T(t),t)=f(T(t))};
> with(DEtools):
> inits:={[0,0],[0,T0/4],[0,T0/2],[0,(T0+Tmax)/2],[0,Tmax]};
> phaseportrait(deq,T(t),0..25,inits,stepsize=1,arrows=NONE);

MATLAB

% make up an m-file, hiv1.m, with
% function Tprime=hiv1(t,T); s=10; r=.03; mu=.02, Tmax=1500;
% Tprime=s+r*T*(1-T/Tmax)-mu*T;

> [t,T]=ode23(’hiv1’,[0 50],0);
> plot(t,T); hold on
> [t,T]=ode23(’hiv1’,[0 50],T0/4); plot(t,T)
> [t,T]=ode23(’hiv1’,[0 50],T0/2); plot(t,T)
> [t,T]=ode23(’hiv1’,[0 50],(T0+Tmax)/2); plot(t,T)
> [t,T]=ode23(’hiv1’,[0 50],Tmax); plot(t,T)

Situation 2: Clonal production solution. An alternative scenario is that adult
thymic atrophy has occurred, or a thymectomy has been performed. As a hypo-
thetical and limiting situation, take s to equal zero and ask how r must change to
maintain a comparable T0. Use the parameters in Table 10.4.2.

MAPLE

> s:= 0; r:=.06; mu:=.02; Tmax:=1500;
> fzero:=solve(f(T)=0,T);
> T0:=max(fzero[1],fzero[2]);
> deq:={diff(T(t),t)=f(T(t))};
> inits:={[0,0],[0,T0/4],[0,T0/2],[0,(T0+Tmax)/2],[0,Tmax]};
> phaseportrait(deq,T(t),t=0..25,inits,stepsize=1,arrows=NONE);

MATLAB

> s=0; r=.06; mu=.02; Tmax=1500;
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Fig. 10.4.1. Time vs. number of T-cells per cubic millimeter.

Table 10.4.2. Parameters for Situation 2.

Parameter Description Value

s T-cell from precursor supply rate 0/mm3/day
r normal T-cell growth rate 0.06/day

Tmax maximum T-cell population 1500/mm3

µ T-cell death rate 0.02/day

> p=[-r/Tmax (r-mu) s];
> T0=max(roots(p))

% make an m-file, hiv2.m, same as before execpt s=0; r=.06; mu=.02; Tmax=1500;
> hold off
> [t,T]=ode23(’hiv2’,[0 50],0);
> plot(t,T); hold on
> [t,T]=ode23(’hiv2’,[0 50],T0/4); plot(t,T)
> [t,T]=ode23(’hiv2’,[0 50],T0/2); plot(t,T)
> [t,T]=ode23(’hiv2’,[0 50],(T0+Tmax)/2); plot(t,T)
> [t,T]=ode23(’hiv2’,[0 50],Tmax); plot(t,T)

As above, T0 is again about 1000 T-cells per cubic millimeter. Trajectories in
this second situation are plotted in Figure 10.4.2; contrast the convergence rate to the
stationary solution under this clonal T-cell production situation with the supply rate
convergence of Situation 1.

Remark. Contrasting these situations shows that upon adult thymic atrophy or
thymectomy, the response of the T-cell population is much slower. This suggests
that one would find differences in the dynamics of T-cell depletion due to an HIV
infection in people of different ages. Clearly, there is a need for r , the T-cell growth
rate, to be large in compensation when the supply rate, s, is small. How can one influ-
ence one’s value of r? The answer should be an inspiration for continuing biological
and medical research.
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Fig. 10.4.2. Time vs. T-cell count with a reduced thymus function.

A four-equation system is used to model T-cell–HIV interaction.

To incorporate an HIVinfection into the above model, we follow the approach taken by
Perelson, Kirschner, and DeBoer [6] and differentiate three kinds of T-cells: Besides
the normal variety, whose number is denoted by T as before, there are T-cells infected
with provirus, but not producing free virus. Designate the number of these latently
infected T-cells by TL. In addition, there are T-cells that are infected with virus
and are actively producing new virus. Designate the number of these by TA. The
interaction between virus, denoted by V , and T-cells is reminiscent of a predator–prey
relationship; a mass action term is used to quantify the interaction (see Section 4.4).
However, only the active type T-cells produce virus, while only the normal T-cells
can be infected.

We now present the model and follow with a discussion of its four equations
separately:

dT

dt
= s + rT

(
1− T + TL + TA

Tmax

)
− µT − k1V T, (10.4.5a)

dTL

dt
= k1V T − µTL − k2TL, (10.4.5b)

dTA

dt
= k2TL − βTA, (10.4.5c)

dV

dt
= NβTA − k1V T − αV. (10.4.5d)

The first equation is a modification of (10.4.1) with the inclusion of an infection
term having mass action parameter k1. When normal T-cells become infected, they
immediately become reclassified as the latent type. In addition, note that the sum of
all three types of T-cells counts toward the T-cell limit, Tmax.
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The first term in the second equation corresponds to the reclassification of newly
infected normal T-cells. These cells disappear from (10.4.5a) but then reappear in
(10.4.5b). In addition, (10.4.5b) includes a per capita death rate term and a term to
account for the transition of these latent-type cells to active type with rate parameter k2.

The first term of (10.4.5c) balances the disappearance of latent T-cells upon be-
coming active, with their appearance as active-type T-cells. It also includes a per
capita death rate term with parameter β corresponding to the lysis of these cells after
releasing vast numbers of replicated virus. It is clear that T-cells active in this sense
perish much sooner than do normal T-cells, therefore β is much larger than µ:

β � µ. (10.4.6)

Finally, the fourth equation accounts for the population dynamics of the virus.
The first term, NβTA, comes from the manufacture of virus by the “active’’-type
T-cells, but the number produced will be huge for each T-cell. The parameter N , a
large value, adjusts for this many-from-one difference. The second term reflects the
fact that as a virus invades a T-cell, it drops out of the pool of free virus particles.
The last term, with per capita rate parameter α, corresponds to loss of virus through
the body’s defense mechanisms.

Remark. Note that in the absence of virus, i.e., V = 0, then both TL and TA are 0 as
well, and setting these values into system (10.4.4), we see that this new model agrees
with the old one, (10.4.1).

The T-cell–HIV model respects biological constraints.

We want to see that the model is constructed well enough that no population goes
negative or goes unbounded. To do this, we first establish that the derivatives dT

dt
,

dTL

dt
, dTA

dt
, and dV

dt
are positive whenever T , TL, TA, or V = 0, respectively. This

means that each population will increase, not decrease, at low population sizes.
But from (10.4.5a), if T = 0, then

dT

dt
= s > 0,

and if TL = 0, then (10.4.5b) gives

dTL

dt
= k1V T > 0;

likewise, if TA = 0, then from (10.4.5c),

dTA

dt
= k2TL > 0,

and finally (10.4.5d) becomes, when V = 0,

dV

dt
= NβTA > 0.
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We have assumed that all the parameters are positive, and so these derivatives are
also positive as shown.

Following Perelson, Kirschner, and DeBoer [6], we next show that the total T-cell
population as described by this model remains bounded. This total, T� is defined to
be the sum T� = T + TL + TA, and it satisfies the differential equation obtained by
summing the right-hand side of the first three equations in system (10.4.5),

dT�

dt
= s + rT

(
1− T�

Tmax

)
− µT − µTL − βTA. (10.4.7)

Now suppose T� = Tmax; then from (10.4.7),

dT�

dt
= s − µT − µTL − βTA + µTA − µTA,

and combining the second, third, and last terms as −µTmax gives

dT�

dt
= s − µTmax − (β − µ)TA < s − µTmax,

where (10.4.6) has been used to obtain the inequality. Recalling condition (10.4.2),
we find that

dT�

dt
< 0 if T� = Tmax,

proving that T� cannot increase beyond Tmax.
In summary, system (10.4.5) has been shown to be consistent with the biological

constraints that solutions remain positive and bounded.

The T-cell infected stationary solution is stable.

To find the stationary points of the T-cell–HIV model, that is, (10.4.5), we must
set the derivatives to zero and solve the resulting (nonlinear) algebraic system, four
unknowns and four equations. Solving the third equation, namely, 0 = k2TL −
βTA, for TA gives TA = ( k2

β
)TL, which may in turn be substituted for in all its

other occurrences. This reduces the problem to three unknowns and three equations.
Continuing in this way, we arrive at a polynomial in, say, T whose roots contain the
stationary points. We will not carry out this approach here. Instead, we will solve
this system numerically, below, using derived parameter values. However, in [6] it is
shown symbolically that at the uninfected stationary point T0, (10.4.4) is stable (see
Section 2.4) if and only if the parameter N satisfies

N <
(k2 + µ)(α + k1T0)

k2k1T0
.

By defining the combination of parameters on the right-hand side as Ncrit , we may
write this as

N < Ncrit, where Ncrit = (k2 + µ)(α + k1T0)

k2k1T0
. (10.4.8)

In Table 10.4.3, we give values of the parameters of system (10.4.5) as deter-
mined in [6].

This model reflects the clinical picture as presented in Greene [9].
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Table 10.4.3. Parameters of the HIV infection model.

Parameter Description Value

s T-cell from precursor supply rate 10/mm3/day
r normal T-cell growth rate 0.03/day

Tmax maximum T-cell population 1500/mm3

µ normal/latently infected T-cell death rate 0.02/day
β actively infected T-cell death rate 0.24/day
α free virus death rate 2.4/day
k1 T-cell infection rate by free virus 2.4× 10−5 mm3/day
k2 latent-to-active T-cell conversion rate 3× 10−3/day
N virus produced by an active T-cell taken as 1400 here

Exercises/Experiments

1. In the uninfected situations, for both s = 0 and s = 10, derive the numerical
solution T for f (T ) = 0. Which of the roots for this equation is in the interval
[0, Tmax]?

2. In the virus-free situation, give a biological interpretation for r . Suppose that r

is increased to rn so that
rn − r

r
= 0.10.

That is, r is increased by 10%. What is the percentage of increase of the steady
state of T cells corresponding to a 10% increase in r?

3. With the parameters as stated for the infected situation, what is the numerical
value for each of these: Tmax, the uninfected steady state of T cells, the infected
steady state of T cells, and Ncrit . Is Ncrit more or less than the N used in these
parameters? What are the implications of this last answer?

4. Sketch a graph of how T , TL, TA, and V evolve during the first year and move
toward equilibrium. Continue the graph for two more years. Here is syntax that
will accomplish this integration of the equations:

MAPLE

> deq:=diff(T(t),t)=-mu*T(t)+r*T(t)*(1-(T(t)+TL(t)+TA(t))/Tmax)-k1*V(t)*T(t),
diff(TL(t),t)=k1*V(t)*T(t)-mu*TL(t)-k2*TL(t),
diff(TA(t),t)= k2*TL(t)-b*TA(t),
diff(V(t),t)=N*b*TA(t)-k1*V(t)*T(t)-a*V(t);

> s:=10; r:=0.03; Tmax:=1500; mu:=0.02; N:=1400;
> b:=.24; a:=2.4; k1:=0.000024; k2:=0.003; N:=1400;
> init:=T(0)=1000,TL(0)=0, TA(0)=0,V(0)=0.001;
> Digits:=16;
> sol:=dsolve({deq,init},{T(t),TL(t),TA(t),V(t)},numeric,output=listprocedure);
> Tsol:=subs(sol,T(t));
> TAsol:=subs(sol,TA(t));
> TLsol:=subs(sol,TL(t));
> Vsol:=subs(sol,V(t));
> plot(’Tsol(t)’,’t’=0..900);
> plot(’TLsol(t)’,’t’=0..600);
> plot(’TAsol(t)’,’t’=0..365);
> plot(’Vsol(t)’,’t’=0..365);

MATLAB

% contents of m-file exer104.m:
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% function Yprime=exer104(t,Y)
% % Y(1)=T, Y(2)=TL, Y(3)=TA, Y(4)=V
% s=10; r=0.03; Tmax=1700; mu=0.02; b=.24;
% a=2.4; k1=0.000024; k2=0.003; N=1400;
% Yprime=[s-mu*Y(1)+r*Y(1).*(1-(Y(1)+Y(2)+Y(3))/Tmax)-k1*Y(4).*Y(1);…
% k1*Y(4).*Y(1)-mu*Y(2)-k2*Y(2); k2*Y(2)-b*Y(3); N*b*Y(3)-k1*Y(4).*Y(1)-a*Y(4)];
%

> [t,Y] = ode23(’exer104’,[0 365],[1000; 0; 0; 0.001]);
> plot(t,Y)

% try out to about 3 1/2 years
> [t,Y] = ode23(’exer104’,[0 1200], [1000; 0; 0; 0.001]);
> plot(t,Y)

10.5 A Model for a Mutating Virus

The model of the previous section illustrated the interaction of HIV with T-cells. It
did not account for mutations of HIV. The following is a model for evolving mutations
of an HIV infection and an immune system response. This model is based on one
introduced into the literature by Nowak, May, and Anderson.

Any model of an HIV infection should reflect the high mutability of the virus.

In Section 10.3, we discussed the high degree of mutability characteristic of the HIV
virus, which results in a large number of viral quasi-species. However, the human
immune system seems able to mount an effective response against only a limited
number of these mutations. Furthermore, the activation of a latently infected helper
T-cell appears to stimulate viral reproduction, with the result that every time a new
mutant activates a T-cell, vigorous viral population growth ensues. The immune
system’s T-cell population evidently can endure this cycle only a limited number of
times. The objective of this section is to modify the T-cell–HIV model to reflect these
facts in the model. In this, we follow Nowak, May, and Anderson [10]; see also
Nowak and McMichael [4].

Key assumptions:

1. The immune response to a viral infection is to create subpopulations of immune
cells that are specific to a particular viral strain and that direct immunological at-
tack against that strain alone. The response is directed against the highly variable
parts of the virus.

2. The immunological response to the virus is also characterized by a response that
is specific to the virus but that acts against all strains. In other words, it acts
against parts of the virus conserved under mutations.

3. Each mutant of the initial viral infection can cause the death of all immune system
cells whether those cells are directed at variable or conserved regions.

In this modified model, we keep track of three sets of populations. Let {v1, v2,

. . . , vn} designate the various subpopulations of viral mutants of the initial HIV infec-
tion. Let {x1, x2, . . . , xn} designate the populations of specific lymphocytes created
in response to these viral mutations. And let z designate the immune response that
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can destroy all variations of the infective agent. The variable n, for the number of
viral mutations that arise, is a parameter of the model. We also include a parame-
ter, the diversity threshold Ndiv, representing the number of mutations that can be
accommodated before the immune system collapses.

The equation for each HIV variant, vi , consists of a term, with parameter a, for
its natural population growth rate; a term, with parameter b, for the general immune
response; and a term, with parameter c, for the specific immune response to that
variant,

dvi

dt
= vi(a − bz− cxi), i = 1, . . . , n. (10.5.1)

The equation for each specific immune response population xi consists of a term,
with parameter g, that increases the population in proportion to the amount of its
target virus present, and a term, with parameter k, corresponding to the destruction
of these lymphocytes by any and all viral strains,

dxi

dt
= gvi − kxi(v1 + v2 + · · · + vn), i = 1, . . . , n. (10.5.2)

Finally, the equation for the general immune response population z embodies a
term, with parameter h, for its increase in proportion to the sum total of virus present
but also a mass action term for its annihilation upon encounter with any and all virus,

dz

dt
= (h− kz)(v1 + v2 + · · · + vn). (10.5.3)

In order to compute with the model later on, we enter these differential equations
into the computer system now. Take the value of n to be 6, as will be explained
shortly. Although the code is lengthy, it is all familiar and very repetitious:

MAPLE

> mutatingSystem:=diff(v1(t),t)=(a-b*z(t)-c*x1(t))*v1(t),
diff(v2(t),t)=(a-b*z(t)-c*x2(t))*v2(t),diff(v3(t),t)=(a-b*z(t)-c*x3(t))*v3(t),
diff(v4(t),t)=(a-b*z(t)-c*x4(t))*v4(t),diff(v5(t),t)=(a-b*z(t)-c*x5(t))*v5(t),
diff(v6(t),t)=(a-b*z(t)-c*x6(t))*v6(t),
diff(x1(t),t)=g*v1(t)-k*x1(t)*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t)),
diff(x2(t),t)=g*v2(t)-k*x2(t)*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t)),
diff(x3(t),t)=g*v3(t)-k*x3(t)*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t)),
diff(x4(t),t)=g*v4(t)-k*x4(t)*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t)),
diff(x5(t),t)=g*v5(t)-k*x5(t)*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t)),
diff(x6(t),t)=g*v6(t)-k*x6(t)*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t)),
diff(z(t),t)=(h-k*z(t))*(v1(t)+v2(t)+v3(t)+v4(t)+v5(t)+v6(t));

MATLAB

% make up an m-file, hivMVRate.m, with
% function Yprime=hivMVRate(t,Y);
% % Y(1)=v1,..., Y(6)=v6, Y(7)=x1,...,Y(12)=x6, Y(13)=z
% a=5; b=4; c=5; g=1; h=1; k=1;
% Yprime=[(a - b*Y(13) - c*Y(7))*Y(1); (a - b*Y(13) - c*Y(8))*Y(2);
% (a - b*Y(13) - c*Y(9))*Y(3); (a - b*Y(13) - c*Y(10))*Y(4);
% (a - b*Y(13) - c*Y(11))*Y(5); (a - b*Y(13) - c*Y(12))*Y(6);
% g*Y(1) - k*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))*Y(7);
% g*Y(2) - k*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))*Y(8);
% g*Y(3) - k*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))*Y(9);
% g*Y(4) - k*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))*Y(10);
% g*Y(5) - k*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))*Y(11);
% g*Y(6) - k*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))*Y(12);
% (h-k*Y(13))*(Y(1)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6))];
%
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The fate of the immune response depends on a critical combination of parameters.

Again drawing on [10], we list several results that can be derived from this mod-
ified model. The model adopts one of two asymptotic behaviors depending on a
combination of parameters, denoted by Ndiv, defined by

Ndiv = cg

ak − bh
, where

a

b
>

h

k
. (10.5.4)

If the number n of viral variants remains below or equal to Ndiv, then the virus
population eventually decreases and becomes subclinical. On the other hand, if
n > Ndiv, then the virus population eventually grows unchecked.

Note that Ndiv depends on the immune response to the variable and conserved
regions of the virus in different ways. If specific lymphocytes rapidly respond (a
large g) and are very effective (a large c), then Ndiv will be large in proportion to
each, meaning a large number of mutations will have to occur before the virus gains
the upper hand. By contrast, the general immune response parameters, h and b,
appear as a combination in the denominator. Their effect is in direct opposition to the
comparable viral parameters a and k.

Naturally, the size of Ndiv is of considerable interest. Assuming that the denomi-
nator of (10.5.4) is positive, ak > bh, we make three observations; their proofs may
be found in [10].

Observation 1. The immune responses, the xis and z, in total have only a limited
response to the HIV infection. That is, letting X = x1 + x2 + · · · + xn be the sum of
the specific immunological responses, then

lim
t→∞X(t) = g

k
,

lim
t→∞ z(t) = h

k
,

(10.5.5)

where the parameters g, h, and k are as defined as in (10.5.2)–(10.5.4). The impli-
cation is that even though the virus continues to mutate, the immune system cannot
mount an increasingly larger response.

The next observation addresses the possibility that after some time, all the immune
subspecies populations are decreasing.

Observation 2. If all mutant subspecies populations vi are decreasing after some
time τ , then the number of mutants will remain less than Ndiv and the infection
will be controlled. That is, if there is a time τ such that all derivatives v′i (t) < 0 are
negative for t > τ , i = 1, . . . , n, then the number of mutations n will not exceed Ndiv.

In the next observation, we see that if the number of variations increases to some
level determined by the parameters, then the viral population grows without bound.

Observation 3. If the number of mutations exceeds Ndiv, then at least one subspecies
increases without bound. In fact, in this case, the sum V (t) ≡ v1 + v2 + · · · + vn

increases faster than a constant times eat for some positive number a.

Observation 4. If ak < bh, the immune system will eventually control the infection.
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Numerical studies illustrate the observations graphically.

In what follows, we give parameters with which computations may be made to visu-
alize the results discussed here. These parameters do not represent biological reality;
likely the real parameters are not known. The ones used illustrate the features of the
model. In [10], the authors choose a = c = 5, b = 4.5, and g = h = k = 1. This
choice yields the diversity threshold as 10 (Ndiv = 10). To keep our computation
manageable, we choose the same values except b = 4:

MAPLE

> a:=5: b:=4: c:=5: g:=1: h:=1: k:=1: Ndiv:= c*g/(a*k-b*h);

MATLAB

> a=5; b=4; c=5; g=1; h=1; k=1; Ndiv=c*g/(a*k-b*h)

Hence for this set of parameters Ndiv = 5.
Suppose that first there is an initial infection and the virus runs its course without

mutation. We can achieve this in our model, and see the outcome, by taking some
initial infection, v1(0) = 5

100 , for the original virus but zero level of infection initially
for all the mutants.

MAPLE

> initialVals:=v1(0)=5/100,v2(0)=0,v3(0)=0,v4(0)=0,v5(0)=0,v6(0)=0,
x1(0)=0,x2(0)=0,x3(0)=0, x4(0)=0,x5(0)=0,x6(0)=0,z(0)=0;

> sol1:=dsolve({mutatingSystem, initialVals},{v1(t),v2(t),v3(t),v4(t),v5(t),v6(t),
x1(t),x2(t),x3(t),x4(t),x5(t),x6(t),z(t)},numeric,output=listprocedure);

> v1sol1:=subs(sol1,v1(t)); x1sol1:=subs(sol1,x1(t)); zsol1:=subs(sol1,z(t));
> plot([’t’,’v1sol1(t)’,’t’=0..10]);

MATLAB

> hold on
> init1=[0.05;0;0;0;0;0;0;0;0;0;0;0;0];
> [t1,Y]=ode23(’hivMVRate’,[0 .5],init1);
> X=Y(:,7:12); % sum the x’s
> S1=X(:,1)+X(:,2)+X(:,3)+X(:,4)+X(:,5)+X(:,6);
> z1=Y(:,13); % retain the z’s
> V=Y(:,1:6); plot(t1,V)

The result, shown in Figure 10.5.1, is a plot of the number of (unmutated) viral
particles against time. One sees that the infection flares up but is quickly controlled
by the immune system.

Now we explore what happens when there is one mutation of the original virus,
effectively n = 2 in this case, where n counts the number of genetically distinct
viruses. Following our technique above, only the original virus and one mutant
will be given a nonzero initial value. Further, to incorporate a delay in the onset of
mutation, we take v2(t) = 0 for 0 ≤ t < T2 and v2(T2) = 1

100 , where T2 = 1
2 is the

time of the first mutation. From the run above, we know the size of the population of
original virus at this time, v1(T2).

MAPLE

> initialVals:=v1(1/2)=v1sol1(1/2), v2(1/2)=1/100, v3(1/2)=0, v4(1/2)=0, v5(1/2)=0, v6(1/2)=0,
x1(1/2)=x1sol1(1/2), x2(1/2)=0, x3(1/2)=0, x4(1/2)=0, x5(1/2)=0, x6(1/2)=0, z(1/2)=zsol1(1/2);

> sol2:=dsolve({mutatingSystem, initialVals}, {v1(t),v2(t),v3(t),v4(t),v5(t),v6(t),
x1(t),x2(t),x3(t),x4(t),x5(t),x6(t),z(t)}, numeric,output=listprocedure);

> v1sol2:=subs(sol2,v1(t)); v2sol2:=subs(sol2,v2(t));
> x1sol2:=subs(sol2,x1(t)); x2sol2:=subs(sol2,x2(t)); zsol2:=subs(sol2,z(t));
> ###
> initiaVals:=v1(1)=v1sol2(1),v2(1)=v2sol2(1), v3(1)=1/100, v4(1)=0,v5(1)=0,v6(1)=0,
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Fig. 10.5.1. A viral infection with no mutation.

x1(1)=x1sol2(1),x2(1)=x2sol2(1),x3(1)=0, x4(1)=0,x5(1)=0, x6(1)=0, z(1)=zsol2(1);
> sol3:=dsolve({mutatingSystem, initialVals}, {v1(t), v2(t),v3(t),v4(t),v5(t),v6(t),

x1(t),x2(t),x3(t),x4(t),x5(t),x6(t),z(t)}, numeric,output=listprocedure);
> v1sol3:=subs(sol3,v1(t)); v2sol3:=subs(sol3,v2(t)); v3sol3:=subs(sol3,v3(t));
> x1sol3:=subs(sol3,x1(t)); x2sol2:=subs(sol3,x2(t));
> x3sol3:=subs(sol3,x3(t)); zsol3:=subs(sol3.z(t));
> plot({[’t’,’v1sol1(t)’,’t’=0..1/2], [’t’,’v1sol2(t)’, ’t’=1/2..1], [’t’,’v1sol3(t)’,’t’=1..10],

[’t’,’v2sol2(t)’,’t’=1/2..1], [’t’,’v2sol3(t)’, ’t’=1..10], [’t’,’v3sol3(t)’,’t’=1..10]}, color=black);

MATLAB

> s=size(t1);
% the ending values = last row = Y(s(1),:), add 1/100 to its 2nd component,
% that becomes start values for next period

> init2=Y(s(1),:); init2(2)= init2(2)+0.01;
> [t2,Y]=ode23(’hivMVRate’,[.5 1],init2);
> X=Y(:,7:12); S2=X(:,1)+X(:,2)+X(:,3)+X(:,4)+X(:,5)+X(:,6);
> z2=Y(:,13); V=Y(:,1:6); plot(t2,V)
> s=size(t2); % add 2nd mutant
> init3=Y(s(1),:); init3(3)= init3(3)+0.01;
> [t3,Y]=ode23(’hivMVRate’,[1 1.5],init3);
> X=Y(:,7:12); S3=X(:,1)+X(:,2)+X(:,3)+X(:,4)+X(:,5)+X(:,6);
> z3=Y(:,13); V=Y(:,1:6); plot(t3,V)

We see the result in Figure 10.5.2. Each new mutant strain engenders its own
flare-up, but soon the immune system gains control.

So far, the number of mutations has been less than Ndiv, but we now jump ahead
and allow six mutations to occur:

MAPLE

> restart; with(plots):
> a:=5: b:=4: c:=5: g:=1: h:=1: k:=1:
> Ndiv:=c*g/(a*k-b*h);
> eq:=seq(diff(v[n](t),t)=(a-b*z(t)-c*x[n](t))*v[n](t), n=1..7),

seq(diff(x[n](t),t)=g*v[n](t)-k*x[n](t)*(sum(v[p](t), p=1..7)),n=1..7),
diff(z(t),t)=(h-k*z(t))*sum(v[q](t),q=1..7):

> NG:=6; #number of mutations to generate initial conditions for the infections
> init[1]:=v[1](0)=5/100,seq(v[n](0)=0,n=2..7),seq(x[n](0)=0,n=1..7),z(0)=0:
> for p from 1 to NG do
> sol[p]:=dsolve({eq,init[p]},numeric,output=listprocedure):
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Fig. 10.5.2. Infection with two mutations.
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Fig. 10.5.3. Six mutations, with Ndiv = 5.

> for n from 1 to 7 do
vs[p,n]:=subs(sol[p],v[n](t)):
xs[p,n]:=subs(sol[p],x[n](t)):

od:
> zs[p]:=subs(sol[p],z(t)):
> vs[p,p+1](p/2):=1/100;
> init[p+1]:=seq(v[m](p/2)=vs[p,m](p/2),m=1..7),seq(x[m](p/2)=xs[p,m](p/2),m=1..7),z(p/2)=zs[p](p/2):
> od:
> for m from 1 to NG do

J[m]:=plot([seq([t,vs[n,m](t),t=(n-1)/2..n/2],n=1..NG),[t,vs[NG,m](t),t=NG/2..15]],color=BLACK):
od:

> display([seq(J[i],i=1..NG)]);
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MATLAB

> s=size(t3);init4=Y(s(1),:);
> init4(4)= init4(4)+0.01;
> [t4,Y]=ode23(’hivMVRate’,[1.5 2.0],init4);
> X=Y(:,7:12);
> S4=X(:,1)+X(:,2)+X(:,3)+X(:,4)+X(:,5)+X(:,6);
> z4=Y(:,13); V=Y(:,1:6); plot(t4,V)

%%% end 4th step
> s=size(t4); init5=Y(s(1),:);
> init5(5)= init5(5)+0.01;
> [t5,Y]=ode23(’hivMVRate’,[2.0 2.5],init5);
> X=Y(:,7:12);
> S5=X(:,1)+X(:,2)+X(:,3)+X(:,4)+X(:,5)+X(:,6);
> z5=Y(:,13); V=Y(:,1:6); plot(t5,V)

%%% end 5th step
> s=size(t5);init6=Y(s(1),:);
> init6(6)= init6(6)+0.01;
> [t6,Y]=ode23(’hivMVRate’,[2.5 20],init6);
> X=Y(:,7:12);
> S6=X(:,1)+X(:,2)+X(:,3)+X(:,4)+X(:,5)+X(:,6);
> z6=Y(:,13); V=Y(:,1:6); plot(t6,V)

%%% end 6th step
> hold off
> t=[t1;t2;t3;t4;t5;t6]; S=[S1;S2;S3;S4;S5;S6];
> z=[z1;z2;z3;z4;z5;z6]; plot(t,S); plot(t,z)

One sees that the result is unexpected. At first things go as before: After an
initial flare-up, the immune system begins to gain control and viral population tends
downward. But then something happens: The immune system is overwhelmed.

Observation 2 predicts that since more mutations have occurred than Ndiv, the
population will grow without bound. The graphs show this.

We now verify Observation 3 for these parameters. First, note that from (10.5.2),
the sum of the xis satisfies the differential equation

X′ = V ∗ (g − kX),

where X = x1 + x2 + · · · + x6 and V = v1 + v2 + · · · + v6. We could compute the
solution of this equation and expect that

lim
t→∞(x1(t)+ x2(t)+ · · · + x6(t)) = g

k
.

Or, using the computations already done, add the xis. The level of the xis are kept in
this syntax in the eighth through thirteenth positions. The “time’’ variable is kept in
the first position of the output. We add these xis in each output.

MAPLE

> plot({[’t’,’x1sol1(t)’,’t’=0..1/2], [’t’,’x1sol2(t)+x2sol2(t)’,’t’=1/2..1],
[’t’,’x1sol3(t)+x2sol3(t)+x3sol3(t)’,’t’=1..3/2],[’t’,’x1sol4(t)+x2sol4(t)+x3sol4(t)+x4sol4(t)’,’t’=3/2..2],
[’t’,’x1sol5(t)+x2sol5(t)+x3sol5(t)+x4sol5(t)+x5sol5(t)’,’t’=2..5/2],
[’t’,’x1sol6(t)+x2sol6(t)+x3sol6(t)+x4sol6(t)+x5sol6(t)+x6sol6(t)’,’t’=5/2..10]},color=BLACK);

MATLAB

% These plots done via code above.

The plot of the response z, no matter where you start, should have asymptotic
limit h

k
and looks essentially the same as that for (x1 + x2 + · · · + x6). Here is one

way to plot the values of z. What you should see is that the z reaches a maximum:
MAPLE

> plot([’t’,’zsol1(t)’,’t’=0..1/2],[’t’,’zsol2(t)’,’t’=1/2..1],[’t’,’zsol3(t)’,’t’=1..3/2],[’t’,’zsol4(t)’,’t’=3/2..2],
> [’t’,’zsol5(t)’,’t’=2..5/2],[’t’,’zsol6(t)’,’t’=5/2..10],color=BLACK);
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Fig. 10.5.4. Graph of x1 + x2 + · · · + xn.
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Fig. 10.5.5. Graph of z(t) from (10.5.3).

Viral suppression is possible with some parameters.

It was stated in Observations 1 and 4 that there are two ways to achieve viral sup-
pression. These are experiments that should be run. One could choose parameters
such that ak < bh; then the immune system will eventually control the infection. No
change need be made in the syntax, only a = 4 and b = 5. Other parameters could
remain the same.

The simple models as presented in these two sections give a good first under-
standing of the progress from infection to remission to AIDS. Such an understanding
provokes further study.

10.6 Predicting the Onset of AIDS

Most diseases have a latency or incubation period between the time of infection and
the onset of symptoms; AIDS is no exception. The latency period for AIDS varies
greatly from individual to individual, and so far, its profile has not been accurately
determined. However, assuming a given form of the incubation profile, we show that
the onset of symptoms occurs, statistically, as the time of infection convolved with
this profile.
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AIDS cases can be statistically predicted by a convolution integral.

In this chapter, we have discussed the epidemiology of the HIV infection and sub-
sequent appearance of AIDS. For most diseases, there is a period of time between
infection by the causative agent and the onset of symptoms. This is referred to as
the incubation period ; an affliction is asymptomatic during this time. Research is
showing that the nature of this transition for HIV is a complicated matter. Along with
trying to learn the mechanism of this process, considerable work is being devoted
in an attempt to prolong the period between HIV infection and the appearance of
AIDS. This period varies greatly among different individuals and appears to involve,
besides general health, particular characteristics of the individual’s immune system.
See [5, 6, 7, 8] for further details.

The incubation period can be modeled as a probability density function p(t) (see
Section 2.8), meaning that the probability thatAIDS onset occurs in a �t time interval
containing t is

p(t) ·�t.

To discover the incubation density, records are made, when possible, of the time
between contraction of HIV and the appearance of AIDS. See Bacchetti [12] for
several comments by other researchers, and for a comprehensive bibliography. At
the present this probability density is not known, but some candidates are shown in
Figure 10.6.1(a)–(d).

(a)

(d)

(c)

(b)
p

t
0

0.05

0.1

0.15

0 5 10 15 20

Fig. 10.6.1. Some HIV incubation probability densities. Graphs of (a) uniform distribution,

(b) e−t/6

6 , (c) t9e−t normalized, (d)
√

t−2
16 (1− t−2

16 )4 normalized.

Figure 10.6.1(a) is a uniform distribution over the period of 2 to 18 years. This
distribution has no preferred single incubation moment, but incubation is guaranteed
to occur no sooner than two years after infection and no later than 18 (18.0) years
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afterward. It is unlikely that this is the operating distribution, but we include it for
comparison purposes.

Figure 10.6.1(b) is an exponential distribution. This distribution pertains to many
“arrival time’’ processes in biology such as times for cell division (which occurs
upon the “arrival’’ of cell maturation). As can be seen, incubation is likely to oc-
cur right away and diminishes with time. The incubation period can be infinitely
long. (A fraction of those infected with HIV have, so far, remained asymptomatic
“indefinitely.’’)

Figure 10.6.1(c) is a gamma distribution incorporating both a preferred incubation
“window’’ and the possibility of an indefinitely long incubation period.

Figure 10.6.1(d) is a beta distribution. It allows for a preferred window, but as
with the uniform distribution, incubation must occur between given times. Their
graphs are illustrated in Figure 10.6.1.

The functions we have used to draw Figure 10.6.1 are p1, p2, p3, and p4 as
defined in the following:

MAPLE

> c1:=int(tˆ9*exp(-t),t=0..infinity);
> c2:=evalf(Int(sqrt((t-2)/16)*(1-(t-2)/16)ˆ4,t=2..20));
> p1:=t–>1/16*(Heaviside(t-2)-Heaviside(t-18));
> p2:=t–>exp(-t/6)/6;
> p3:=t–>tˆ9*exp(-t)/c1;
> p4:=t–>sqrt((t-2)/16)*(1-(t-2)/16)ˆ4/c2;
> plot({p1(t),p2(t),p3(t),p4(t),t=0..20});

MATLAB

% make an m-file, incubationProfile.m:
% function y=incubationProfile(t);
% if t<2
% y=0;
% elseif t<18
% y=1/16;
% else
% y=0;
% end

> t=linspace(0,20,100)
> for k=1:100
> p1(k)=incubationProfile(t(k)); % uniform
> end
> plot(t,p1); hold on
> p2=exp(-t/6)/6; plot(t,p2) % exponential
> p3=t.ˆ9.*exp(-t);
> c1=trapz(t,p3); % for normalization
> p3=p3/c1; plot(t,p3) % gamma distribution
> for k=1:100
> if t(k)<2
> p4(k)=0;
> elseif t(k)<20
> p4(k)=sqrt((t(k)-2)/16)*(1-(t(k)-2)/16)ˆ4;
> else
> p4(k)=0;
> end
> end
> c2=trapz(t,p4);
> p4=p4/c2; plot(t,p4) % the beta distribution

To derive a mathematical relationship for the appearance of AIDS cases, we will
assume that the probability distribution for the incubation period can be treated as a
deterministic rate. Let h(t) denote the HIV infection density, that is,
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h(t – s)

p(s)

h(t)

st – s

ds t

p(t – s)

Fig. 10.6.2. a(t) ≈∑s h(t − s) · ds · p(s).

the number of new HIV infections during [t, t +�t) = h(t) ·�t,

and let a(t) denote the AIDS density; thus

the number of new AIDS cases during [t, t +�t) = a(t) ·�t.

We wish to determine a(t) from h(t). How many AIDS cases occur now, on day t due
to infections s days ago? See Figure 10.6.2. The number of newly infected persons
during the interval from t − (s + ds) to t − s is h(t − s) · ds and the fraction of them
to become symptomatic s days later is p(s). Hence the contribution to a(t) here is

h(t − s) · ds · p(s).

Since a(t) is the sum of such contributions over all previous times, we get

a(t) =
∫ ∞

0
h(t − s)p(s)ds. (10.6.1)

This sort of integral is known as a convolution; such integrals occur widely in science
and engineering.

Convolution integrals have an alternative form under change of variable. Let
u = t − s; then s = t − u and ds = −du. Since u = t when s = 0 and u = −∞
when s = ∞, the integral of (10.6.1) becomes

a(t) = −
∫ −∞

t

h(u)p(t − u)du.

Absorbing the minus sign into a reversal of the limits of integration and replacing the
dummy variable of integration u by s gives
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a(t) =
∫ t

−∞
h(s)p(t − s)ds. (10.6.2)

This equation exhibits a striking symmetry between the roles of h and p. Equa-
tion (10.6.2) is sometimes easier to work with than (10.6.1).

The occurrence of symptoms is strongly affected by the incubation distribution.

In order to determine whether a proposed incubation distribution is the correct one,
we must use it in conjunction with our newly derived formula, either (10.6.1) or
(10.6.2), to predict the pattern of cases. To this end, we track an HIV infected cohort,
that is, a group of people infected about the same time, through the calculation.

Consider those infected over a two-year period, which we take to be t = 0 to
t = 2. We will assume that there are 1000 cases in each of the two years; thus the
HIV density we are interested in is

h(t) =
{

1000 if 0 ≤ t ≤ 2,

0 otherwise.
(10.6.3)

The total number of cases is
∫ 2

0 h(s)ds = 2000. With this choice for h, we
can simplify the factor h(t − s) in (10.6.1). By subtracting t from the inequalities
0 ≤ t − s ≤ 2 and multiplying by −1, we get the equivalent form t − 2 ≤ s ≤ t . In
other words,

if t − 2 ≤ s ≤ t, then h(t − s) = 1000; otherwise, h is 0. (10.6.4)

Therefore, the only contribution to the integral in (10.6.1) comes from the part of the
s-axis between t − 2 and t .

There are three cases depending on the position of the interval [t − 2, t] relative
to 0; see Figure 10.6.3. In (a), t < 0 and the interval is to the left of 0; in (b),
t −2 < 0 < t , the interval contains 0; and in (c), 0 < t −2, the interval is to the right
of 0.

t – 2 t – 2 t – 2t t t0 0 0

(a) interval to left of 0 (b) interval includes 0 (c) interval to right of 0

Fig. 10.6.3. Contributory subinterval of the s-axis.

Consider each case. If (a), t ≤ 0, then a(t) = 0 from (10.6.2) and (10.6.3). If (c),
t ≥ 2, then t − 2 ≥ 0 and (10.6.1) becomes, taking into account (10.6.4),

a(t) = 1000
∫ t

t−2
p(s)ds, t ≥ 2.
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Finally, for (b), 0 < t < 2, the part of the interval to the left of s = 0 makes no
contribution, and in this case (10.6.1) becomes

a(t) = 1000
∫ t

0
p(s)ds, 0 < t < 2.

Putting these three together, we have

a(t) =

⎧⎪⎨
⎪⎩

0, t ≤ 0,

1000
∫ t

0 p(s)ds, 0 < t < 2,

1000
∫ t

t−2 p(s)ds, t ≥ 2.

(10.6.5)

Because it is inconvenient to deal with a function defined by cases, such as a(t)

is defined by (10.6.5), a standard set of “cases’’-type functions have been devised.
One of these is the Heaviside function H(t), and another is the signum function S(t).
The first is defined as

H(t) =
{

0, t < 0,

1, t ≥ 0.
(10.6.6)

The signum function is just the sign of its argument, that is,

S(t) =

⎧⎪⎨
⎪⎩
−1, t < 0,

0, t = 0,

1, t > 0.

(10.6.7)

Actually, there is a relationship between the two, except for t = 0:

H(t) = 1

2
(S(t)+ 1), S(t) = 2H(t)− 1, t �= 0. (10.6.8)

The Heaviside function H(2− t) cuts out at t = 2, while H(t − 2) cuts in at t = 2,
so in terms of Heaviside functions, (10.6.5) can be written as

a(t) = 1000H(2− t)

∫ t

0
p(s)ds + 1000H(t − 2)

∫ t

t−2
p(s)ds. (10.6.9)

For the simplest example, assume that the incubation density is the uniform dis-
tribution, P1 above (Figure 10.6.1(a)):

P1(t) =
{

1
16 if 2 ≤ t ≤ 18,

0 otherwise.

Substituting into (10.6.9) and integrating gives the onset distribution a(t).
MAPLE

> restart:
> h:=t–>1000*(Heaviside(2-t)-Heaviside(-t));
> plot(h(t),t=-3..3);
> int(h(t-s),s=2..18)/16;
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> a:=unapply(int(h(t-s),s=2..18)/16,t);
> plot(a(t),t=0..20);

MATLAB

% make an m-file, casesOnset.m:
% function a=casesOnset(t);
% if t<0 % a=0;
% elseif t<2
% r=linspace(0,t,20);
% for i=1:20
% y(i)=incubationProfile(r(i));
% end
% a=1000*trapz(r,y);
% else
% r=linspace(t-2,t,20);
% for i=1:20
% y(i)=incubationProfile(r(i));
% end
% a=1000*trapz(r,y);
% end % end of casesOnset.m
% recall t=linspace(0,20,100)

> for k=1:100
a(k)=casesOnset(t(k)) % vector same size as t

> end
> plot(t,a)
> trapz(t,a) % integral 0 to 20

The output of this calculation is (in Maple syntax)

a(t) =
(

125

4
t − 1125

2

)
signum(18− t)+

(
125

4
t − 125

)
signum(t − 4)

+
(
−125

4
t + 125

2

)
signum(2− t)+

(
−125

4
t + 625

)
signum(20− t).

(10.6.10)

This provides an alternative realization for a formula for a(t). Its form is different
from that of (10.6.5). We can recover the previous one, however, by evaluating the
signum function with various choices of t . To do this, suppose that 2 < t < 4 or
4 < t < 18 or 18 < t < 20, respectively, and evaluate (10.6.10).

Eventually, all those infected will contract AIDS; therefore,∫ ∞

0
a(s)ds =

∫ 2

0
h(s)ds.

But the first integral reduces to the interval [0, 20]. That is, the total number of people
who developAIDS during the 20-year period is the same as the total number of people
in the initial two-year cohort. This computation is done as

MAPLE

> int(a(s), s=0..20);

This gives 2000.
Several observations should be made with the graph for each of the other distribu-

tions. There should be a gradual increase of the number of cases as the cohorts begin
to develop symptoms of AIDS. Also, there should be a gradual decrease that may
last past 20 years: those in the cohorts who were infected near the end of the second
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Fig. 10.6.4. Graph of a(t) from (10.6.10).
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Fig. 10.6.5. Onset of AIDS cases for a two-year HIV cohort assuming gamma incubation.

year may not begin to show symptoms until the twenty-second year, depending on
whether P2, P3, or P4 is used.

We leave the computations for the other distributions to the exercises. However,
Figure 10.6.5 shows the graph for the onset of AIDS cases for a two-year cohort
assuming incubation as with the gamma distribution P3(t). The function a(t) defined,
evaluated, and plotted by

a(t) =
∫ ∞

0
h(t − s)P3(s)ds

is evaluated with the following code:
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MAPLE

#repeating P3 and c1 from before
> t:=’t’;
> c1:=int(tˆ9*exp(-t),t=0..infinity);
> P3:=t–>tˆ9*exp(-t)/c1;
> int(1000*P3(s),s=0..t)*Heaviside(2-t)+int(1000*P3(s),s=t-2..t)*Heaviside(t-2):
> a:=unapply(%,t);
> plot(a(t),t=0..22);

MATLAB

% for onset of cases with the gamma incubation period, make up an m-file, onsetGam.m, containing
% function a=onsetGam(t);
% c1=3.6107e+05; % from text calculation
% if t<0
% a=0;
% elseif t<2
% r=linspace(0,t,20);
% for i=1:20
% y(i)=r(i)ˆ9*exp(-r(i))/c1; %values of t.ˆ9.*exp(-t) at r(i)
% end
% a=1000*trapz(r,y);
% else
% r=linspace(t-2,t,20); % integral of y from 0 to t
% for i=1:20
% y(i)=r(i)ˆ9*exp(-r(i))/c1; %values of t.ˆ9.*exp(-t) at r(i)
% end
% a=1000*trapz(r,y);
% end

> t=linspace(0,20,100);
> for k=1:100

a(k)=onsetGam(t(k)); % creates a vector same size as t
> end
> plot(t,a)
> trapz(t,a) % integral of a over 0 to 20

We verify (symbolically) that∫ ∞

0
a(s)ds = 2000.

MAPLE

> evalf(Int(a(s),s=0..infinity));

Comparing these figures, we can gauge the effect of the incubation period. Note that
for research purposes, it would require more than comparing figures like these with
AIDS epidemiologic data to determine the incubation distribution because one could
not separate the AIDS cases into those stemming from a particular cohort; all cohort
onsets are mixed together.

Exercises/Experiments

1. Choose each of the two remaining hypothetical incubation densities of Fig-
ure 10.6.1 in turn. (The uniform and gamma have been done in the text.) Draw
the graph of the number of AIDS cases expected to develop, a(t), for the cohort
of (10.6.2) with the assumption that the one you have chosen is correct.

2. We pose a what if experiment. Suppose that around 2010, a vaccine for HIV is
developed, and while current cases cannot be cured, HIV is no longer transmitted.
The number of reported new cases of HIV, h(t), drops dramatically to zero by
2020. Model the reported cases of HIV with a hypothetical scenario such as
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h(t) = t − 1980

40

[
1− (t − 1980)6

406

]
.

(a) Draw a graph of h(t). Observe that h(1980) = 0 and h(2020) = 0.
MAPLE

> restart;
> h:=t–>((t-1980)/40)*(1-(t-1980)ˆ6/40ˆ6);
> plot(h(t),t=1980..2020,xtickmarks=0,ytickmarks=2);
> h(1980); h(2020);

MATLAB

% contents of m-file infectDensity.m:
% function h=infectDensity(t) % won’t vectorize due to the conditionals
% if t<1980
% h=0;
% elseif t<2020
% h=((t-1980)/40)*(1-((t-1980)/40)ˆ6);
% else
% h=0;
% end

> t=linspace(1980,2020); % 100 values
> for k=1:100

h(k)=infectDensity(t(k));
end

> plot(t,h)

(b) Determine where the maximum value of h occurs. This represents the time
when the reported new cases of HIV-infected individuals peaks if this “opti-
mistic scenario’’ were to happen.

MAPLE

> sol:=solve(diff(h(s),s)=0,s);
> evalf(sol[1]);

MATLAB

> hmax=max(h)
> m=0;
> for i=1:100

if h(i)==hmax
m=i;

end
end

> maxYear=t(m)

(c) Define a “later rather than sooner’’ hypothetical incubation density and draw
its graph:

MAPLE

> c5:=int(1/16*(t-2)*(1-(1/16*(t-2))ˆ2),t=2..18);
> P5:=t–>1/16*(t-2)*(1-(1/16*(t-2))ˆ2)/c5;
> plot([t,P5(t),t=2..18],t=0..20);

MATLAB

> s=linspace(2,18);
> incDen=((s-2)/16).*(1-((s-2)/16).ˆ2);
> c5=trapz(s,incDen)
> incDen=incDen/c5;
> plot(s,incDen)

(d) Find a(t) as in (10.6.1) associated with this distribution.
MAPLE

> a15:=t–>int(h(t-r)*P5(r),r=2..t-1980);
> a25:=t–>int(h(t-r)*P5(r),r=2..18);
> a:=t–>a15(t)*Heaviside(2000-t)+a25(t)*Heaviside(t-2000);
> plot(a(t),t=1982..2020);
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MATLAB

% the integral a(t)=int(h(t-s)*p(s)*ds)
% from 0 to infinity has 5 cases:
% t<1982, a(t)=0,
% 1982<t<1998, a(t)= int(h(t-s)*p(s)ds from 2 to t-1998
% 1998<t<2022, a(t)= int(h(t-s)*p(s)ds from 2 to 18
% 2022<t, a(t)= int(h(t-s)*p(s)ds from t-2020 to 18
% Here’s why. First case: suppose t=1981; since p(s)=0 unless s>2,
% t-s<1979 so h(t-s)=0.
% Second case: suppose t=1994;
% again p(s)=0 unless s>2, so the lower limit must be at least 2.
% For t=1994, t-1980=14, so s runs from 2 to 14 and t-s runs from 1992 down to 1980;
% after that h(t-s)=0.
% We leave the remaining cases for you.
%
% But all cases will be done automatically
% since we have defined infectDensity(t)=0 for t<1980 or t>2020

> t=linspace(1980,2050); % get the graph for 1980 to 2050
> for k=1:100 % k= time index

T=t(k);
for j=1:100 % j= s index

S=s(j);
y(j)=infectDensity(T-S)*incDen(j);

end
a(k)=trapz(s,y);

end
> plot(t,a)

(e) Sketch the graphs for the hypothetical h(t) and associated a(t).
MAPLE

> plot({[t,h(t),t=1980..2020],[t,a(t),t=1982..2029.432]});
> int(h(t),t=1980..2020);
> int(a(t),t=1982..2029.432);

Questions for Thought and Discussion

1. What are four suspected ways that HIV kills cells?

2. Why do viral mutations lead to the development of new antibodies by the immune
system?

3. Describe the life cycle of HIV.

4. Why do we continue to get colds, year after year, but seldom get mumps more
than once?

5. Describe clonal selection and clonal deletion.

6. How does the clonal deletion model explain the fact that a mouse injected pre-
natally with a virus never will raise antibodies against the virus after the mouse
is born?

7. Describe three general immunologic mechanisms.

8. How does HIV infection result in the inactivation of both the humoral and cell-
mediated immune responses?

9. Most DNA replication includes a proofreading function that corrects mismatched
DNA nucleotides during DNA replication. The reverse transcriptase of HIV
seems to lack this ability, which results in high mutation rates (as much as one
or more per generation). Discuss this problem in terms of antibody production
by a host’s immune system.
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