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Genetics

Introduction

In this chapter, we will study the ways that genetic information is passed between
generations and how it is expressed. Cells can make exact copies of themselves
through asexual reproduction. The genes such cells carry can be turned off and on to
vary the cells’ behaviors, but the basic information they contain can be changed only
by mutation, a process that is somewhat rare to begin with and usually kills the cell
anyway.

Genetic material is mixed in sexual reproduction, but the result of such mixing
is seldom expressed as a “blend’’ of the properties’ expressions. Rather, the rules for
the combination of genetic information are somewhat complex. Sexual reproduction
thus results in offspring that are different from the parents. Much research shows
that the ultimate genetic source of this variation is mutation, but the most immediate
source is the scrambling of preexisting mutations.

The variations produced by sexual reproduction serve as a basis for evolution-
ary selection, preserving the most desirable properties in a particular environmental
context.

13.1 Asexual Cell Reproduction: Mitosis

Asexual reproduction of a cell results from the copying and equal distribution of the
genetic material of a single cell. Each resultant daughter cell then possesses the
same genes as the parent cell. If we are considering a single-celled organism, an
environment for which the parent cell is suited should therefore also be suitable for
the daughter cells. If we are considering a multicellular organism, the daughter cell
may take on functions different from those of the parent cell by selectively turning
genes off. This process creates the various tissues of a typical multicellular organism.

In this section, we will take a brief look at the mitosis cell division cycle, the
process by which a cell reproduces an exact copy of itself. This is complementary to
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the more detailed scrutiny of the cell cycle undertaken in Chapter 12 needed for the
discussion of cancer.

Eukaryotic mitosis gives each of two daughter cells the same genes that the parent
cell had.

The actual process of eukaryotic mitosis is comparable to a movie, with sometimes
complex actions flowing smoothly into one another, without breaks. For reference,
however, mitosis is usually described in terms of five specific stages, named inter-
phase, prophase, metaphase, anaphase, and telophase. It is important to remember,
however, that a cell does not jump from one stage to the next. Rather, these stages
are like “freeze-frames,’’ or preserved instants; they are guideposts taken from the
continuous action of mitosis (see [1] for further discussion).

Most of the time a cell’s nucleus appears not to be active; this period is called
interphase. If one adds to an interphase cell a stain that is preferentially taken up
by nuclei and then examines the cell through a microscope, the nucleus appears to
have no internal structure over long periods of time. This appearance is actually
quite misleading, because, in fact, the nucleus is very active at this time. Its activity,
however, is not reflected in changes in its outward appearance. For example, the
addition of radioactive thymine to an interphase cell often leads to the formation of
radioactive DNA. Clearly DNA synthesis takes place in interphase, but it does not
change the appearance of the nucleus.

Biologists further subdivide interphase into three periods: G1, during which
preparations for DNA synthesis are made; S, during which DNA is synthesized;
and G2, during which preparations are made for actual cell division. (The “G’’ stands
for “gap.’’) If we could see the DNA of a human skin cell during G1 we would find
46 molecules. Each molecule, as usual, consists of two covalent polynucleotides,
the two polymers being hydrogen-bonded to one another in a double helix. Genetic
information is linearly encoded into the base sequence of these polynucleotides.

When we discussed DNA structure in Chapter 8, we associated a gene with the
nucleic acid information necessary to code for one polypeptide. Thus a gene would
be a string, not necessarily contiguous, of perhaps a few hundred to a few thousand
bases within a DNA molecule. It is convenient to define a gene in another way, as a
functional unit of heredity, a definition that has the virtue of generality. It can therefore
include the DNA that codes for transfer RNA or ribosomal RNA, or it can just be a
section of DNA that determines a particular observable property, such as wing shape
or flower color. In this general definition, each DNAmolecule is called a chromosome,
where each genetic region, or gene locus, on the chromosome, determines a particular
observable property.

In Figure 13.1.1, one chromosome is illustrated for a cell progressing through
mitosis. (Ahuman skin cell, for example, has 46 chromosomes, and each one behaves
like the one in the figure.) The structure of the chromosome at G2 cannot be seen
in a microscope, so we must surmise its structure by its appearance in the next stage
(prophase).
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Interphase G1

Interphase G2

Prophase

Metaphase

Anaphase

Telophase and cytokinesis

Fig. 13.1.1. The stages of mitosis. The figure shows actual photographs of a dividing cell’s
chromosomes. The line drawings show how the individual chromosomes are behaving during
that stage of division. During mitosis, each chromosome replicates lengthwise and the two
copies go to different daughter cells. Thus each daughter cell ends up with exactly the same
genetic complement as the parent cell. (Photos of mitosis taken from Radiation and Chromo-
somes Biokit, item F6-17-1148, Carolina Biological Supply Company, Burlington, NC. Used
with permission.)
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At prophase, the nuclear membrane disappears and the chromosomes become
visible for the first time, resembling a ball of spaghetti. If we could grab a loose
end of a chromosome and separate it from the others, we would see that it looks like
that shown in the figure beside the prophase cell. It consists of two halves, called
sister chromatids, lying side by side and joined at a centromere. The two chromatids
of each prophase chromosome are chemically and physically identical to each other
because one of each pair was manufactured from the other in the preceding S phase.
Each chromatid therefore contains a double-stranded DNA molecule that is identical
to the DNA of its sister chromatid. The two chromatids are still referred to as a single
chromosome at this point.

As prophase progresses, the chromosome becomes shorter and fatter, and it moves
to the center of the cell. The stage at which the chromosomes reach maximum
thickness and are all oriented at the cell’s center is called metaphase. Chromosomes
at metaphase have reached their maximum visibility, and a view through a microscope
often shows them all arranged neatly in the cell’s equatorial plane, as shown in the
photo in Figure 13.1.1.

At anaphase, each chromosome splits into its two component chromatids, which
are now referred to as individual chromosomes in their own right, and one copy moves
toward each end, or pole, of the cell. Recall that the two sister chromatids of each
chromosome are identical to each other. In summary, what happens in anaphase is
that identical double-stranded DNA is delivered to each pole.

At telophase, the chromosomes collect together at each pole and a new nuclear
membrane forms around them. The cell then divides its cytoplasm in such a way that
one new nucleus is contained in each half.1 There are now two cells where there was
only one, but the crucial point is that each of the daughter cells now has the same
DNA code that the original cell had. Put another way, two cells have been formed,
each having the same genes as the parent cell.

One way to look at asexual reproduction is to think of each chromosome as a piece
of paper, with information written on it. Ahuman skin cell has 46 pages, labeled 1–46.
At S phase, an exact copy is made of each page, and during mitosis each daughter
cell gets one copy of each page. No new information is created, nor is any lost. Each
daughter cell gets the same genetic information, i.e., each daughter cell ends up with
46 pages, labeled 1–46.

A karyotype is a picture of a cell’s chromosomes.

It is not difficult to obtain a picture of most organisms’ chromosomes. For example,
it is a routine laboratory procedure to take a sample of a person’s blood and isolate
some of their white blood cells. (Mammalian red blood cells won’t do because they
lose their nuclei as they mature.) These white cells are then cultured in a test tube and
their nuclear material is stained as they enter metaphase, which is when chromosomes
are most easily visualized. The cell, with its chromosomes, is photographed through
a microscope. The chromosomes are then cut out of the photograph and arranged

1 The actual splitting of the cell is called cytokinesis.
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in a row, according to size. This picture is a karyotype. An example is shown in
Figure 13.1.2.

There are several interesting features of the illustrated karyotype:

1. These are metaphase chromosomes and therefore are lengthwise doubled, joined
at a centromere. Each chromosome consists of two chromatids, a feature that
sometimes confuses students. The problem is that the chromosomes must be
photographed at metaphase because that is when they are most easily visible and
distinguishable from one another. This is also the point at which they are in a
duplex form. You may want to refer back to the discussion of Figure 13.1.1 to
clarify the distinction between chromosome and chromatid.

2. There are 46 chromosomes in this cell. This is the number found in most of the
cells of the human body, the exceptions being mature red blood cells, which lack
nuclei, and certain cells of the reproductive system, called germinal cells, to be
discussed later in this chapter. Any cells of our body that are not germinal are
said to be somatic cells, a category that therefore includes virtually the entire
bulk of our body: skin, blood, nervous system, muscles, the structural part of the
reproductive system, etc. Our somatic cell chromosome number is thus 46.

3. The chromosomes in the karyotype seem to occur in identical-appearing pairs,
called homologous pairs. Evidently, our human chromosomal complement is
actually two sets of 23 chromosomes. It is very important to understand the
difference between a homologous pair of chromosomes and the two chromatids
of a single metaphase chromosome. The karyotype shows 23 homologous pairs;
each member of each pair consists of two chromatids. Each chromatid contains a
double-helical DNA molecule that is identical to the DNA of its sister chromatid,
but which is different from the DNA of any other chromatid.

Asexual reproduction can generate daughter cells that differ from each other.

We could imagine an amoeba, a common single-celled eukaryote, dividing by mitosis
to yield two identical amoebas. We could just as easily imagine a skin cell of a human,
a multicellular eukaryote, dividing by mitosis to give two identical human skin cells.
Indeed, this is the way that our skin normally replaces those cells that die or are
rubbed off. In both cases, the daughter cells have the same DNA base sequence that
the parent cell had, and that is reflected in the identical physiology and appearance
of the daughter cells.

There is another possibility: consider a single fertilized human egg. It divides by
mitosis repeatedly to form a multicellular human, but the cells of a developed human
are of many sizes, shapes, and physiological behaviors. Liver cells look and behave
one way, nerve cells another, and muscle cells still another. Mitosis seems not to have
been conserved. How could cells that have exactly replicated their DNA in mitosis
and then partitioned it out equally have yielded different progeny cells?

One possibility is that cells in each unique kind of tissue of a multicellular organ-
ism have lost all their genes except those essential to the proper functioning of that
particular tissue. Thus liver cells would have retained only those genes needed for
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Fig. 13.1.2. A karyotype of a normal human male. The chromosomes were photographed at
metaphase and images of the individual chromosomes were then cut out and arranged by size.
The result is a group of 22 chromosome pairs, called homologs, each pair of which is matched
by length, centromere location, and staining pattern. Because this is a male’s karyotype,
the 23rd pair of chromosomes (sex chromosomes; X and Y) do not match each other. Each
of the chromosomes shown in the figure consists of two identical daughter chromatids, but
they are so closely associated that they are often indistinguishable at metaphase. However,
note the right-hand homolog of number 18; the two chromatids can be distinguished. (Photo
of karyotype arranged from Human Karyotypes, Normal Male, item F6-17-3832, Carolina
Biological Supply Company; Burlington, NC. Used with permission.)
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liver functioning and muscle cells would have retained only those genes needed for
muscle functioning. This possibility is easy to reject by a simple experiment: In the
cells of a plant stem the genes necessary for stem growth and function are obviously
active, and there is no evidence of genes involving root formation. If the stem is
broken off and the broken end inserted into soil, within a few weeks the plant will
often start to grow roots at the broken stem end. Clearly the genes for root growth
and function were in the cells of the stem all along, but were reversibly turned off. A
similar experiment has been done on a vertebrate, in which a nucleus from a special-
ized somatic tissue, the intestinal lining of a tadpole, has been used to grow a whole
tadpole and the subsequent toad. We can conclude that mitosis generates different
tissues of multicellular organisms when selected genes are turned off or on in the
course of, or in spite of, asexual cell division.

The process by which unspecialized cells of a multicellular organism take up
specialized roles—liver, nerve, skin, etc.—is called differentiation. Differentiation
is not restricted to embryos, but can occur all our lives, e.g., in bone marrow, where
unspecialized stem cells can become specialized blood cells. Differentiation is only
one part of development, which includes all the changes in an organism in its life,
from conception to death. Other aspects of development include tissue growth and
deterioration, as described in Section 9.2.

Some cell types rarely divide.

Certain cells of multicellular organisms seem to have a very limited, even nonexistent,
capacity for division. For example, muscle cells don’t divide; the muscle enlargement
associated with exercise comes from cellular enlargement. Fat cells get larger or
smaller, but their numbers stay the same (which is why cosmetic liposuction works—
the lost fat cells can’t be replaced). Cells of the central nervous system don’t divide,
which explains the seriousness of spinal injuries. Liver cells rarely divide unless part
of the liver is cut away—in which case the liver cells undergo division to replace those
removed. Note the implication here: Genes controlling liver cell division haven’t
been lost. They were shut off, and can be reactivated.

13.2 Sexual Reproduction: Meiosis and Fertilization

Sexual reproduction involves the creation of an offspring that contains genetic contri-
butions from two parents. A type of cell division called meiosis halves the chromosome
number of germinal cells to produce sperms or eggs. A sperm and an egg then com-
bine in fertilization to restore the double chromosome number. The new offspring
now has genetic information from two sources for every characteristic. The ways
that these two sets of information combine to produce a single property are complex,
and this is the subject of the study of classical genetics.

Sexual reproduction provides variation upon which evolutionary selection can act.

Recall the Darwinian model: More organisms are born than can survive, and they
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exhibit variability. Those with favored characteristics survive and may pass the
favored properties to their offspring. It is tempting to credit genetic mutation with
this variability and let it go at that. The fact is that all of the ten (nontwin) children in
a hypothetical large family look different and virtually none of the variations among
them are the result of mutations in their, or their parents’, generation. This fact,
surprising at first, seems more reasonable when we consider the accuracy of DNA
base pairing, the “proofreading’’ capability of some kinds of DNA polymerase and
the existence of repair mechanisms to correct DNA damaged by such mutagens as
radiation. Thus DNA sequences tend to be conserved over many generations. We
can therefore conclude that most of the variations among the ten children of the same
family are the result of scrambling of existing genes, not the result of recent mutation.
The cause of this shuffling of the genetic cards is sexual reproduction. Of course, the
variant genes originated through mutation, but virtually all of them originated many
generations earlier (see [2] for further discussion).

Sexual reproduction involves the combination of genetic material from two parents
into one offspring.

Refer back to the karyotype in Figure 13.1.2. The human chromosome complement
consists of 23 homologous pairs or, put another way, of two sets of 23 each. The
sources of the two sets of 23 can be stated simply: we get one set from each of
our parents when a sperm fertilizes an egg. What is not so simple is how the genetic
material in those 46 chromosomes combines to make each of us what we are. The rules
for combination will be the subject of Section 13.3. Our more immediate concern,
however, is the means by which we generate cells with 23 chromosomes from cells
having 46.

Meiosis halves the chromosome number of cells.

A special kind of reductional cell division, called meiosis, creates gametes having
half the number of chromosomes found in somatic cells.2

The chromosomes are not partitioned at random however; rather, every gamete
winds up with exactly one random representative of each homologous pair, giving
it one basic set of 23 chromosomes. Such a cell is said to be haploid . A cell that
has two basic sets of chromosomes is said to be diploid . We see that somatic cells
are diploid and germinal cells are haploid. Thus meiosis in humans converts diploid
cells, with a chromosome number of 46, to haploid cells with a chromosome number
of 23.

Meiosis is diagramed in Figure 13.2.1 for a hypothetical organism having two ho-
mologous pairs; its diploid number is 4. Each chromosome is replicated in interphase
and thus contains two identical chromatids joined at a centromere. In a departure
from meiosis, homologs bind together, side by side, in a process called synapsis, to
form tetrads consisting of two chromosomes (four chromatids). The homologs then
separate to end the first meiotic division. Next, the chromatids separate to complete

2 Gametes are often called germinal cells to distinguish them from somatic cells.
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InterphaseMeiosis

Chromosomes replicate

Homologs synapse

End of meiosis I

End of meiosis II

Fig. 13.2.1. The stages of meiosis. The cell shown has two homologous pairs. Each chro-
mosome replicates lengthwise to form two chromatids, synapses to its homolog, and then two
cell divisions ensue. The daughter cells each end up with exactly one representative of each
homologous pair. Thus a diploid cell at the start of meiosis results in four haploid cells at the
end of meiosis.
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the second meiotic division. The result is four cells, each containing two chromo-
somes, the haploid number for this hypothetical organism. Note that the gametes’
chromosomes include exactly one representative of each homologous pair.

The process of meiosis (perhaps followed by developmental maturation of the
haploid cell) is called gametogenesis. Specifically in animals, the formation of male
gametes is called spermatogenesis, and it yields four sperms, all similar in appearance.
The formation of female gametes is called oogenesis and yields four cells, but three of
them contain almost no cytoplasm. The latter three are called polar bodies, and they
die. Thus oogenesis actually produces only one living egg, and that one contains all
the cytoplasm of the diploid precursor. The reason for this asymmetry is that once the
egg is fertilized, the first several cell divisions of the fertilized egg (called a zygote)
remain under the control of cytoplasmic factors from the mother. Evidently, all the
cytoplasm from the egg precursor is needed in a single egg for this process.

The concept of sexual reproduction can be incorporated into the alternation of gen-
erations.

We can diagram the alternation of the diploid and haploid generations:

· · · −→ diploid
meiosis−→ haploid

fertilization−→ diploid −→ · · · .
Note that the diploid and haploid generations are equally important because they
form a continuous string of generations. On the other hand, the two generations
are not equally conspicuous. In humans, for instance, the haploid generation (egg
or sperm) is microscopic and has a lifetime of hours to days. In other organisms,
mainly primitive ones like mushrooms and certain algae, the haploid generation is
the conspicuous one, and the diploid generation is very tiny and short lived.

Another way to show the alternation of generations is in the diagram in Fig-
ure 13.2.2.

Sperm Egg

Sperm Egg

Fertilization

Zygote

Mitosis

Adult Adult

Spermatogenesis Oogenesis

Fig. 13.2.2.
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13.3 Classical Genetics

Classical genetics describes the many ways that the genetic material of two parents
combines to produce a single observable property. For instance, a red-flowered
plant and a white-flowered plant usually produce an offspring with a single color in
its flower. What that color will be is not predictable unless a geneticist has already
studied flower colors in that plant—because there are about a dozen ways that parental
genes can combine. We describe many of those ways in this section.

Classical genetics describes the result of interactions in genetic information.

A diploid human cell carries 23 homologous pairs of chromosomes: One member
of each pair comes from a sperm cell of the male parent, and the other member
comes from an egg cell of the female parent. Other diploid organisms may have
chromosome numbers ranging from a few up to hundreds, but the same principle
about the origin of homologous pairs holds. What we will consider now is how the
genetic information from the two parents combines to produce the characteristics that
appear in the offspring and why the latter are so variable. Let us first examine a
chromosome at G1 phase, because that is the usual condition in a cell.

Genes, defined generally as functional units of heredity, are arranged linearly
along the chromosome (Figure 13.3.1). Each gene locus affects some property, say,
flower color or leaf shape in a plant. The order in which these loci appear is the

Homologous pair of chromosomes

Homolog from
male parent

Homolog from
female parent

Flower
color
locus

Other
loci

Centromeres

Fig. 13.3.1. This shows a simple model of the chromosome. The genes are lined up along the
length of the chromosome, like beads on a string. A hypothetical flower color locus is labeled.
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same on each member of the homologous pair. Thus it is common to refer to the
“flower color’’ locus, meaning the section of either member of a homologous pair
that is the gene that determines flower color. Clearly, each property is determined
by two such sections, one on each homolog. Each parent, then, contributes to each
genetic property in the offspring.

The behavior of chromosomes provides a basis for the study of genetics.

The pioneering geneticist was Gregor Mendel, who studied the genetics of peas, a
common flowering plant. Peas, like many flowering plants, have male and female
reproductive structures in the same flower. The male part makes pollen that is carried
to the female part of that or another plant; the pollen then produces a sperm cell
and fertilizes an egg. It a straightforward matter to dissect out the male part of a
flower to prevent the plant from self-pollinating. Further, it is simple to use pollen
from the male part of one plant to fertilize an egg of another plant and thus to make
controlled matings. The seed that results from fertilizing an egg can be planted and
the appearance of the offspring studied. The principles of chromosomal behavior and
gene interaction in peas are the same as for humans.

Mendel had two groups, or populations, of plants that were true breeding. A
population is true breeding if its freely interbreeding members always give rise to
progeny that are identical to the parents, generation after generation. Members of a
population of true-breeding red-flowered peas fertilize themselves or other members
of the population for many generations, but only red-flowered plants ever appear.
Mendel made a cross between a plant from a true-breeding red-flowered population
and one from a true-breeding white-flowered population.

Mendel did not know about chromosomes, but we do and we will make use of
that knowledge, which will simplify our learning task in the discussion to follow. We
will therefore represent the cross in the following way: The gene for flower color is
indicated by the labeled arrow in Figure 13.3.1. Note that each of the two homologs
has such a gene locus.3 The genetic information for red flower color is symbolized
by the letter R, and the plant has two copies, one from each parent. (The reason
for the copies being alike will become clear shortly.) Using the same convention,
the genetic information at the flower color locus of the two homologs in the other
(white-flowered) parent is symbolized by w.

Meiosis produces gametes containing one, and only one, representative of each
homologous pair, as shown in Figure 13.3.2. A gamete from each parent combines
at fertilization to reestablish the diploid condition. The offspring has flower color
genetic information Rw. It turns out that this pea plant produces only red flowers,
indistinguishable from the red parent. Evidently red somehow masks white; we say
that red information is dominant to white, and white is recessive to red.

At this point, we need to define several terms. The variant forms of information
for one property, symbolized by R and w, are alleles, in this case flower color alleles.
The allelic composition is the organism’s genotype; RR and ww are homozygous

3 For learning purposes, we will ignore all other chromosomes, as if they do not have loci
that affect flower color. In actual fact, this may not be true.
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(a) Parental generation

(b) Parents’ gametes

(c) Offspring (F1 generation)

R

R

R w

w

R w w

Red flowers

Red flowers

White flowers

Fig. 13.3.2. The behavior of chromosomes and their individual loci during a cross between two
homozygous parents. The parents (RR and ww) each contribute one chromosome from the
homologous pair to form gametes. The gametes combine in fertilization to restore the diploid
number of two. The offspring’s flowers will be red.
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genotypes and Rw is the heterozygous genotype. What the organism actually looks
like, red or white, is its phenotype. Thus the initial, or parental, cross, was between a
homozygous red-flowered plant and a homozygous white-flowered plant. The result
in the first filial, or F1, generation was all heterozygous, red-flowered plants.

To obtain the F2 generation, we self-cross the F1, which is equivalent to crossing
it with one just like itself. Figure 13.3.3 shows the gametes obtained from each parent
in the F1 generation. They combine in all possible ways at fertilization. The result is
a ratio of 1 RR, 2 Rw, and 1 ww, which gives a 3:1 ratio of red-to-white phenotypes.

An experiment of the sort just described, involving a single property like flower
color, is called a monohybrid cross. We used the chromosome model, whereas Mendel
actually ran the experiment; satisfyingly, both give the same results. Let us now
make a dihybrid cross, involving the two properties of flower color and stem length,
which we specify to be unlinked , which means that their genetic loci are on different
homologous pairs. The cross is diagramed in Figure 13.3.4. Note that we have quit
drawing in the chromosomes—we understand that the genes are on chromosomes
and that drawing the latter is redundant. The F1 self-cross now can be represented
as RwLs × RwLs. Note the phenomenon of independent assortment: Each gamete
gets one and only one representative of each homologous pair, and the behavior of
one pair in meiosis is independent of the behavior of the other pair. Thus meiosis in
the F1 generation results in equal numbers of gametes containing RL, Rs, wL, and
ws. The outcome of the cross is shown in the array, called a Punnett square, at the
bottom of the figure.

The dihybrid cross yields a 9:3:3:1 phenotypic ratio of offspring. We should ask
whether the inclusion of stem length in any way interferes with the 3:1 ratio of flower
color. Among the 16 offspring in the Punnett square, we see 12 red and 3 white, which
gives the 3:1 ratio. We might have anticipated this—that the two properties would
not affect their separate ratios—after all, they are unlinked and the two homologous
pairs assort independently.

We must obtain large numbers of progeny in order to get the expected ratios of
offspring.

Suppose we make a cross like Rw×Rw in peas (red× red) and get only four progeny.
We should not expect an exact 3:1 ratio of phenotypes in this experiment. After all,
if we flipped a coin two times, we would not be certain to get one head and one tail.
Rather, we expect to get approximately the 1:1 ratio only if we flip the coin many
times, say 2000. The same reasoning holds in genetics—we must make enough Rw
× Rw crosses to get many offspring, say 4000, and then we would obtain very close
to 3000 red and 1000 white offspring.

The ratios 3:1 and 9:3:3:1 are often called Mendelian ratios, because they are
what Mendel reported. There is a bit of a problem here: Statisticians have examined
Mendel’s data and some have concluded that the experimental data are too good, i.e.,
consistently too close to the 3:1 and 9:3:3:1 expected ratios. For the sample sizes
Mendel reported, it would be expected that he would have gotten somewhat larger
deviations from “Mendelian’’ ratios.
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(a) F1 (self-crossed)

(b) F1 gametes

(c) Offspring (F2 generation)

R

R

w R w

R R R w w w wR

Red flowers Red flowers

w R w

Fig. 13.3.3. A cross between two heterozygotes. Each F1 from Figure 13.3.2 makes gametes
having the genes R and w with equal probability. When the gametes combine to make the F2
generation, the result is offspring of genotypes RR, Rw, and ww in the ratio 1:2:1.
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R = red flowers
w = white flowers
L = long stems
s = short stems

(a) Parental generation

(b) Parental gametes

(c) F1 generation

(e) F1 gametes

(f) Punnett square to give F2 generation

(d) Self-cross F1

RRLL × wwss

RwLs × RwLs

RL ws

RL

Rs

wL

ws

RwLs

RL

Rs

wL

ws

RwLsRRLs RRss Rwss

RwLLRRLLRL

Rs

wL

ws

wswLRL Rs

RRLs RwLs

wwLsRwLs Rwss wwss

wwLLRwLL RwLs wwLs

9:3:3:1 ratio of phenotypes

Fig. 13.3.4.Acomplete dihybrid cross between plants whose flower color locus and stem length
locus are on different homologous pairs, i.e., the two properties are not linked. The result is
a 9:3:3:1 ratio of phenotypes in the F2. In this figure, only the allelic symbols are shown; the
chromosomes are not drawn.

Sexual reproduction leads to variation in several ways.

We shall concern ourselves with organisms in which the diploid generation is the
most conspicuous, e.g., humans, and we will examine the variations introduced into
the diploid organism by sexual reproduction. It should always be borne in mind,
however, that haploid organisms are under genetic control also.
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Earlier it was pointed out that while mutation is the ultimate cause of genetic
variation, there is only a very small chance that a given locus will mutate between
two generations, will be unrepaired, and will not kill the cell. In spite of this, there
are great variations among even the offspring of a single mating pair. We are now
in a position to understand the sources of this immediate variation. First, look at the
Punnett square of the dihybrid cross in Figure 13.3.4. Note that the F1 (RwLs) yields
the gametes RL, Rs, wL, and ws, and yet the gametes of the parental generation were
RL and ws. Thus two new combinations have turned up in the gametes of the F1. The
reason is that the flower color locus and the stem length locus are unlinked—they are
on different homologous pairs—and every homologous pair assorts independently of
every other pair. Thus in the gametes of the F1, R paired up with L as often as R
paired up with s. There were therefore 22 = 4 combinations of chromosomes in the
gamete. A human has 23 homologous pairs, all of which assort independently; thus
a person can produce 223 different combinations of chromosomes in their gametes,
using independent assortment alone!

Second, when homologous chromosomes synapse they can exchange pieces in a
process called crossing over. Let us cross two true-breeding parents, AABB× aabb,
as shown in Figure 13.3.5. Notice that the two gene loci are linked , i.e., on the same
chromosome. The F1 genotype is AaBb, and we test-cross it.4 Some of the gametes
of the F1 are the expected ones, AB and ab, but as the figure shows, crossing over, in
which the homologs break and rejoin in a new way, produces gametes with two new
allelic combinations, Ab and aB. These two new kinds of gametes, called recombinant
gametes, are different from the gametes of either members of the parental generation.
When the various gametes are paired up with the ab gametes in the test-cross, the
following phenotypes appear in the F2 generation: Ab, aB, AB, and ab. The last
two of these are the same phenotypes as the parental generation, and the first two are
recombinant offspring, having phenotypes not seen in the previous crosses. We see
that crossing over rearranges genetic material and presents novel phenotypes upon
which selection can act.

How often does such crossing over occur? Actually, it is not unusual to find at
least one example in every tetrad. Furthermore, crossing over is predictable: The
farther apart two loci are, the more likely crossing over is to occur between them.
The frequency of crossing over, measured by the frequency of recombinant offspring,
is used by geneticists as a measure of the distance between two loci.

Note that we can account for an immense number of allelic combinations just
using independent assortment and crossing over, without a mention of mutation.
Independent assortment and crossing over account for virtually all the phenotypic
variation seen in members of a single family generation. This variation, in the main,
is what Darwinian selection works on.

A final point is worth mentioning here: Self-fertilization might be considered
to be a limiting form of sexual reproduction.5 Suppose that allele A is completely

4 A test-cross is a cross with a homozygous recessive individual.
5 Think of it this way: A self-cross is just like a cross between two separate, but genetically

identical, parents.
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(a) Parental cross (A and B linked)

(b) F1 generation

(c) F1 test-cross
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Fig. 13.3.5. A complete dihybrid cross, in which loci A and B are on the same chromosome,
i.e., the two properties are linked. The results are predictable until the F1 test-cross at (c),
when the chromosomes may break, yielding new combinations of the two loci. Notice that the
resulting phenotypes at (e) include two (Ab and aB) that are unlike either of the two original
parents.
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dominant to allele a: If we self-cross an individual of genotype Aa, variant offspring
appear in the ratio of 3:1, a mark of sexual reproduction. Asexual reproduction in the
same organism yields only one kind of offspring—Aa. Where self-fertilizing organ-
isms might run into evolutionary problems is in continued self-fertilization, which
minimizes variation. This is shown by the following example: Take a population that
is 100% heterozygotes (Aa) and self-cross all individuals. Note that the result is 50%
heterozygotes and 50% homozygotes. Now self-cross all of that generation and note
that 75% of the next generation will be homozygotes. After a few more generations
of self-fertilization, virtually the entire population will be homozygous, either AA
or aa. This can create problems for the population in two ways: First, suppose that
the recessive allele is an unfavorable one that is usually masked by the dominant
allele. As shown above, self-fertilization increases homozygosity, and homozygous
recessive individuals would be selected out. Second, when homozygotes fertilize
themselves, independent assortment and crossing over can occur, but they cannot
generate variation. (You should verify this statement by schematically working out
the cross.)

Here is an idea to think about: We sometimes hear about the “rescue’’ of a species
that is near extinction. The last few members of the species are brought together
to be bred in a controlled environment, free from whatever forces were causing the
extinction in the first place. Suppose now that a particular species has been depleted
until only one male and one female are left. This mating pair must serve to reestablish
the species. It is to be expected that each member of this pair would be heterozygous
for at least a few unpleasant recessive genes. In light of the information in the
preceding paragraph, what unique problems will the reconstituted species face?

A group of questions for practice and for extending Mendelian genetics.

1. Refer to the definition of “true breeding’’ two sections back. In the discussion of
the monohybrid cross and Figures 13.3.2 and 13.3.3, “true breeding’’was asserted
to mean “homozygous.’’ Suppose for a moment that a member of a supposedly
true-breeding population were a heterozygote. Show that being heterozygous is
inconsistent with the definition of true breeding.

2. Suppose you are given a red-flowered pea. A test-cross will enable you to deter-
mine whether this dominant phenotype is a heterozygote (Rw) or a homozygote
(RR). Cross it with a homozygous recessive individual (ww); the cross is therefore
either RR× ww or Rw× ww. Note the different results obtained, depending on
the genotype of the dominant phenotype. How do we know that a white-flowered
plant is homozygous?

3. The red-flower allele in peas completely masks the white-flower allele, i.e., red is
completely dominant to red. If we cross a true-breeding red-flowered snapdragon
with a true-breeding white-flowered one, the F1 offspring are all pink. We say
that dominance is incomplete, or partial, for snapdragon flower color; partial
dominance is a very common phenomenon. Cross two pink snapdragons to get
offspring with a phenotypic ratio of 1 red:2 pink:1 white.
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4. Foxes with platinum fur have the genotype Pp and silver foxes are pp. The
genotype PP kills the fetus right after conception, i.e., it is lethal. Evidently, the
gene locus for fur color controls other properties as well, among them at least
one very basic metabolic process. Show that a cross of two platinum foxes gives
a 2:1 phenotypic ratio of offspring.

5. There is a notable exception to the statement that every chromosome in a mam-
malian diploid cell has an exact homolog. Mammalian males have one chro-
mosome called an X chromosome and one called a Y chromosome. Females
have two Xs and no Ys. These sex chromosomes carry a number of genes hav-
ing to do with gender and many others that do not. Despite the fact that they
are not homologous, the X and Y chromosomes in a male can synapse over a
portion of their length to facilitate meiosis. A well-known recessive gene on the
X chromosome is for hemophilia, a blood-clotting disorder. Let us represent a
heterozygous (“carrier’’) female as Xh X+, where “X’’ indicates X-linkage, “h’’
indicates the hemophilia allele, and “+’’ represents the normal allele. Note that
a male of genotype XhY will show the disorder because there is no possibility
of a dominant allele on his Y chromosome to mask the hemophilia allele on his
X chromosome. Cross a carrier female with a hemophilic male to show that a
female can get hemophilia. Cross a carrier female with a normal male to show
that no daughters and half the sons would be affected.

6. Often there are more than two choices for the alleles for a property, a phenomenon
called multiple alleles. The presence of certain molecules on red blood cells is
determined by the alleles A, B, and O. For example, the genotypes AA and
AO yield the A molecule, the genotypes BB and BO yield the B molecule, the
genotype OO yields neither molecule, and the genotype AB yields both the A and
B molecules. The latter case, expression of both alleles, is called codominance.
Cross an AB parent with an O parent; what ratio of offspring is obtained? Could
an O-type man be the parent of an AB child? Is it possible that a particular A-type
man is the father of an A-type child by an A-type mother?

7. The expression of some genes is determined by the environment. The gene for
dark pigmentation in Siamese cats is expressed only in cool parts of the cat’s
body—nose, ears, and tail tip. The expression of the gene for diabetes mellitus,
a deficiency in sugar metabolism, is affected by diet and the person’s age. As an
example, environmental effects might cause a dominant allele not to be expressed
under certain conditions, and an individual with genotype AA or Aa might show
the recessive phenotype. How might you determine that such an individual is
actually of the dominant genotype?

13.4 Genetic Drift

Natural selection is not the only mechanism at work in evolution. The other important
mechanism is genetic drift. Genetic drift is a random or stochastic process in which
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the allelic fractions of a population change from generation to generation due to
chance alone.

At one level chance works on mating itself. In a pair of diploid sexually repro-
ducing parents (such as humans), not all of the parent’s alleles will be passed on to
their progeny due to chance assortment of chromosomes at meiosis. This is called
sampling error. Extended over an entire population, sampling error will be mitigated
by the law of large numbers but not completely eliminated. Thus population-wide,
frequencies of alleles change from generation to generation.

In addition to that, not all offspring of a new generation survive and reproduce.
Of course, natural selection works on this principle when the underlying cause is
differential fitness. But fitness is not always the issue; random events can intervene
with the result that even the most fit individuals fail to reproduce.

Genetic drift is not self-correcting. The population does not have a genetic mem-
ory and is not urged back to some previous genetic state. The changes that arise in the
allelic frequencies of the previous generation become the basis of the new gene pool.
As more and more generations pass, allelic frequencies can range far from where they
started. Surprising as it may seem, over time genetic drift moves the fraction of every
allele (not subject to natural selection) to either 1 or 0. This will even happen due to
sampling error alone.

Genetic drift is an example of the mathematical process known as a random
walk. In a simplified version, suppose that the frequency of some allele, say A,
can change by the amount s, the step size, in each generation; assume s = 1

10 .
Right now A comprises the fraction f of the gene pool for its trait; suppose f =
60%. From generation to generation, f will move up by 10% or down by 10%
with some probability p > 0. The walk will go back and forth along the points
0%, 10%, . . . , 90%, 100%, but eventually f will become 0% or 100% and be trapped
there. In random walk terminology, the walk has been absorbed . The larger the value
of s or p, the fewer expected number of generations until absorption.

The effects of genetic drift are accentuated on small populations. Loss of alleles
due to limited mating outcomes and random environmental occurrences represent a
larger fractional allelic change to the population when it is small. So the step size s of
the previous paragraph is larger. There are two extreme situations in which genetic
drift is of primary importance due to small population size. The first is when some
catastrophic event occurs to a population and its numbers fall to a very low level;
this is called the bottleneck effect. The second is when a subpopulation of the whole
becomes reproductively isolated; this is the founders effect.

An example of the bottleneck effect occurred to the northern elephant seal. This
animal was hunted almost to extinction. By 1890, there were fewer than 20 animals
remaining. Although it now numbers around 30,000, there is very little genetic vari-
ation in this population. As a result the population is highly vulnerable to extinction,
for example from disease. In any case, the present elephant seal population is sure to
have large differences in allelic frequencies from its pre-1890 counterpart.

Founder effect occurs when a small subpopulation of a species becomes repro-
ductively isolated. These are the founders of the isolated population and their allelic
frequencies will be its norm. But these frequencies will most certainly be much dif-
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ferent from those of the parent population for many traits. Native American Indians
constitute an example in that their ancestors crossed the Bering Strait in small numbers
to found societies in the Western Hemisphere. Unlike other races, American Indians
lack the blood group B, in all probability due to the absence of its allele among the
founders.

The founders effect often results in the high prevalence of normally rare diseases.
The Amish people of Pennsylvania constitute a closed population stemming from
a small number of original German immigrants, about 200. But the Amish carry
unusual concentrations of gene mutations that cause a number of otherwise rare
inherited disorders. One of these, Ellis–van Creveld syndrome, involves dwarfism,
polydactyl abnormalities (extra fingers or toes), and, in about half of the afflicted, a
hole between the two upper chambers of the heart.

Since founders and their progeny are genetically isolated and must interbreed,
their recessive genes will pair up much more frequently than occurs in the parent
population. But recessive genes are often defective, hence the increased incidence of
these kinds of genetic disorders. In the Amish, Ellis–van Creveld syndrome has been
traced back to a single couple who came to the area in 1744.

Obviously, genetic drift is highly important as a mechanism of evolution. Ar-
guments over how important as compared to natural selection is an unsettled issue
among geneticists. It is known that genetic drift can overcome natural selection if the
selection pressure is weak. The fixation of less fit alleles is an integral feature of the
evolutionary process.

13.5 A Final Look at Darwinian Evolution

We close out our discussion of biology with a last look at the Darwinian model of
evolution, which we introduced in Section 3.1. Fitness is measured by the persistence
of a property in subsequent generations. If a property cannot be inherited, it cannot
be selected. Thus acquired properties like facelifts cannot be selected, nor can genetic
properties of sterile individuals, like a mule’s hardiness.

Populations evolve; individuals do not. An individual is born with a fixed set of
genes; mutations in somatic cells are not transmitted to offspring, and mutations in
germinal cells can be seen only in the offspring.

Some organisms do not exhibit sexual reproduction but rather reproduce only
asexually. Their only source of variation is therefore mutation. Nevertheless, such
organisms have long evolutionary histories.

Fitness is measured by the ability to project genes into subsequent generations.

Common phrases like “struggle for survival’’ and “survival of the fittest’’ can be
very misleading because they bring to mind vicious battles to the death between
two contestants. The fact is that, except arguably among humans, violence is rarely
the route by which Darwinian fitness is achieved in the biological world. Even
the noisy, aggressive encounters between male animals seen on television nature
programs seldom result in serious injury to participants. We must look to much more
subtle interactions as a source of fitness.
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One group of organisms may be slightly more able than another to tolerate heat,
to thrive on available food, or to elude predators. Subtle pressure is the norm in
evolution; it works slowly, but there is no hurry. Drosophila, a common fruit fly,
is used in many genetic experiments because it is easy to raise, has a short life
span, and has many simple physical properties, such as eye color, whose modes of
genetic transmission are easy to follow. If a large number of red-eyed and white-eyed
Drosophila are put together in an enclosure and left to their own devices, the fraction
of flies with white eyes will decrease steadily for several tens of generations and
finally reach zero. Close observation reveals the reason: A female Drosophila, either
red-eyed or white-eyed, will generally choose not to mate with a white-eyed male if
a red-eyed male is available. Thus there is a definite selection for the red-eye genetic
trait.

Humans are not excluded from such subtle pressures: “Personals’’ads in newspa-
pers contain wish lists of traits people prefer in a mate. Height and affluence (control
of territory?) are prized male traits, and hourglass figures and youth (ability to bear
children?) are valued female traits.

Regardless of the strength of the selective pressure or the nature of the properties
being selected, there is really only one way to measure the evolutionary value of a
trait, and that is the degree to which it is propagated into future generations. A shy,
ugly person who has lots of fertile children has a high degree of fitness. We see
that one generation of propagation is not enough; the trait must be persistent. For
example, mules are known for their hardiness, but they are sterile offspring of horses
and donkeys. As a result, the hardiness of a mule cannot confer any evolutionary
advantage.6

Populations evolve; individuals do not.

A population is a group of organisms of the same species, living in the same area. As
before, we will restrict our discussion here to populations of organisms for which the
diploid generation is most conspicuous, e.g., humans.

If we observe a population over many generations, the “average’’ phenotypic
property will change, in keeping with our earlier discussion of species formation and
genetic drift. Thus the average height may increase, or the typical eye color may
darken. We now ask and answer two questions: At what points in the alternation of
generations do the changes occur, and what kinds of changes are relevant to evolution?

The Darwinian model stipulates that favored properties may be transmitted to
offspring; in any case, they certainly must be capable of transmission for the model
to apply. A diploid individual is conceived with a set of genes that are relatively fixed
for that individual’s lifetime. Exceptions to this statement might involve mutations
in somatic cells and infection by lysogenic viruses (see Chapter 10). As long as these
changes do not occur in germinal cells or germinal cell precursors, they cannot be
transmitted to the next generation and thus have no evolutionary effect. In addition,

6 There is a peculiar example of a noninheritable trait—a desire for a large family—that might
be passed from one generation to another by teaching and which could have a strong positive
selective value. This was discussed in Section 4.1.
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there are many phenotypic properties that favor reproduction but that, because they
are not of a genetic nature, cannot be transmitted to offspring. Examples are suntans,
exercise-strengthened bodies, and straightened teeth.

Genetically transmissible variations must originate via one of at least three routes,
all of which require sexual reproduction (in other words, an intervening haploid
generation) for their expression:

1. independent assortment;
2. crossing over;
3. mutation in a sperm, or an egg, or in their precursors in a parent prior to con-

ception, or in a zygote at a very early stage of development—the altered genetic
material in any one of these cases should turn up in those cells of the reproductive
system that undergo meiosis to form the next generation of gametes.

We can conclude that because the Darwinian model requires changes that are
inheritable, and because the observation of inheritable changes requires the observa-
tion of more than one generation, it is the population that evolves. Changes restricted
to the somatic cells of individuals are not genetically transmitted to offspring; thus
in terms of evolution, an individual is fixed. Over a period of time, however, the
average, or typical, characteristics of the population evolve.

Some organisms do not exhibit sexual reproduction.

Sexual reproduction is unknown (and probably nonexistent) in several kinds of organ-
isms, for example, most bacteria, blue-green algae, and some fungi. In those cases, all
reproduction is asexual, which would seem to limit severely the possibilities of vari-
ation. Nonetheless, these organisms seem to have gotten along fine over long periods
of history. We must conclude that some combination of three things applies: Either
these organisms have not been exposed to large fluctuations in their environments,
or they possess an innate physiological flexibility that permits them to get along in
different environments, or their spontaneous mutation rates are sufficiently high to
generate the variation necessary for adapting to new environmental situations.7

13.6 The Hardy–Weinberg Principle

Diploidism and sexual reproduction complicate the calculation of inheritance prob-
abilities. But remarkably, the results are the same as if alleles were balls selected
for combination from an urn. This is the Hardy–Weinberg principle. Although its
veracity depends on random mating, among other properties, it continues to provide
good approximations in many other situations as well.

Mendelian inheritance follows the laws of probability.

We will be concerned with probabilities associated with Mendelian inheritance for a

7 There is now good evidence that bacteria, including asexual ones, can pass small pieces of
DNA, called plasmids, to other bacteria.
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diploid organism. As explained in Section 13.2, meiosis produces four haploid cells
of two different kinds, each equally likely to participate in fertilization. Then the
probability is 1

2 that a given kind of gamete will do so.
Consider first a single locus for which there are only two alleles, say A and

a. Hence there are three distinct genotypes, the homozygotes AA and aa, and the
heterozygote Aa (or aA). If one parent is AA and the other Aa, then the possible
zygote genotypes resulting from a mating may be represented by an event tree as
follows.

Let the first branch point in Figure 13.6.1 correspond to the allele donated by the
first parent, AA. There are two possible alleles, and so here the diagram will have
two branches. But for the parent AA, both branches lead to the same result, namely,
the contribution of allele A to the offspring. Let the second branch point correspond
to the allele donated by the second parent. Again there are two possibilities, but this
time the outcomes are different as indicated.

AA Aa AA Aa

A
1–
2

a
1–
2

A
1–
2

A
1–
2

a
1–
2

A
1–
2

start

Fig. 13.6.1. Probabilities for the offspring of an AA with Aa mating.

Nhe resulting probabilities may be calculated in several ways. Since all the legs,
or edges, of the diagram are equally likely, so are the resulting outcomes, each having
probability 1

4 . Hence

Pr(AA) = 1

2
and Pr(Aa) = 1

2
.

Alternatively, starting at the top node, the root node, and traversing the two edges
to the left leading to AA gives a probability of 1

4 for this outcome by multiplying
the probabilities along each edge of the path ( 1

2 · 1
2 ). This way of calculating the

probabilities is the method of conditional probabilities, since the probabilities along
the branches leading away from any node are conditioned on the sequence of events
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leading to the node. Altogether, the probability of an AA zygote by this method is
1
2

1
2 + 1

2
1
2 = 1

2 , since AA can occur in two different ways according to the tree.
Finally, the probabilities can be calculated by the principle of independence (see

Section 2.8). The selection of a gamete from the AA parent will result in an A with
probability 1. The selection of a gamete from the Aa parent is independent and will
result in an A with probability 1

2 . Therefore, the probability of an AA zygote is 1 · 1
2 .

The complete list of Mendelian inheritance probabilities is given in Table 13.6.1.

Table 13.6.1. Mendelian inheritance probabilities.

Parent Zygote genotypes
genotypes AA Aa aa
AA × AA 1

AA × Aa 1
2

1
2

Aa × Aa 1
4

1
2

1
4

Aa × aa 1
2

1
2

aa × aa 1

Random allelic combination preserves allelic fractions.

Let nAA denote the number of AA genotypes in a population, and likewise let naa
denote the number of aa genotypes. For reasons that will shortly become clear, let nAa
denote one-half the number of Aa genotypes. Then the size of the entire population
N is the sum N = nAA + 2nAa + naa. Let nA and na denote the number of A alleles
and a alleles, respectively, carried by the population. Thus nA + na = 2N , since the
population is diploid.

Similarly, let pAA, pAa, paa, pA, and pa denote their corresponding fractions of
the population. Then pA + pa = 1 and pAA + 2pAa + paa = 1. Moreover,

pA = nA

2N
= 2nAA + 2nAa

2N
= pAA + pAa,

and similarly
pa = pAa + paa.

Now imagine that all the alleles of the population are pooled and two are selected
at random from the pool to form a pair. The selection of an A happens with probability
pA, while the selection of an a happens with probability pa. (We assume that the
pool is so large that the removal of any one allele does not appreciably change the
subsequent selection probability.) Then, for example, the probability of forming an
AA pair is p2

A, since we assume that the selections are made independently. In the
same way, the other possible pair selections are calculated, with the results shown in
Table 13.6.2. As always, these probabilities are also the (approximate) fractions of
the various outcomes in a large number of such pairings.
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Table 13.6.2. Mendelian inheritance probabilities.

Female gametes Male gametes (frequencies)
(frequencies) A (pA) a (pa)

A (pA) AA (p2
A) Aa (pApa)

a (pa) aA (pApa) aa (p2
a )

From the table we can calculate the fraction, p′A, of A alleles among the resultant
pairs. Each pair of type AA contributes two A alleles, and while each Aa pair
contributes only one, there are twice as many such pairs. Hence

p′A =
2p2

A + 2pApa

2
= pA(pA + pa) = pA.

In this it is necessary to divide by 2 because each pair has two alleles. Thus the
fraction of A alleles among a large number of pairings is the same as their fraction in
the original gene pool, pA. The same is (consequently) true for the a allele, p′a = pa.

Of course, the process of gene maintenance for bisexual diploid organisms is
much more complicated than the simple random pairing of alleles selected from a
common pool that we have explored here (see Section 13.3). Nevertheless, we will
see in the next subsection that the results are the same if mating is random.

Random mating preserves allelic fractions.

Again consider a one-locus, two-allele system and suppose mating is completely ran-
dom. Then the probability of an AA×Aa mating, for example, is 2pAA(2pAa), since
the first parent could be AA and the second Aa or the other way around. Altogether,
there are six different kinds of matings; their probabilities are listed in Table 13.6.3.

Table 13.6.3. Mendelian inheritance probabilities.

Genotype mating Probability
AA × AA (pAA)2

AA × Aa 2pAA(2pAa)

AA × aa 2pAApaa
Aa × Aa (2pAa)

2

Aa × aa 2(2pAa)paa
aa × aa (paa)

2

Now apply the Mendelian inheritance laws to calculate the probability of the
various possible zygotes, for example, an AA zygote. First, an AA results from an
AA × AA parentage with probability 1. Next, an AA results from an AA × Aa
parentage with probability 1

2 (see Figure 13.6.1), and finally an AA results from an
Aa × Aa cross with probability 1

4 . Now, by the method of conditional probabilities
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as discussed at the beginning of this section, we have

Pr(AA) = p2
AA · 1+ 2pAA(2pAa) · 1

2
+ (2pAa)

2 · 1

4
= p2

AA + 2pAApAa + p2
Aa

= (pAA + pAa)
2 = p2

A.

Similarly, we leave it to the reader to show that

Pr(aa) = (paa + pAa)
2 = p2

a

and

Pr(Aa) = 2(pAA + pAa)(pAa + paa) = 2pApa.

But this shows that the fractions of alleles A and a are again pA and pa, respectively,
among the offspring just as among their parents, assuming that the various genotypes
are equally likely to survive. This is the same result we calculated in the last section.
In other words, the effect of random genotype mating is indistinguishable from that
of random gamete recombination. This is the Hardy–Weinberg principle.

Hardy–Weinberg principle. Under the condition that mating is random and all
genotypes are equally fit, the fractions of alleles will stay the same from generation
to generation.

A consequence of the Hardy–Weinberg principle is that after at most one genera-
tion, the fractions of genotypes also stabilize and at the values

p′AA = p2
A,

2p′Aa = 2pApa

p′aa = p2
a .

For example, suppose that initially 70% of a population is AA and the remaining 30%
is aa. Then the fractions of alleles in subsequent generations are also 70% and 30%
for A and a, respectively. Therefore, after one generation, the fractions of genotypes
will be

AA : (0.7)2 = 0.49,

Aa : 2(0.7)(0.3) = 0.42,

aa : (0.3)2 = 0.09.

In some cases the Hardy–Weinberg principle is applicable even when mating is
not random. Mating would fail to be random for example if the homozygote for a
recessive gene is impaired or unviable. But in fact, the homozygotes in these cases
are so rare that the induced error is very small. Keep in mind that for a recessive gene
a, the homozygote AA and heterozygote Aa are indistinguishable, so that random
mating among them is a reasonable assumption.

The Hardy–Weinberg principle breaks down when there is migration, inbreeding,
or nonrandom mating, that is, phenotypes are selected for some attribute.
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Sex-linked loci give rise to different rates of expression between males and females.

In the event that males (or females) have one or more nonhomologous chromosomes,
the foregoing derivations must be modified. One consequence of nonhomologous
chromosomes is that there can be a large difference in expression of a sex-linked
character between males and females. For definiteness, suppose the male has the
nonhomologous pair XY, while the female has the homologous pair XX.8 For this
case, fractions of alleles for genes on either the X or the Y chromosome are identical
to genotype fractions for the male. For example, suppose a recessive sex-linked allele
occurs with frequency p among a population. Then p is also the rate at which the
allele will occur in males. However, the rate at which the homozygous condition will
occur in females is p2.

An example of such an allele is color blindness in humans. Through various
studies, it is believed that the frequency of the recessive allele is 8% as derived from
the incidence rate in males. Therefore, the incidence rate in females ought to be
(0.08)2 = 0.0064 or 0.6%. Actually, the female incidence of the disease is about
0.4%. The discrepancy is an interesting story in its own right and stems from the fact
that there are four different kinds of color blindness, two of which are red blindness
and the other two green blindness. The bearer of defective genes for different types,
such as these two, can still see normally.

Another possibility that can arise relative to sex-linked genes is that the allelic
fractions are different between males and females. This can happen, for instance,
when males and females of different geographical backgrounds are brought together.
Let F be the fraction of allele A in the females and let M be its fraction in males.
Then f = 1 − F is the fraction of a in females and m = 1 −M is its fraction in
males. Assuming an equal number of males and females, the population frequencies
work out to be

pA = M + F

2
and pa = m+ f

2
= 1− pA,

and these will remain constant by the Hardy–Weinberg principle. However, the values
of M and F will change from generation to generation.

To follow these fractions through several generations, we need only keep track
of F and M , since f and m can always be found from them. Let Fn and Mn refer to
generation n with n = 0 corresponding to the initial fractions.

Since a male gets his X chromosome from his mother, the allelic frequencies in
males will always be what it was in females a generation earlier; thus

Mn+1 = Fn.

On the other hand, the frequency in females will be the average of the two sexes in
the preceding generation, since each sex contributes one X chromosome; hence

Fn+1 = 1

2
Mn + 1

2
Fn.

8 This is a mammalian property. In birds, the situation is reversed.
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In matrix form, this can be written[
Mn+1
Fn+1

]
=
[

0 1
1
2

1
2

] [
Mn

Fn

]
.

In the exercises, we will investigate where this leads.
Before we leave this example, there is another observation to be made. We used

matrix T above,

T =
[

0 1
1
2

1
2

]
,

in conjunction with multiplication on its right to update the column of male/female
fractions Mn and Fn. But in this example there is a biological meaning to left multi-
plication on the matrix T . In each generation, there will be a certain fraction of the
alleles on the X chromosome in males that originally came from the females. It is
possible to track that distribution.

To fix ideas, suppose that a ship of males of European origin runs aground on a
South Sea island of Polynesian females. Further, suppose (hypothetically) that the
alleles for a gene on the X chromosomes of the Europeans, the E-variant, are slightly
different from those of the Polynesians, the P -variant, in, say, two base pairs. So the
distribution of E-variant and P -variant chromosomal alleles of the emigrating males
can be described by the (row) pair (

1 0
)
,

where the first element is the fraction originating with the males and the second is
the fraction originating with the females. The distribution of these fractions can be
traced through the generations by a matrix calculation similar to that above, only this
time using matrix multiplication on the left. In the first generation, we have

(
1 0
) [0 1

1
2

1
2

]
= (0 1

)
,

showing that all the alleles in the males in this generation come from the females. In
the second generation, the fraction works out to

(
0 1
) [0 1

1
2

1
2

]
= ( 1

2
1
2

)
,

or 50–50. Of course, the calculation can be continued to obtain the fractions for any
generation.

The same calculation can give the female ratios, by starting with the initial female
ratio of (0 1).

13.7 The Fixation of a Beneficial Mutation

A beneficial mutation does not necessarily become a permanent change in the gene
pool of its host species. Its original host individual may die before leaving progeny,
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for example. Under the assumption that such a mutation is dominant (rather than
recessive) and that individuals with the mutation behave independently, it is possible
to derive the governing equations for calculating the fixation probability. One way
of measuring the value of a vital factor is the expected number of surviving offspring,
beyond self replacement, an adult will leave. For an r-strategist, the chance that a
beneficial mutation will become permanent is about twice the overreplacement value
of the mutation to its holder.

Probability of fixation of a beneficial mutation is the complement of the fixed point of
its probability-generating function.

Let pk be the probability that a chance mutation appearing in a zygote will subse-
quently be passed on to k of its offspring. A convenient method of organizing a
sequence of probabilities, such as pk , k = 0, 1, . . . , is by means of the polynomial

f (x) = p0 + p1x + p2x
2 + · · · ,

in which the coefficient of xk is the kth probability. This polynomial is called the
probability-generating function for the sequencepk . The probability-generating func-
tion is purely formal, that is, it implies nothing more than a bookkeeping device for
keeping track of its coefficients. Note that f (1) = 1. And f (0) = p0 is the prob-
ability that the mutation disappears in one generation. Also note that the expected
number of offspring to have the mutation is given (formally) by

∞∑
k=1

kpk = f ′(1)

(see Section 2.8). To say that the mutation is beneficial is to say that this expectation
is greater than 1, that is,

∞∑
k=1

kpk = 1+ a > 1

for some value a, which is a measure of the benefit in terms of overreplacement in
fecundity.

Now if two such individuals with this mutation live and reproduce independently
of each other (as in a large population), then the probability-generating function for
their combined offspring having the mutation is

p2
0 + 2p0p1x + (2p0p2 + p2

1)x
2 + (2p0p3 + 2p1p2)x

3 + · · · , (13.7.1)

which is proved by considering each possibility in turn. There will be no mutant
offspring only if both parents leave none; this happens with probability p2

0 by inde-
pendence. There will be one mutant offspring between the two parents if one leaves
none and the other leaves exactly one; this can happen in two ways. There will be
two mutant offspring if the first leaves none while the second leaves two, or they both
leave one, or the first leaves two while the second leaves none; this is (2p0p2 + p2

1).
The other terms of (13.7.1) may be checked similarly.
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But note that (13.7.1) is exactly the polynomial product f 2(x),

(p0 + p1x + p2x
2 + · · · )(p0 + p1x + p2x

2 + · · · )
= p2

0 + 2p0p1x + (2p0p2 + p2
1)x

2 + · · · .

More generally, m independent individuals with the mutation as zygotes will pass on
the mutation to their combined offspring with probability-generating function given
by the mth power f m(x).

Now start again with one mutant zygote and consider the probability-generating
function f2 for generation 2. Of course, the outcome of generation 2 depends on the
outcome of generation 1. If there are no mutants in generation 1, and this occurs with
probability p0, then there are none for certain in generation 2. Hence this possibility
contributes

p0 · 1
to f2. On the other hand, if the outcome of generation 1 is one, then the probability-
generating function for generation 2 is f (x); so this possibility contributes

p1f (x).

If the outcome of generation 1 is two mutant individuals (and they behave inde-
pendently), then the probability-generating function for generation 2 is, from above,
f 2(x); so this possibility contributes

p2f
2(x).

Continuing this line of reasoning yields the result that the probability-generating
function for generation 2 is the composition of the function f with itself, f2(x) =
f (f (x)),

f2(x) = p0 + p1f (x)+ p2f
2(x)+ p3f

3(x)+ · · · = f (f (x)).

More generally, the probability-generating function for generation n, fn(x), is given
as the composition f ◦ f ◦ · · · ◦ f of f with itself n times, or

fn(x) = f (f (· · · f (x) · · · ))︸ ︷︷ ︸
n times

.

Now the probability that the mutation dies out by the nth generation is the constant
term of fn(x) or fn(0). Hence the probability that the mutation dies out or vanishes
some time is the limit

V = lim
n→∞ f (f (· · · f (0) · · · ))︸ ︷︷ ︸

n times

.

Applying f to both sides of this equality shows that V is a fixed point of f ,

f (V ) = V.
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The fixed point of f (x) is where the graphs y = f (x) and y = x intersect (see
Figure 13.7.1). Since f ′(x) and f ′′(x) are nonnegative for x > 0 (having all positive
or zero coefficients), and since f (1) = 1, we see that there can be either zero or one
fixed point less than x = 1. If there is a fixed point less than one, then V is that value;
otherwise, V = 1.

0 V x1
0

1

y

p
0

y = f (x)

y = x

Fig. 13.7.1. V is the fixed point of f (x).

For example, suppose that a mutation arose on the X-chromosome of a human
female about the time that “Lucy’’ walked the earth (2 million years ago). Further
suppose that the following probabilities of producing surviving (female) offspring
pertained to the holder of such a mutation:

• probability of leaving no female offspring, p0 = 0.35;
• probability of leaving one female offspring, p1 = 0.25;
• probability of leaving two female offspring, p2 = 0.20;
• probability of leaving three female offspring, p3 = 0.1;
• probability of leaving four female offspring, p4 = 0.1,
• and zero probability of leaving more than four female offspring.

Then the probability-generating function is

f (x) = 0.35+ 0.25x + 0.2x2 + 0.1x3 + 0.1x4.

Its fixed points can be found by solving the roots of the fourth-degree polynomial

0.1x4 + 0.1x3 + 0.2x2 + (0.25− 1)x + 0.35 = 0.

With the following code, the appropriate root is found to be 0.62:
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MAPLE

> f:=.1*xˆ4+.1*xˆ3+.2*xˆ2+(.25-1)*x+.35;
> fsolve(f,x,0..1);

MATLAB

> p=[.1 .1 .2 (.25-1) .35];
> min(roots(p))

Hence the probability of fixation is the complementary probability 0.38.

The chance that a mutation will become permanent for an r-strategist is about twice
its overreplacement benefit.

Under certain conditions, the probability that an individual will have k offspring
over its life is bke−b/k! for some constant b.9 Once again we encounter the ubiq-
uitous Poisson distribution. The conditions are approximately satisfied by many
r-strategists. In this case, the probability-generating function is

f (x) = e−b

(
1+ b

1!x + · · ·
)
= e−bebx = eb(x−1).

Let the benefit of the mutation be a; then

1+ a = f ′(1) = beb(1−1) = b,

so b = 1 + a. Now let F be the fixation probability of the beneficial mutation, that
is, the probability that the mutation will become permanent; then F = 1− V . Since
V = f (V ) (from the previous section), we have

1− F = e−(1+a)F .

Taking logarithms,

(1+ a)F = − ln(1− F) = F + F 2

2
+ F 3

3
+ · · · .

The infinite series is the Taylor series for the middle term. Divide by F and subtract
1 to get

a = F

2
+ F 2

3
+ · · · .

If a is small, then approximately

a ≈ F

2
,

so the fixation probability is about 2a.

9 The conditions are (a) the probability of an offspring over a short period of time �t is
proportional to �t ; (b) the probability of two or more offspring over a short period of time
is essentially zero; and (c) offspring occur independently of one another. The distribution
would also apply if offspring occurred in batches; the k counts batches.
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Exercises/Experiments

1. In this problem, assume a diploid organism having three loci per homologous
chromosomal pair and two alleles per locus.
(a) If the organism has only one such chromosomal pair, how many different

genotypes are possible?

(b) Same question if there are two chromosomal pairs.

(c) Suppose there are two chromosomal pairs with genes α, β, and γ on one of
them, while genes δ, ε, and φ lie on the other. How many different haploid
forms are there?

(d) For a given genotype as in (c), how many different gametes are possible? That
is, suppose that a particular individual has the homologous chromosomes
(1) (A, b, C) and (A, B, C) and (2) (d, e, F ) and (D, e, F ). How many
haploid forms are there?

(e) What is the maximum number of different offspring possible from a mating
pair of organisms as in (d)? What is the minimum number? How could the
minimum number be achieved?

(f) Work out a graph showing how the number of haploid forms varies with
(i) number of chromosomal pairs or (ii) number of genes per chromosomal
pairs. Which effect leads to more possibilities?

2. For a given diploid two-allele locus, the initial fractions of genotypes are AA : p,
Aa : q, and aa : r (hence p+ q + r = 1). Recall that the frequencies in the next
generation will be pAA = x, pAa = y, and paa = z, where

x =
(

p + 1

2
q

)2

, y = 2

(
p + 1

2
q

)(
r + 1

2
q

)
, z =

(
r + 1

2
q

)2

.

Under the assumption that the various genotypes are selected neither for nor
against, show that these ratios will be maintained in all future generations; i.e.,
show that

x =
(

x + 1

2
y

)2

,

y = 2

(
x + 1

2
y

)(
z+ 1

2
y

)
,

z =
(

z+ 1

2
y

)2

.

Hence when the Hardy–Weinberg principle holds, genotype frequencies stabilize
in one generation,

MAPLE

> x:=(p+q/2)ˆ2;
> y:=2*(p+q/2)*((1-p-q)+q/2);
> z:=1-x-y;
> X:=(x+y/2)ˆ2;
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> simplify(X-x);

MATLAB

> p=.7; q=0; r=.3;
> x=(p+q/2)ˆ2
> y=2*(p+q/2)*(r+q/2)
> z=(r+q/2)ˆ2
> X=(x+y/2)ˆ2
>Y=2*(x+y/2)*(z+y/2)
> Z=(z+y/2)ˆ2

etc.

3. In this problem, we want to see how many homozygous recessives for a trait
result from homozygous parents and how many result from heterozygous parents
(see Figure 13.7.2). The question is, given an aa progeny, what is the probability
the parents were aa × aa?

AA aaAa

1–
2

1–
2

1

offspring

parents/frequency

1 1

AA × AA
(p

A
2)2

aa × aa
(p

a
2)2

AA × Aa
2(2p

A
p
a
)p

A
2

Aa × Aa
(2p

A
p
a
)2

Aa × aa
2(2p

A
p
a
)p

a
2

AA × aa
2p

A
2p

a
2

1–
21–

4

1–
2

1–
2

1–
4

Fig. 13.7.2.

Since the progeny is known to be aa, the universe for this problem is the paths
of the tree leading to aa; its frequency is given by

u = (2pApa)
2 · 1

4
+ 2(2pApa)p

2
a ·

1

2
+ (p2

a )
2 · 1.

So the relative frequency in which this occurs via aa × aa parents is

(p2
a )

2 · 1
u

.

(a) Calculate the probable parentage of an aa progeny via Aa × Aa genotypes
and Aa × aa genotypes.
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(b) Make three graphs of these probable parentages over the range of frequencies
of allele a from 0.25 to 0.001, say.

(c) If pa = 0.01, then what is the chance that an aa individual had heterozygous
parents? Same question for at least one heterozygous parent.

For part (a):
MAPLE

> u:=(2*pA*pa)ˆ2*(1/4)+2*(2*pA*pa)*paˆ2*(1/2)+(paˆ2)ˆ2;
> pA:=1-pa;
> aaxaa:= pa–>(paˆ2)ˆ2/u;
> #similarly for AaxAa and Aaxaa

For part (b):
MAPLE

> plot(aaxaa(pa),pa=0.001..0.25);

MATLAB

> pa=(.001:.001:.25);
> pA=1-pa;
> u=(2*pA.*pa).ˆ2*(1/4)+2*(2*pA.*pa).*pa.ˆ2*(1/2)+(pa.ˆ2).ˆ2;
> aaxaa=pa.ˆ4./u;
> plot(pa,aaxaa)

4. This problem refers to the sex-linked loci subsection of Section 13.6.
(a) Let the starting fraction of allele a in males be M0 = 0.1 and in females be

F0 = 0.3. By performing the matrix calculation[
Mt+1
Ft+1

]
=
[

0 1
1
2

1
2

] [
Mt

Ft

]

repeatedly, find the limiting fractions M∞ and F∞. What is the ratio M∞
F∞ ?

(b) Do the same for the starting ratios M0 = 1 and F0 = 0. What is the limiting
ratio M∞

F∞ ?

(c) Let T be the matrix in part (a):

T =
[

0 1
1
2

1
2

]
.

Show that T satisfies

T

(
1
1

)
=
(

1
1

)
.

We say that this column vector, with both components 1, is a right eigenvector
for T with eigenvalue 1.

(d) As in part (a), iterate the calculation

(0 1) = (1 0)

[
0 1
1
2

1
2

]
,

this time multiplying the matrix on the left by the vector, to obtain the limit.
This will represent the ultimate distribution of the original male vs. female
alleles. Show that
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1
3

2
3

)
is a left eigenvector for T . What is the eigenvalue?

MAPLE

> with(LinearAlgebra):
> T:=Matrix([[0,1],[1/2,1/2]]);
> v:=Vector([1/10,3/10]);
> #the next to see the trend
> for n from 0 to 10 do

evalf((Tˆn).v);
od;

> #Now get the eigenvalue and eigenvector
> Eigenvectors(T);

MATLAB

> T=[0 1; .5 .5]
> x=[1 0]
> for k=1:20
> x=x*T
> end
> y=x % print eigenvector
> lambda = y(1)/x(1) % and evalue

In the output, the first item is the eigenvalue (as above), the second is its
multiplicity (how many times repeated, should be 1 here), and the third is
the eigenvector. Eigenvectors may be multiplied by any constant, so if (

1
1 )

is an eigenvector, so is (
3
3 ).

5. Two hypotheses that explain the greater incidence of early baldness in males than
in females are (1) an autosomal dominance that is normally expressed only in
males and (2) an X-linked recessive. If the first is correct and Q is the frequency of
the gene for baldness, what proportion of the sons of bald fathers are expected to
be bald? What proportion are from nonbald fathers? What are the corresponding
expectations for the X-linked recessive hypothesis.

Data gathered by Harris10 found that 13.3% of males in the sample were prema-
turely bald. Of 100 bald men, 56 had bald fathers. Show that this is consistent
with the sex-limited dominance hypothesis but not the sex-linked recessive. (Note
that it is easier to get data about the fathers of bald sons than it is to wait for the
sons of bald fathers to grow up to get data about bald sons.)

6. Suppose an organism that is capable of both sexual and asexual reproduction
reproduces c fraction of the time asexually (by cloning) and 1− c fraction of the
time sexually with random mating. Let Pt be the fraction of the genotype AA in
generation t and let p be the frequency of allele A. Assumethat c is independent of
genotype, and consequently p will remain constant from generation to generation.
However, the frequency of genotype AA can change. Using the Hardy–Weinberg
principle, show that the change in this fraction is given by

Pt+1 = cPt + (1− c)p2.

Find the limiting fraction P∞.

10 H. Harris, The inheritance of premature baldness in men, Ann. Eugenics, 13 (1946), 172–
181.
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MAPLE

> restart;
> # first try
> F:=x–>c*x+(1-c)*pˆ2;
> x:=0; y:=F(x); w:=F(y);
> simplify(%);
> restart;
> F:=x–>c*x+(1-c)*pˆ2;
> y[0]:=0;
> for n from 1 to 10 do

y[n]:=F(y[n-1]):
od:

> simplify(y[10]);

MATLAB

> c=1/3; P(1)=.7;
> p=.8
> for k=1:30
> P(k+1)=c*P(k)+(1-c)*pˆ2;
> end
> P
> c=.9;
> for k=1:30
> P(k+1)=c*P(k)+(1-c)*pˆ2;
> end
> P % how does P(infinity) depend on c?
> p=.3
> for k=1:50
> P(k+1)=c*P(k)+(1-c)*pˆ2;
> end
> P % compare P(infinity) with pˆ2

7. Suppose the frequency of a recessive allele is p (equal to 1
1000 , say); therefore,

the frequency of homozygotes under the hypothesis of random mating will be
p2. But what if mating is not random? In this problem we want to investigate
this somewhat.

First, suppose the species is capable of self-fertilization. Then clearly the off-
spring of a homozygous adult will again be homozygous. On the other hand,
the heterozygous Aa will produce A and a haploid cells in 50–50 mix as before.
Hence as before, an offspring will be AA with 1

4 chance, aa with 1
4 chance, and

Aa with 1
2 chance. We record these observations in the following 3× 3 matrix:

T =
⎡
⎣1 0 0

1
4

1
2

1
4

0 0 1

⎤
⎦.

In this, the rows correspond to the genotypes AA, Aa, and aa in that order and
so do the columns.

Next, suppose we start out with a mix of genotypes, say, their fractions are p, q,
and r , respectively, p+ q + r = 1. Then after one generation, the new fractions
p′, q ′, and r ′ will be given by the matrix product

(p′ q ′ r ′) = (p q r)T .

(a) Using specific values for the starting fractions, find the limiting fractions
after many generations.
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Next, consider parent/child matings and calculate the probability that a homozy-
gous recessive aa will be the result. First, condition on the parent (sketch a tree
diagram) that from the root node, there will be three edges corresponding to the
possibilities that the parent is AA, Aa, or aa. The AA branch cannot lead to
an aa grandoffspring, so there is no need to follow that edge further. The Aa
parent occurs with frequency 2p(1−p), as we have seen, and the aa parent with
frequency p2.

Next, condition on the genotype of the child. Use the Hardy–Weinberg principle
for probabilities of alleles A and a. Starting from the Aa node, the possibilities
are AA with probability 1

2 (1−p), Aa with probability 1
2p+ 1

2 (1−p) = 1
2 , and

finally aa with probability 1
2p. You do the possibilities from the aa node.

Now assign the offspring probabilities using Mendelian genetics. From the Aa
node along the path from root through the Aa parent, the probability of an aa
offspring is 1

4 . From the aa node through the Aa parent, the probability is 1
2 , and

so on.

(b) Altogether, the result should be

P(aa offspring) = 1

2
p

(
3

4
+ 3

2
p − p2

)
.

Finally, consider sibling matings. As in part (a) above, we want to investigate
the trend of the population toward homozygosity. Starting with the parents, there
are six possible matings by genotype, AA × AA, AA × Aa, and so on through
aa × aa. Consider the AA × Aa parents. Their offspring are AA and Aa both
with frequency 1

2 . Therefore, the sibling mating possibilities are AA×AA with
frequency 1

4 , AA × Aa with frequency 1
2 , and Aa × Aa with frequency 1

4 .

Justify the rest of Table 13.7.1. The corresponding transition matrix T is

Table 13.7.1.

Parent Sibling mating frequencies
genotypes AA × AA AA × Aa Aa × Aa AA × aa Aa × aa aa × aa
AA × AA 1 0 0 0 0 0

AA × Aa 1
4

1
2 0 1

4 0 0

Aa × Aa 1
16

1
4

1
8

1
4

1
4

1
16

AA × aa 0 0 1 0 0 0
Aa × aa 0 0 0 1

4
1
2

1
4

aa × aa 0 0 0 0 0 1
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T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1
4

1
2 0 1

4 0 0
1

16
1
4

1
8

1
4

1
4

1
16

0 0 1 0 0 0
0 0 0 1

4
1
2

1
4

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(c) Make up an initial distribution of genotypes (p q r s t u), track the change
in distribution over a few generations, and find the limiting distribution.

Questions for Thought and Discussion
1. Discuss the concept of fitness as it is used in the Darwinian model. What kinds

of selection factors might be involved in the case of humans?

2. A woman with type A blood has a child with type O blood. The woman alleges
that a certain man with type B blood is the father. Discuss her allegation and
reach a conclusion, if possible.

3. In Drosophila, females are XX and males are XY. On the X chromosome, there
is an eye-color gene such that red is dominant to eosin and to white, and eosin
is dominant to white. What is the result of crossing an eosin-eyed male with a
red-eyed female whose mother had white eyes?

4. Mitosis is a conservative form of cell replication, because each daughter cell gets
an exact copy of the genetic material that the parent cell had. How can we explain
the fact that most of our tissues were formed by mitosis and yet are different?

5. Suppose there is an organism that reproduces only by self-fertilization, which is
the highest degree of inbreeding. Start with a heterozygote for a single property
and let it and its descendants reproduce by self-fertilization for three generations.
Note how the fraction of homozygotes increases with each generation. What
implication does this have if the recessive allele is harmful? Or suppose it is not
harmful?

6. Combining the concepts of the central dogma of genetics with that of meiosis,
trace the path of hereditary control of cellular chemistry from one generation to
another.

7. In a hypothetical laboratory animal, a solid-color allele is dominant to striped, and
long hair is dominant to short hair. What is the maximum number of phenotypes
that could result from the mating of a long, solid animal with a short, striped
animal?
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