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Phylogenetics

Introduction

One of the purposes of this chapter is to introduce the reader to the new mathematical
field of algebraic statistics; cf. [5]. Among the many topics in biology in which
algebraic statistics is making an impact, we have chosen phylogenetics as the vehicle
for showcasing this new discipline. Our reasons are that

• phylogeny and cladistics are important semiclassical fields in biology (with begin-
nings in the mid-1950s) quite different from anything we have studied up to now;

• postgenomics phylogeny makes extensive use of algebraic statistics and demon-
strates more of its techniques than other branches of biology;

• phylogeny draws heavily on genomic searches, which we studied in the last chapter,
and hence reinforces what we investigated there; and

• phylogeny is related to several of the new fields of biology that have arisen with
genomics that we outlined in the first section of the genomics chapter, Section 14.1.

Algebraic statistics, as mentioned above, is a new branch of mathematics arising
out of the many needs and uses of mathematics in genomics. Not surprisingly, the
basic mathematics of algebraic statistics originates in the fields of algebra and statis-
tics, but already new mathematics, inspired by the biology, has been created in the
discipline.

This chapter will take us to a higher level of mathematical abstraction, skill, and
reasoning than in the other chapters of the book and is likewise more demanding.
As in the earlier parts of the book, we make every effort to explain the mathematics
we need from first principles, principles that one would encounter in two years of
a college mathematics curriculum, one that includes linear algebra. Still, very little
abstract algebra makes its way to this level, and so we pay extra attention to illustrate
the ideas and terms with examples.

Phylogenetic trees contain a great deal of biological and evolutionary informa-
tion. Taxa closer together on the tree signify a greater degree of shared evolutionary
novelties. The tree shows ancestral relationships among taxa and indicates the geo-
logical time the process of evolution has taken step by step. We will see that trees
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are constructed using several lines of observation including ontologic, morphologic,
physiologic, the fossil record, and finally genomic.

15.1 Phylogeny

Phylogenetics elucidates the history of evolution.

Phylogenetics is the study of the evolutionary relatedness among various groups of
organisms, for example among species. Derived from the Greek—phylon means tribe
or race and genetikos means relative to birth—phylogenetics attempts to reconstruct
and explain the pattern of events that have led to the distribution and diversity of life
as it exists at the present time. The results of a phylogenetic study is a tree diagram
graphically depicting ancestor–descendant relationships over evolutionary time. An
example, the tree of life, showing all three domains of cellular life, is presented
in Figure 15.1.1. This tree was pieced together by Carl Woese and colleagues by
comparing base pair sequences of the 16S ribosomal RNA gene.

Phylogenetic tree of life

Fig. 15.1.1. The tree of life.

In addition to the ancestor–descendant relationships given in a phylogenetic tree,
the tree also implies sets of shared, nested attributes, called characters, possessed
by organisms farther along each branch of the tree. As a result, constructing a phy-
logenetic tree resolves two sets of problems. By far the more difficult of the two,
without the use of genomics, is establishing the ancestor–descendancy relationship.
The science of cladistics separates these two problems and concentrates solely on
organizing groups of organisms according to nested sets of characters. Similar to
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phylogenetic trees, cladists portray their results in cladograms, which are also tree
diagrams. The fundamental units of comparison in cladograms are taxa. These are
collections of organisms sufficiently distinct from other sets to be given formal names
and placed in a Linnaean hierarchy. Often taxa are taken to be species, but, as in the
tree of life, they can be more inclusive sets as well.

In this section, we discuss the methodology for constructing and testing clado-
grams using classical, nongenomic, characters. However, since the end result of the
analyses of phylogenetics and cladistics is presented in tree diagrams, it is important
to understand how they are used.

Tree diagrams contain a wealth of information.

A tree (diagram) is a graph consisting of nodes or vertices and edges or branches.
The nodes of a tree are labeled in some fashion, for example by the positive integers
1, 2, . . . , N . The size of a tree is the number of its nodes, N in this case. Each
edge connects two nodes, for example an edge might connect nodes 1 and 2; this is
indicated by the notation (1, 2). The edge (1, 2) is incident on both node 1 and node
2. A path from node a to node b is a chain of edges, (a, a1), (a1, a2), . . . , (an, b)

connecting a and b. A tree is connected ; this means that every pair of distinct nodes
is connected by a path. There are no circular paths in a tree, that is, paths beginning
and ending on the same node. Some examples of trees are shown in Figure 15.1.2.
Note that while trees (b) and (c) of the figure appear to be different, they are actually
equivalent, since they have the same incidence structure.
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Fig. 15.1.2. (a) Undirected four-leaf tee. (b) Directed four-leaf tree. (c) Tree equivalent to (b).

Given a subset S of nodes of a directed tree, the subtree containing S is the part of
the tree starting from the nearest common ancestor r to S and including all descendants
of r . This concept is termed monophyletic in phylogenetics; a monophyletic group is
a taxon and all of its descendants.

The number of edges incident at a node is its degree. Nodes having degree 1 are
leaf nodes (except for the root node of a directed tree; see next). Nodes that are not
leaf nodes are interior nodes. Nodes 1, 2, 3, and 4 are leaf nodes of all three trees in
Figure 15.1.2; nodes i1 and i2 are interior nodes.
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Frequently, a tree indicates the passage of time. In this case the edges are directed
with the forward direction that of forward in time. The forward direction of a directed
tree is indicated by means of arrows. However, when the direction is clear from the
context, we will omit the arrows. Trees (b) and (c) of Figure 15.1.2 are directed.

By definition, in a directed tree, only one edge can lead into any given node of
the tree. Thus there is a unique node with no edge leading into it; this is the root
node. A (forward) path in a directed tree must follow the edge directions. A tree
having exactly two edges branch out from each interior node is said to be binary.
Both directed trees of Figure 15.1.2 are binary; the root node is indicated by r .

The leaf nodes of a tree represent taxa for which we have data. The interior nodes
of a phylogenetic tree represent hypothetical ancestors. If Figure 15.1.2(b) represents
a phylogenetic tree, then i2 is the nearest common ancestor of taxa 1 and 2. Likewise,
i1 is the nearest common ancestor of 1, 2, and 3. The root node of a phylogenetic tree
represents the ancestor of all taxa of the tree.

In contrast, the vertices of a cladogram only represent sister taxa with respect to
some shared character. If Figure 15.1.2(b) represents a cladogram, its message is
that taxa 1 and 2 share some evolutionarily novel attribute that taxa 3 and 4 do not
possess. Likewise, taxa 1, 2, and 3 share some character that 4 does not possess. The
term synapomorphy means sharing a derived character from an immediate common
ancestor. Thus a cladogram expresses a series of synapomorphies.

A tree may be represented in text using nested parentheses to enclose all de-
scendants of a node. The tree shown in Figure 15.1.3(a) has the representation
(((2, 4), 1), 3), while that in (b) is written ((1, 3), (2, 4)).
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Fig. 15.1.3. (a) (((2, 4), 1), 3) tree. (b) ((1, 3), (2, 4)) tree.

In addition to direction, the edges of a tree can depict other facts about taxa. The
length of an edge can show the relative distance, in some sense, separating two taxa,
for example, protein sequence distance. This is shown in Figure 15.1.4. Such a tree is
called an additive tree, and it defines a tree metric in that the sum of the branch lengths
along the unique path (not necessarily always forward) connecting two nodes gives
the distance between them. In this way, we may construct the following distance
matrix for the leaf nodes of Figure 15.1.4:
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Fig. 15.1.4. Branch lengths give the relative distance between nodes.
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Note that the root r of Figure 15.1.4 is superfluous and may be omitted from such
a graph.

Cladograms express nested evolutionary novelties.

William Hennig founded the field of cladistics in 1950 based on the principle that the
evolutionary process produces, as an expectation, a nested set of evolutionary nov-
elties. To illustrate the ideas and methods of cladistics, we begin with an example—
construct a cladogram for the following organisms:

beaver, dolphin, salamander, shark, trout, and turtle.

Because these are extant organisms, many features and lines of evidence are available
for distinguishing their similarities and differences. These include ontogenesis and
anatomical, physiological, developmental, biochemical, and behavorial characteris-
tics. These are called intrinsic characteristics of organisms. Extrinsic characteristics
are their distribution in space and time. Of course, since the advent of genomics,
DNA and protein sequence comparisons are also available, but our emphasis here is
the use of nongenomic evidence. We postpone consideration of sequence matching
data to the subsequent sections of this chapter.

The first task is to find general similarities shared by all the organisms in the study
that could be used to define a group containing all of them. These characteristics are
called the universal set of the comparison. In our example, these include physical
symmetry, possession of an endoskeleton, appendages, a chambered heart, a dorsal
nerve cord, a notochord, and visceral or gill pouches at some stage of the life cycle.
Establishing a universal sets of characteristics helps in selecting outgroups used to
fix evolutionary subgroups within the organisms of the study. We will see how this
works below.
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Examining the species of this study yields several sets of similarities and differ-
ences among them. Each has unique features: One has hair, one has a shell, one
has a cartilaginous skeleton, and so on. Some characteristics are common to two
or three of the subjects but not to the others: Two possess mammary glands, two
have fleshy fins, three have limbs, two lack lungs, three have an amniotic egg, and so
on. What principles should be used in constructing the cladogram? Maybe beavers
should branch off first as the only one of the group having hair; maybe turtles should
branch off first as the only one with a shell.

One of the guiding principles of cladistics is evolutionary descent: Organisms
are related by descent from a common ancestor. The direction of descent is called
polarity. Hence cladograms are constructed according to nested sets of evolutionary
novelties, that is, synapomorphies, with more inclusive characters appearing nearer
the root and more recent novelties shown nearer the leaves. Among the characteristics
cited above, how does one decide on their evolutionary descent?

Developmental processes help in deciding polarity.

One line of evidence occurs during ontogeny, the development of an organism from
a fertilized egg. During development, a trait or attribute similar to that of an ancestral
species may be observed for a time, only to have it disappear at a later stage. This is
known as recapitulation.

The first to state generalized rules of ontogeny, based on detailed studies in the
1820s, was Karl von Baer. They are the following:

1. In development from the egg, the general characteristics appear before the special
characteristics.

2. From the more general characteristics, the less general and finally the special
characteristics are developed.

3. During its development, an animal departs more and more from the form of other
animals.

4. The young stages in the development of an animal are not like the adult stages
of other animals lower down on the scale, but are like the young stages of those
animals.

An example is the appearance of proto-pharyngeal gill pouches in almost all mam-
malian embryos at early stages of development. In particular, this applies to our
example organisms. Accordingly, organisms in our group having gills, sharks and
trout, should be placed toward the root of the cladogram, while lungs will be consid-
ered an evolutionary novelty.

The same rationale for ontogeny applies as well to developmental morphology.
An evolutionary novelty is often the modification of some preexisting feature within
the universal set. During preadult development, the modification might be repeated
among derived organisms. In fact, this is the case for our example organisms with
respect to skeletal composition. All six start out with cartilaginous skeletons, but
except for the shark, the others replace much of this with bone prior to adulthood.
Consequently, the bony members of our study are deemed a later subgroup within the
group.
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Our researches so far take the following form:

(universal set : shark+ (bony skeleton : trout

+ (beaver, dolphin, salamander, turtle))).

This leaves four taxa to resolve.
Another striking developmental modification is seen in the salamander. As larvae,

salamanders respire with gills; meanwhile, the lungs they will need as terrestrial adults
are under development. Since the taxa we have already placed on the cladogram also
have gills and the remaining taxa breathe with lungs, we are led to regard lungs as a
derived evolutionary novelty and place salamanders next in sequence. The term used
by cladists for a derived evolutionary characteristic is apomorphy, from the Greek
apo, meaning away, and morphy for form. The term for the opposite is plesiomorphy
(Greek: close form), meaning a primitive characteristic relative to the study group
and therefore more widely shared.

Continuing in this way using ontogeny and developmental morphology, we for-
mulate the cladogram of Figure 15.1.5.

beaver dolphin

turtle

salamander

trout

shark

mammary glands
four-chambered heart

amniotic egg

lungs/limbs

bony skeleton

UNIVERSAL CHARACTERISTICS:
endoskeleton

notochord
dorsal nerve cord

pharyngeal gill pouches

Fig. 15.1.5. Cladogram for example set of six taxa.

Outgroup comparison also provides evidence.

Ontogeny and developmental morphology are not the only criteria used in constructing
and corroborating a cladogram. Outgroup comparison is another major source of clues
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for determining polarity. An outgroup is a taxon related to and believed to be more
primitive than the organisms being classified. The perfect outgroup would be a close
ancestor of these taxa and would have the primitive form of the characteristics being
compared. In the real world, it is impossible to be certain that an outgroup chosen for
cladistic analysis is actually the ancestor, or whether its traits are all truly primitive.
The existence of convergent evolution is a primary complication in cladistics, since it
confuses the identification of primitive characteristics. We briefly digress to explain.

In our example, dolphins have been included within the set of animals having
evolved terrestrial limbs. But instead, they possess appendages similar to those of
sharks. Their assignment therefore has an inconsistency. But the inconsistency is
resolved if it were the case that the immediate line of ancestors of the dolphin, having
taking up life in the sea, gradually modified their limbs into the finlike structures of
today’s animal. In fact, this is what cladists believe. Convergence is the independent
evolution of similar structures to solve the same biological problem, in this case
movement through water. Note that despite having returned to the sea, the ancestors
of the dolphin did not revert to oxygen exchange via gills but retained their lungs.

To see how outgroups can help, consider the diagrams in Figure 15.1.6. Three
taxa A, B, and C present variation with respect to two different traits, a and b. Taxon
A shows traits a2 and b2, taxon B shows a2 and b1, and C shows a1 and b2. If trait a2
is derived from a1, then Figure 15.1.6(a) is the correct one, but if trait b2 is derived
from b1, then Figure 15.1.6(b) captures the development. Upon consideration of

(a) (b)

(c)

Aa2 Ba2
Ca1

Ab2 Bb2
Cb1

Aa2b2 Ba2b1

Ca1b2

Da1b2

Ea1b2a1 —> a2

b2 —> b1

Fig. 15.1.6. Outgroups show that traits a1 and b2 are primitive.
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outgroups D and E, we find that they possess characteristics a1 and b2. Hence these
are taken as the primitive forms and we get Figure 15.1.6(c).

Following the discussion above, as an outgroup we seek taxa that could be close
ancestors of our study group. This is the purpose of establishing a universal set of
characteristics. Evidently, organisms possessing these are the most likely to meet the
ancestor criteria. In this example, the lamprey can serve as an outgroup for us, since
they possess all the characteristics of the universal set. Since the lamprey does not
have a bony skeleton at any stage of its life, we judge that this is a primitive trait.
This corroborates our placement of sharks as the first branch of the cladogram.

Having made this determination, we may now include sharks as another outgroup
in deciding derived traits for the remaining set: trout, salamander, turtle, dolphin,
beaver. Among these, what evolutionary novelties are shared by all but one? We
notice that trout lack lungs and fleshy limbs, and, moreover, these are not present
in either outgroup, lamprey and sharks. We thus regard lungs as an apomorphy.
Continuing to apply these principles, we again arrive at Figure 15.1.5.

Cladograms help in constructing phylogenetic trees.

As previously mentioned, phylogenetic trees go beyond cladograms in that they assert
ancestor–descendant relationships. Since biological species are delineated according
to the potential of its members to interbreed, species are necessarily the units of
evolution.1

One can speak of one species as being the ancestor of another. Properly then,
the taxa underlying a phylogenetic tree are species. Nevertheless, phylogenetic trees
are constructed for higher biological units, for example reptiles as descending from
amphibians. The inference is that some amphibian species—Seymouria has been
cited—is the particular ancestor of the line leading to the reptiles.

Since a cladogram has less information than a phylogenetic tree, each subgraph of
a cladogram can be explained by any one of several trees. For example, consider the
cladogram shown in Figure 15.1.7. The information here is that taxa A and B share
some derived characteristic, a synapomorphy, not possessed by C. Figure 15.1.8
shows six possible ways this could happen.

In the first of these, A and B derive from a common ancestor, and that ancestor
and C do likewise. This explains how A and B can have a shared characteristic while
C does not have it. In (b), C is itself the ancestor of the common ancestor of A and
B. Again, the synapomorphy could derive from this nearest common ancestor and
thus not from C. In the other diagrams, one of A or B is the ancestor of the other;
for example, A is the ancestor of B in (f). The assumption is that the characteristic
in question first appeared, with respect to the diagram, in A and was passed on to
B. And so once again, A and B share it, while C does not, as consistent with the
cladogram.

1 Formulating a testable definition of species is a challenge; how can one show that two
organisms widely separated in space or time are or were capable of interbreeding? For an
in-depth discussion, see [3].
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Fig. 15.1.7.
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B C
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A C
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(e) (f)(d)

Fig. 15.1.8.

Therefore, additional information is needed to promote a cladogram to a phyloge-
netic tree. That information is the evolutionary history of speciation events occurring
to the organisms being studied. But the sought-after ancestors are, in most cases,
extinct organisms. As a result, until the advent of genomics, the information had to
come from the fossil record. Continuing to focus on pregenomic methods here, we
inquire into the nature of speciation.

In fact, the way in which new species arise is still not well understood; see [6]. We
content ourselves with mentioning some of the possibilities. The transformational
mechanism of speciation is that over time, a species transforms by accumulating
modifications, either gradually or all at once (saltationism), emerging as another
species. If the transformation is gradual and the species is a type that leaves fossils,
then the fossil record should contain the multitude of intermediates through time. But
the fossil record is generally incomplete, and what we see are merely “snapshots’’
separated by gaps in the record. Hence there is no need to speculate as to when the
new species emerged during the gradual change; the incomplete fossil record has
performed this task.
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In the saltation theory, evolution proceeds by sudden jumps. Of course, paleonto-
logically, a jump could mean a few hundreds of thousand years. Several mechanisms
have been proposed for saltation. For example, a genetic mutation could produce a
bifurcation in the apparatus producing hair and instead produce a proto-feather. The
mutation does not interfere with interbreeding. In time, those with the mutation do
better than those without and come to dominate the gene pool. Eventually, the original
gene disappears altogether. There is fossil evidence for this mechanism; see [1].

Transitional speciation, whether gradually or as a jump, produces a phylogenetic
tree as exhibited in Figure 15.1.9(a).

B A B B C

A A

A

(b) (c)(a)

Fig. 15.1.9. Speciation possibilities.

The transitional theory does not produce diversification; the species count remains
the same. But the other major theory of speciation, that of splitting, does increase
the count. The idea here is that a portion of the population becomes reproductively
isolated. This could be the result of geographical circumstances—a mountain range
develops, a canyon widens, the subpopulation is transported to a new continent or an
island, and so on. Over time, differences accumulate between the subpopulation and
the main population. This could stem from natural selection or just by genetic drift.
Such an isolated subpopulation already starts off genetically different from the main
body. Every genetic trait has a specific distribution of its alleles among an interbreed-
ing population. But any given subpopulation will have profound allelic differences
for some subset of traits just by chance alone. Eventually, the subpopulation becomes
reproductively incompatible with the original population, and a new species has thus
been created.

Reproductive isolation strictly enforced by some geographical barrier is called
allopatric speciation of type A. In allopatric speciation of type B, the isolation stems
from the fact that the population is large and widely separated in distance (relative
to the organism). As a result, individuals on the margins never have the opportunity
to breed with other parts of the population. As above, these units proceed toward
establishing a distinct species. Speciation by splitting results in a phylogenetic tree
as exemplified in Figure 15.1.9(b) or (c). In (c), the ancestral species itself produces
a new species by transition.

Once a tree has been constructed, its assertions and predictions must stand up
to testing. Of course, a phylogenetic tree must be consistent with any cladogram
depiction of its taxa. Acladogram that shows species B to have derived characteristics
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with respect to species A cannot have A as a descendant of B. Thus the evidence
used in cladistics is applicable to phylogenetic trees as well.

Paleontology can be a source of falsification, or support, as well. The data here will
be extrinsic, that is, information about the distribution of the organisms in space and
time. The assertion that one species is the descendant of another would presuppose
that fossils of the ancestor should predominately be found in older rock and those
of the descendant in younger rock. Or in another case, a speciation event postulated
to have taken place at a point in time would suppose the geographical distribution
of the ancestor to be more widespread and their numbers to be larger. However, the
nature of the fossil record is not so precise. Observed stratigraphic ranges cannot
be assumed to be the total life span of a species. What is sampled may only be a
portion of the total life span. Similarly, assessing the geographical range of a species
is likewise problematical. In many instances, sediments were not even deposited in
all areas where a species had been living. And where deposition did occur, there is no
guarantee about the fossils that were deposited there or that will remain and be found.

But now a new and powerful tool is available for addressing these issues. That
tool is genomics. Even though ancient DNA and protein samples are unavailable,
new techniques and lines of attack may be brought to bear on these problems.

15.2 Branch Lengths Estimate the Separation of Species

In this section, we find that natural assumptions about the rate of molecular evolution
leads to a quantitative description of the phenomenon via mathematical semigroups.
Moreover, in order to estimate mutation rates, we employ the widely used technique
of maximum likelihood estimation. We thus begin our first encounter with algebraic
statistics. Throughout the remainder of this chapter, we closely follow some of the
topics in the groundbreaking text by Pachter and Sturmfels [5]. In the next section,
we take time out from our study of phylogenetics to introduce all the additional
mathematics that will be needed. For more detail and to learn about the full scope of
algebraic statistics applications in genomics, see Pachter and Sturmfels [5].

The molecular clock assumption asserts that molecular evolution is constant over time.

In 1965, Emile Zuckerkandl and Linus Pauling proposed the theory of a molecular
clock, which states that the rate of molecular evolution is approximately constant
over time for all the proteins in all lineages. According to this theory, any time of
divergence between genes, proteins, or lineages can be dated simply by measuring the
number of changes between sequences. Soon afterward, in 1969, Thomas Jukes and
Charles Cantor (1969) proposed a stochastic model for DNA substitution in which all
nucleotide substitutions occur at an equal rate, and when a nucleotide is substituted,
any one of the other nucleotides is equally likely to be its replacement.

In this section, DNA alignment data is used to compute branch lengths under the
assumption of a Markov model for point mutations. These assumptions are patterned
after the molecular clock theory:
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1. mutations occur at random, dependent only on a mutation rate;
2. mutations occur independently at different sites;
3. (continuous time assumption) at any instant in time, there is a nonzero probability

that a mutation will occur.

As in all good science, the assumptions may be oversimplified, but they do capture
the essence of the phenomenon and form the basis of a starting point for studying the
subject.

While the Markov assumptions may apply to molecular evolution from ancestral
species well enough, the requirement of DNA sequence data limits these methods to
taxa for which there is such data. Hence at present these methods give rise to unrooted
phylogenetic trees among existing species.

Although the model applies to point mutation phenomena in general, for example,
protein evolution, we will specialize to DNA mutation. Thus our indices run over the
set of bases � = {A, C, G, T} taken in alphabetical order.

The problem of calculating branch lengths.

In consequence of the independence assumption, we can consider the mutation at
each site one by one. At any single site, there is the probability θij (t) that base i will
have changed to base j after time t . The path of the change is not considered: i may
have changed directly to j , or may have changed to some intermediate k that changed
to j , or any other of many possibilities. Let θ(t) denote the 4 × 4 matrix of these
probabilities. It represents the cumulative effect of changes over a time period t and
is called the substitution matrix. Thus θ(0) = I , the identity matrix.

A consequence of the Markov assumptions is that the process is “memoryless’’:
Over a period of time s + t , and decomposing on base k the process visited at time s

(should a base be impossible at time s, then the probability of the transition from i to
k will be 0), we have

Pr(i → j over time s + t) =
∑
k∈�

Pr(i → k over time s) · Pr(k → j over time t).

In terms of matrix multiplication, this is exactly

θ(s + t) = θ(s)θ(t), s ≥ 0, t ≥ 0. (15.2.1)

A family of matrices, indexed by t , satisfying (15.2.1) is a mathematical semigroup.
In turn, this implies the existence of an infinitesimal generator or rate matrix Q having
the properties

θ(t) = eQt =
∞∑

n=0

1

n!Q
ntn,

θ ′(t) = θ(t)Q = Qθ(t), t ≥ 0, ′ signifying the derivative,

θ(k)(0) = Qk, k ≥ 0, (k) signifying the kth derivative.
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The off-diagonal elements of Q are the transition rates between bases per unit
time. Thus qij , with i �= j , is the (average) instantaneous rate at which base i mutates
into base j . Mathematically, the rows of Q must sum to 0,

qij ≥ 0, i �= j, qii < 0,∑
j∈�

qij = 0 for all i ∈ �.

Two widely used rate matrices are the Jukes–Cantor,

QJC =

⎡
⎢⎢⎣
−3α α α α

α −3α α α

α α −3α α

α α α −3α

⎤
⎥⎥⎦, (15.2.2)

and the Kimora-80,

QK80 =

⎡
⎢⎢⎣
−(α + 2β) β α β

β −(α + 2β) β α

α β −(α + 2β) β

β α β −(α + 2β)

⎤
⎥⎥⎦. (15.2.3)

In Jukes–Cantor, the first row says that the rates at which adenine (A) mutates into
cytosine (C) or guanine (G) or thymine (T) are the same and equal α (a parameter of
the model). Likewise, the other rows say the analogous thing for cytosine, guanine,
and thymine.

In Kimora-80, the rate for a purine to a purine or a pyrimidine to a pyrimidine base
is α, while from a purine to a pyrimidine or conversely is β. This more accurately
reflects actual mutation rates at the expense of introducing a second parameter, β.

Using the Jukes–Cantor rate matrix, the substitution matrix can be computed by
Maple:

MAPLE (symbolic, no MATLAB equivalent)
> with(LinearAlgebra):
> assume(a>0):
> Q:=Matrix([[-3*a,a,a,a],[a,-3*a,a,a],[a,a,-3*a,a],[a,a,a,-3*a]]);
> MatrixExponential(Q)

Regarding a = αt , this gives

θ(t) = eQt = 1

4

⎡
⎢⎢⎣

1+ 3e−4αt 1− e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1+ 3e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1+ 3e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1− e−4αt 1+ 3e−4αt

⎤
⎥⎥⎦. (15.2.4)

Under the Markov assumptions enumerated on p. 508 above, the course of the
ensuing mutation is an instance of a mathematical process known as a Poisson process.
This means that the distribution of mutation events is given by

Pr(k events in time t) = (λt)k

k! eλt ,

where λ is the Poisson event rate. In turn, this is the average mutation rate imposed
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by Q. The event rate for base i is the sum of its mutation rates to the other bases;
but this is exactly the negative of the diagonal element,−qii . Therefore, the average
event rate is

λ = −1

4
trace(Q),

where the trace of a matrix is the sum of its main diagonal elements. The expected
number of events over time t of a Poisson process is λt , and so the expected number
of mutations over time t is

branch length = −1

4
trace(Q) · t. (15.2.5a)

As indicated, the expected number of events is taken as the branch length of the
phylogenetic tree. For the Jukes–Cantor model, we get

branch length = 3αt. (15.2.6)

By the diagonalization theorem of Section 2.6, (2.6.2), one can show that
log det(eQ) = trace(Q); hence in terms of the substitution matrix directly,

branch length = −1

4
log det(θ(t)). (15.2.5b)

Estimating branch lengths leads to the method of maximum likelihood.

Now suppose that we are given an alignment between two DNA sequences and we
want to estimate the branch length between them with respect to a rooted tree; see
Figure 15.2.1.

1 2

r

a b

Fig. 15.2.1. Two-claw tree.

The problem is solved by the following theorem.

Theorem 1. Given an alignment of two sequences of length n, with k differences
between their bases, the maximum likelihood estimate of the branch length under the
Jukes–Cantor rate model is

branch length = −3

4
log

(
1− 4k

3n

)
. (15.2.7)

In terms of c = n− k, the number of identities between the two sequences, this is

branch length = −3

4
log

(
4c

3n
− 1

3

)
. (15.2.8)
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Maximum likelihood estimation, as mentioned in the theorem, is the most widely
used method for parameter estimation in statistics. It means choosing the value of any
unknown parameter in such a way as to make the outcome that was actually observed
the most probable. Here is how that works out for branch length estimation.

Let a be the substitution matrix along the left branch of the tree and b that along
the right branch. From (15.2.4), these matrices have only two distinct elements: the
diagonal elements and the nondiagonal elements. Let

a0 = 1

4

(
1+ 3e−4αt

)
and a1 = 1

4

(
1− e−4αt

)
. (15.2.9a)

Similarly, let

b0 = 1

4

(
1+ 3e−4βt

)
and b1 = 1

4

(
1− e−4βt

)
. (15.2.9b)

Then by (15.2.6), the branch length we want to calculate is

branch length = (branch length 1 to r)+ (branch length r to 2)

= 3(α + β)t.
(15.2.10)

With the abbreviations defined above, we can write

a =

⎡
⎢⎢⎣

a0 a1 a1 a1
a1 a0 a1 a1
a1 a1 a0 a1
a1 a1 a1 a0

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

b0 b1 b1 b1
b1 b0 b1 b1
b1 b1 b0 b1
b1 b1 b1 b0

⎤
⎥⎥⎦.

There are four unknown parameters, a0, a1, b0, andb1. But since the rows of stochastic
matrices must sum to 1, we have

a0 + 3a1 = 1, b0 + 3b1 = 1. (15.2.11)

This is automatically satisfied with the as and bs taken according to (15.2.9).
Next, we calculate the probability that two bases at the leaves 1 and 2 of the tree

will be the same. Let pAA be the probability that they are both A; then

pAA = 1

4
a0b0 + 3

4
a1b1. (15.2.12)

This is seen as follows: If the original base at the root is A, with probability 1
4 , then

we will have A at leaf 1 if there is no change, and this happens with probability a0
according to the edge matrix a. Similarly, the A at leaf 2 remains unchanged with
probability b0. This gives the first term in (15.2.12). But if the original base is not
A, and this happens with 3

4 probability—say it is C—then both leaves will be A if C
mutates to A along both edges. The mutation from C to A along the left edge happens
with probability a1 according to the substitution matrix, and along the right edge it
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is b1. So the probability that both leaves will be A when the root was not is ( 3
4 )a1b1.

And this is the second term.
The probability that both leaves are C or G or T is the same as for A, and so the

probability that both leaves are the same is given by

θ = psame = a0b0 + 3a1b1; (15.2.13)

denote this by θ . By a similar calculation, the probability that the bases at the two
leaves are different works out to be (there are 12 ways they could be different)

pdif = 12

(
1

4
a0b1 + 1

4
a1b0 + 1

2
a1b1

)
= 3a0b1 + 3a1b0 + 6a1b1 = 1− θ.

As noted, this equals 1 − θ , since it is the complementary event to the leaves being
the same.

Now return to our original problem; we have two DNA sequences of length
n differing in k places. We apply the results derived above to each place. The
probability that k bases are different out of n is like getting k heads out of n tosses of
a weighted coin (from Sections 2.8), so we have

L(θ) = Pr(k differences out of n) =
(

n

k

)
(1− θ)kθn−k. (15.2.14)

This is called the likelihood function for the model, and for emphasis we show it to
be a function of θ .

Now suppose that there were n = 100 bases and 3
4 of them, or 75, remained the

same, leaving k = 25 to mutate. What value of θ would make this outcome the most
likely? It would be θ = 3

4 . For example, if θ , being the probability that a base remains
unchanged, were 1

2 , it would be very unlikely to get 3
4 of 100 bases unchanged by

chance; see Figure 15.2.2.
This is how maximum likelihood works. To maximize (15.2.14), we set its deriva-

tive to zero and solve for θ . Alternatively, we could take the logarithm of (15.2.14) and
set its derivative to zero. Often likelihood functions are products of factors to various
powers, and working with the log likelihood function is easier. The calculation is

0 = d log L(θ)

dθ
= d

dθ

(
log

(
n

k

)
+ k log(1− θ)+ (n− k) log θ

)

= −k

1− θ
+ n− k

θ
.

(15.2.15)

The solution is θ = n−k
n

. From (15.2.13), this gives

n− k

n
= a0b0 + 3a1b1.

Now substitute (15.2.9) into this to get

n− k

n
= 1

4
+ 3

4
e−4(α+β)t .
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0

0.02

0.04

0.06

0.08

L (theta)

0.2 0.4 0.6 0.8 1
theta

Probability 75 out of 100 unchanged vs. theta

Fig. 15.2.2. Maximizing outcome probability for n = 100 and k = 25.

Solve this for α+β and, remembering (15.2.10), we get the conclusion of Theorem 1,

branch length = −3

4
log

(
1− 4k

3n

)
.

Keep in mind that, branch length is taken to be the expected number of mutation
events over the time between the two observations and is a pure number. If the time
between the observations is known, then a mutation rate estimation can be worked
out. Conversely, if the mutation rate is known, then the time can be estimated.

We make a last observation on this model. Note that we have not made a deter-
mination of α and β individually, only their sum. Likewise, the as and bs occur only
combined, as in

a0b0 + 3a1b1 and a0b1 + a1b0 + 2a1b1. (15.2.16)

This is because we took the states of the root to be equally likely; we have information
only about differences along the combined link from node 1 through a to r then through
b to node 2. The combined edges are governed by the matrix product

ab =
⎡
⎢⎣

a0b0 + 3a1b1 a0b1 + a1b0 + 2a1b1 . . . . . .

a0b1 + a1b0 + 2a1b1 a0b0 + 3a1b1 . . . . . .
...

...
. . .

⎤
⎥⎦.

15.3 Introduction to Algebraic Statistics

In order to avoid interrupting the flow of ideas in subsequent sections, we gather
together here the concepts and tools of algebra that we will need in those sections.
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It all takes place in the ring of polynomials.

A mathematical ring is a set S together with two operations, denoted by + and ∗,
satisfying the following basic arithmetic laws:

• Associativity:

(a + b)+ c = a + (b + c), (a ∗ b) ∗ c = a ∗ (b ∗ c), a, b, c ∈ S.

• Commutativity for + (not necessarily for ∗):

a + b = b + a, a, b ∈ S.

• Distributivity:

a ∗ (b + c) = a ∗ b + a ∗ c, a, b, c ∈ S,

and

(b + c) ∗ a = b ∗ a + c ∗ a, a, b, c ∈ S.

• Existence of an additive identity, 0:

0+ a = a + 0 = a, a ∈ S.

• Existence of an additive inverse: For a ∈ S, there is an inverse, denoted by −a,
such that

a + (−a) = (−a)+ a = 0.

Of course, the familiar number systems—the integers Z, the real numbers R,
and the complex numbers C—are all rings. Add to the list the rational numbers, Q.
A number is rational if it is the ratio of two integers, e.g., 3

4 , or 355
113 , or − 17

1 , and
so on. But we are interested in rings because the set of polynomials over any one
of the number sets above is a ring. Let Q[x] denote the set of polynomials in the
indeterminate x with rational numbers serving as coefficients, that is, expressions of
the form

anx
n + an−1a

n−1 + · · · + a1x + a0,

where an, . . . , a0 belong to Q with an �= 0; n is the degree of the polynomial. The+
and ∗ operations are the usual polynomial addition and multiplication,

(anx
n + · · · + a1x + a0)+ (bmxm + · · · + b1x + b0)

= anx
n + · · · + (am + bm)xm + · · · + (a1 + b1)x + (a0 + b0) if n ≥ m,

(anx
n + · · · + a1x + a0) ∗ (bmxm + · · · + b1x + b0)

= anbmxn+m + (anbm−1 + an−1bm)xn+m−1

+ (anbm−2 + an−1bm−1 + an−2bm)xn+m−2 + · · · .
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The additive identity is the zero polynomial, with all coefficients equal to zero, and the
additive inverse of f (x) is the polynomial all of whose coefficients are the negatives
of those of f . Checking the laws is straightforward but tedious and we omit it.

More generally, the multivariate polynomials form a ring as well. Let Q[x1, x2,

. . . , xd ] denote the set of sums of terms of the form

ai1i2···id x
i1
1 x

i2
2 · · · xid

d , (15.3.1)

where the i1, i2, . . . , id are nonnegative integers. A polynomial consisting of a single
such term, as in (15.3.1), is referred to as a monomial. Again + and ∗ are taken as
polynomial addition and multiplication. For brevity, we also use the notation Q[x] to
refer to this space where x = (x1, . . . , xd).

In the axioms of a ring listed on the previous page, we noted that commutativity
for ∗ was not required. But in all of our examples this property is realized. When
commutativity for ∗ holds, the ring is commutative. In all that follows, we will
need only the polynomial rings introduced above, and therefore all our rings are
commutative. In what follows, we will refer to+ as addition and ∗ as multiplication.

Ideals play a fundamental role in rings.

For a commutative ring S, an ideal I is a subset of S that is closed under+ and closed
over multiplication by elements in S. In other words, the following two properties
are satisfied

a + b ∈ I if a, b ∈ I

and

a ∗ r = r ∗ a ∈ I if a ∈ I and r ∈ S.

We do not consider the empty set an ideal. On the other hand, obviously every ring
is an ideal of itself. More importantly, an ideal I ⊂ S is a ring in its own right. The
reason is that the elements of I satisfy the axioms of a ring over I , since they do so
over S. It remains only to see that I is closed under+ and ∗ and that 0 ∈ I . The first
is part of the definition. The second follows immediately, since if a ∈ I and b ∈ I ,
then b ∈ S and so a ∗ b ∈ I by the second part of the definition. Finally, if a ∈ I ,
then 0 = a ∗ 0 ∈ I , since 0 ∈ S.

Example. Consider the set I in Q[x] consisting of all polynomials of the form f (x)∗
(x − 1), where f (x) ∈ Q[x]. Obviously, the second property of the definition holds.
But also, if f (x) ∗ (x − 1) and g(x) ∗ (x − 1) are two such polynomials, their sum
is (f (x) + g(x)) ∗ (x − 1) and so belongs to I , too. Hence this set is an ideal; it is
the ideal generated by (x − 1).
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The example above is typical. Let F be a collection of polynomials. Specifically,
let F ⊂ Q[x]be a subset of the ring of polynomials in one or more indeterminates. The
ideal generated by F , denoted by 〈F〉, is the set of all polynomial linear combinations
of elements in F ,

〈F〉 = {h1f1 + · · · + hnfn : f1, . . . , fn ∈ F, h1, . . . , hn ∈ Q[x]}.
It is possible for two subsets F and F ′ to generate the same ideal,

〈F〉 = 〈F ′〉.
In fact, by the Hilbert basis theorem, every ideal is finitely generated.

Theorem 1 (Hilbert basis theorem). Every infinite set of polynomials F in Q[x] has
a finite subset F ′ ⊂ F such that 〈F〉 = 〈F ′〉.

The theorem says more than promised. To see that an ideal I is finitely generated,
take F to be the ideal itself.

A Gröbner basis makes it easier to work with ideals.

It will make a difference in which order the terms of a polynomial are written. The
monomial written first is its leading term. For a single indeterminate, we write
the terms in order of higher to lower degree. For multivariate polynomials we use
lexicographic monomial order, signified by �. This means that in order to decide
the largest monomial in a set, we use the degree of x1 without regard for any other
indeterminate, unless more than one term has the same highest degree in x1. In that
case, we decide between these according to the highest degree of x2, and so on. It is
like the order of words in a dictionary. Nonzero coefficients are ignored. For example,
among the monomials −5x3

1x5
2x4

3 and 7x2
1x7

2x4
3 , the former is larger in �-order. But

among −5x3
1x5

2x4
3 and 4x3

1x6
2 , the latter is larger in �-order.

We say that G = {g1, g2, . . . , gr} is a Gröbner basis for an ideal I if G generates
I and if every polynomial f in I has its leading term divisible by the leading term of
some gi . Maple can be used to calculate Gröbner bases.

Example. In the polynomial ring R[x, y, z] (real coefficients allowed although this
is not germane to the problem), let I be the ideal generated by x2 − y and x3 − z.
We will use lexicographic monomial order with x � y � z. This is communicated
to Maple by the order used in listing the indeterminates and by the keyword plex:

MAPLE

> with(grobner):
> gbasis(xˆ2-y,xˆ3-z,[x,y,z],plex);

The result is
{−y + x2,−z+ xy,−y2 + xz,−z2 + y3}

(each written in low to high order). Thus every polynomial in I must have its leading
term divisible by x2 or xy or xz or y3. Note that the last three of these are in the
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ideal although they were not among the original generators. For example, we have
the following polynomial linear combination:

−z2 + y3 = (y2 + yx2 + x4)(y − x2)+ (−z− x3)(z− x3).

Varieties are the zero sets of polynomials.

Let f ∈ Q[x1, . . . , xd ] be a multivariate polynomial with rational coefficients. The
variety V(f ) is the set of points (z1, . . . , zd) in d-dimensional complex space where
f is zero,

V(f ) = {(z1, . . . , zd) ∈ Cd : f (z1, . . . , zd) = 0},
in other words, the roots of f . Complex numbers are used here because polynomials
are sure to have roots if complex numbers are allowed, but not if restricted to rational
numbers or even real numbers. If S is a subset of Cd , then define VS(f ) = V(f )∩S,
that is, the roots of f in S.

In applications of varieties studied in this chapter, the functions are often proba-
bility calculations and the solutions are expected to satisfy the requirement that they
be nonnegative numbers summing to 1; for example,

p1 ≥ 0, . . . , pm ≥ 0, p1 + · · · + pm = 1. (15.3.2)

The set of points inm-dimensional space satisfying (15.3.2) is called anm-dimensional
simplex (or just a simplex if the dimension is understood). A simplex in 3-space is a
triangular portion of the plane lying in the first octant and passing through the three
points (1, 0, 0), (0, 1, 0), and (0, 0, 1); see Figure 15.3.1. The figure was made using
the following Maple commands:

0

0.20.2

0.40.4

0.60.6

0.80.8

0.20.2 0.40.4 0.60.6 0.80.80.50.5

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
y

0.5

1
x

Fig. 15.3.1. Simplex in R
3.
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MAPLE

> with(plots):
> plot3d(1-x-y,0),x=0..1-y,y=0..1,axes=normal,scaling=constrained,orientation=[10,75]);

We will denote the m-dimensional simplex by the notation �m, or just � if m is
understood. Note that the m-dimensional simplex is a hypersurface in m-space, that
is, a surface of dimension 1 less than that of the space. Using the notation introduced
above, V�(f ) is the zeros of f that are meaningful as probabilities.

The variety of a polynomial is generally more than a finite set of points. For
example, the variety of f (z1, z2, z3) = 4z1z2 − z2

3 is the hypersurface of C3 for
which z3 = √

4z1z2. If S = R3, the subset of real numbers, then VS(f ) is the
set of points in ordinary 3-space such that x3 = √

4x1x2 and is reminiscent of a
saddle-surface defined only for x1 ≥ 0 and x2 ≥ 0 or x1 ≤ 0 and x2 ≤ 0.

Now let F ⊂ Q[x] be an arbitrary set of polynomials; x could be a vector of
indeterminates, x = (x1, . . . , xd). By the variety V(F) we mean the intersection of
all hypersurfaces V(F ) for all F ∈ F . Put differently, V(F) is the set of all points
(z1, . . . , zd) ∈ Cd that are roots of all f ∈ F ,

f (z1, . . . , zd) = 0 for all f ∈ F .

Let I be an ideal in Q[x] and suppose that I = 〈F〉. Then V(I ) = V(F) because
every polynomial g ∈ I can be written as a polynomial linear combination

g = h1f1 + · · · + hrfr , f1, . . . , fr ∈ F .

So any point z, a zero of f1, . . . , fr , is also a zero of g.

The image of a polynomial map is also a variety.

The setting for our next result is that of a vector-valued function f(z) having m com-
ponent functions, f1, . . . , fm, each of which is defined for a d-dimensional variable
z = (z1, . . . , zd). This sort of setting occurs so often that a special notation is uni-
versally used for it; we write

f : Cd −→ Cm.

The space Cd is called the domain space of f , and the space Cm the range space or
just the range.

Theorem 2 (implicitization). Let f : Cd −→ Cm be a function whose components
are multivariate polynomials in z. Then the topological closure of the image of f is
a variety in Cm.

The following example involves only polynomials of degree 1, affine functions,
to simplify the calculations, but nonetheless captures the substance of the theorem.

Example. Define f : C2 −→ C3 by

p1 = 2θ1 − 3θ2 + 1,

p2 = −θ1 + θ2 + 5,
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p3 = θ1 + 2θ2.

The image is the set of all points⎡
⎣p1

p2
p3

⎤
⎦ = θ1

⎡
⎣ 2
−1
1

⎤
⎦+ θ2

⎡
⎣−3

1
2

⎤
⎦+

⎡
⎣1

5
0

⎤
⎦

as θ1 and θ2 vary. This is a plane defined by two lines. The first has the direction
of the vector [2 − 1 1]T , and the second has the direction [−3 1 2]T ; both lines
pass through the point (1, 5, 0). To obtain this image as a variety, we eliminate the
parameters θ1 and θ2. Add the second and third equations to get

3θ2 = p2 + p3 − 5.

Substitute this into the first two equations (multiplying the second by 3 avoids frac-
tions):

p1 = 2θ1 − p2 − p3 + 6,

3p2 = −3θ1 + p2 + p3 + 10.

Now eliminate θ1, and we have

3p1 + 7p2 + p3 − 38 = 0.

Hence the image of f is the variety of 3p1 + 7p2 + p3 − 38. As already noted, this
shows that the image is a hypersurface.

Note that the theorem does not say that the image itself is necessarily a variety, but
that its topological closure is. In another example, consider the mapping f : C2 → C2

defined by p1 = z1 and p2 = z1z2. Name any point in the range (p̂1, p̂2); the point
z1 = p̂1, z2 = p̂2

p̂1
maps to it, that is, except when p̂1 = 0. So the image of f is

the entire plane except for the p2-axis itself, and even there the point (0, 0) is in the
image.

The topological closure of a set is the set itself together with its boundary points.
In the example above, points on the p2-axis are boundary points of the image.2

Therefore, the closure of the image in this example is the entire (p1, p2)-plane. This
is the variety of the zero polynomial (in (p1, p2)-space).

15.4 Algebraic Analysis of Maximum Likelihood

The philosophy of algebraic statistics is that statistical models are algebraic varieties.
In this section, we show how the maximum likelihood problem can be cast in these

2 This is because for any point on the p2-axis, a sequence of points in the image leading to it
can be found.
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terms. The development serves as a prototype for other statistical problems that occur
in biology.

The methodology goes as follows. Each derivative of the log-likelihood equation,
e.g., (15.2.15), can be put into the form of a polynomial in the unknown parameters,
θ . One is interested in knowing where these polynomials are simultaneously zero.
As we have just seen in Section 15.3, the set of such zeros is called a variety. To
analyze a variety, one tries to find the simplest system of polynomials that generate
it. This is the purpose of a Gröbner basis. The resulting system of polynomials is
easier to solve.

Note that the computations of this section are algebraic and often symbolic. So
Matlab will be able to do the calculations only if the symbolic package has been
purchased. Although this package is from the people who produce Maple, the Maple
code of this section has not been tested within Matlab.

Interior nodes lead to a hidden Markov model.

The two-claw tree problem from before is too simple to illustrate the ideas and tech-
niques of the algebraic method. Instead, we will analyze the rooted three-leaf tree of
Figure 15.4.1.

2 31

c d

ia

b

r

Fig. 15.4.1. Rooted three leaf tree with internal node.

It is important to note that this problem is fundamentally different from the two-
claw problem because of the interior node i. We cannot know its state, only those of
the leaf nodes. For this reason, interior nodes are said to be hidden, and the model is
referred to as a hidden Markov model. Outcomes at the leaf nodes depend on the state
of the hidden nodes, but the data will not be able to pin down those states directly;
their values will have to be inferred. In calculating probabilities at the leaf nodes,
allowance will have to be made for all possible states of the hidden nodes.

As before, we will assume Jukes–Cantor rates. Hence matrices a and b are defined
in terms of their mutation rates α and β by (15.2.9); likewise, c and d are given by
similar equations in terms of their rates γ and δ, respectively. And, as before, we will
calculate probabilities in terms of the parameters a0, a1, b0, b1, and now c0, c1 and
d0, d1.
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Another difference between this problem and the two-claw problem is that there
are now three leaf nodes. Observed outcomes here are triples of the nucleotides A,
C, G, and T. Consequently, the number of possible outcomes is 43 = 64, making for
a vector of length 64,

p = [pAAA pAAC . . . pTTT].
But by symmetries of the Jukes–Cantor model, many of the components are the
same. We can see what they are by noting that the probabilities are invariant under
any shuffling of the letters A, C, G, and T. That gives us the following equalities:

pAAA = pCCC = pGGG = pTTT, 4 terms,

pAAC = pAAG = · · · = pTTG, 12 terms,

pACA = pAGA = · · · = pTGT, 12 terms,

pCAA = pGAA = · · · = pGTT, 12 terms,

PACG = pACT = · · · = pCGT, 24 terms.

(15.4.1)

Accounting for symmetries leaves only the five output probabilities shown in (15.4.1).
They are p123 for all three nucleotides the same, p12 for only the first two the same;
similarly define p13 and p23. Finally, pdis denotes the case in which all three are
distinct.

We may now calculate the output probabilities. As noted above, p123 can occur in
four ways; pick one, say AAA, compute it, and multiply by 4. As before, we assume
that the root node could be A or C or G or T with equal probability, 1

4 ; hence

p123 = 4

4
(a0b0c0d0 + 3a0b1c1d1 + 3a1(b1c0d0 + b0c1d1 + 2b1c1d1)). (15.4.21)

In the same way, we calculate the others:

p12 = 12

4
[a0(b0c0d1 + b1c1d0 + 2b1c1d1)+ a1(b0c1d0 + b1c0d1 + 2b1c1d1)

+ 2a1(b1c0d1 + b1c1d0 + b0c1d1 + b1c1d1)], (15.4.22)

p13 = 12

4
[a0(b0c1d0 + b1c0d1 + 2b1c1d1)+ a1(b1c1d0 + b0c0d1 + 2b1c1d1)

+ 2a1(b1c1d0 + b1c0d1 + b0c1d1 + b1c1d1)], (15.4.23)

p23 = 12

4
[a1(b0c0d0 + 3b1c1d1)+ a0(b1c0d0 + b0c1d1 + 2b1c1d1)

+ 2a1(b1c0d0 + 2b1c1d1 + b0c1d1)], (15.4.24)

pdis = 24

4
[a0(b0c1d1 + b1c0d1 + b1c1d0 + b1c1d1)

+ a1(2b1c1d1 + b0c0d1 + b1c1d0)+ a1(2b1c1d1 + b1c0d1 + b0c1d0)

+ a1(b1c1d1 + b1c0d1 + b1c1d0 + b0c1d1)]. (15.4.25)
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Before continuing, we note that these equations can be significantly simplified by
invoking the observation made at the end of the previous section, that because the
states of the root are equally likely, we can determine only the product matrix ab and
not a and b individually. Therefore, we should be able to simplify this equation by
using (15.2.16) and defining the matrix e = ab; then

e0 = a0b0 + 3a1b1, e1 = a0b1 + a1b0 + 2a1b1. (15.4.3)

Of course, the product ab is also stochastic, so its rows sum to 1:

e0 + 3e1 = 1. (15.4.4)

The equivalent (unrooted) tree is shown in Figure 15.4.2.

2 3

1

ab

c d

i

Fig. 15.4.2. Equivalent phylogenetic tree.

To incorporate (15.4.3) into (15.4.2), we let Maple do the work. Note that the
new variables are in uppercase and we use the Maple command algsubs in place
of subs.

Code 15.4.1.
MAPLE

> #first define the old variables
> p123:=(a0*b0*c0*d0+3*a0*b1*c1*d1+3*a1*(b1*c0*d0+b0*c1*d1+2*b1*c1*d1));
> p12:=(12/4)*(a0*(b0*c0*d1+b1*c1*d0+2*b1*c1*d1)+a1*(b0*c1*d0+b1*c0*d1+2*b1*c1*d1)

+2*a1*(b1*c0*d1+b1*c1*d0+b0*c1*d1+b1*c1*d1));
> p13:=(12/4)*(a0*(b0*c1*d0+b1*c0*d1+2*b1*c1*d1)+a1*(b1*c1*d0+b0*c0*d1+2*b1*c1*d1)

+2*a1*(b1*c1*d0+b1*c0*d1+b0*c1*d1+b1*c1*d1));
> p23:=(12/4)*(a1*(b0*c0*d0+3*b1*c1*d1)+a0*(b1*c0*d0+b0*c1*d1+2*b1*c1*d1)

+2*a1*(b1*c0*d0+2*b1*c1*d1+b0*c1*d1));
> pdis:=(24/4)*(a0*(b0*c1*d1+b1*c0*d1+b1*c1*d0+b1*c1*d1)+a1*(2*b1*c1*d1+b0*c0*d1+b1*c1*d0)

+a1*(2*b1*c1*d1+b1*c0*d1+b0*c1*d0)+a1*(b1*c1*d1+b1*c0*d1+b1*c1*d0+b0*c1*d1));

> #now compute the new variables
> P123:=algsubs(a0*b0=e0-3*a1*b1,p123): P123:=expand(P123):

P123:=algsubs(a0*b1=e1-a1*b0-2*a1*b1,P123);
> P12:=expand(p12): P12:=algsubs(a0*b0=e0-3*a1*b1,P12): P12:=expand(P12):

P12:=algsubs(a0*b1=e1-a1*b0-2*a1*b1,P12);
> P13:=expand(p13): P13:=algsubs(a0*b0=e0-3*a1*b1,P13): P13:=expand(P13):

P13:=algsubs(a0*b1=e1-a1*b0-2*a1*b1,P13);
> P23:=expand(p23): P23:=algsubs(a0*b0=e0-3*a1*b1,P23): P23:=expand(P23):

P23:=algsubs(a0*b1=e1-a1*b0-2*a1*b1,P23);
> Pdis:=expand(pdis): Pdis:=algsubs(a0*b0=e0-3*a1*b1,Pdis): Pdis:=expand(Pdis):

Pdis:=algsubs(a0*b1=e1-a1*b0-2*a1*b1,Pdis);
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Alternatively, one may argue directly from Figure 15.4.2. Either way, the simpli-
fied probabilities are these:

P123 = e0c0d0 + 3e1c1d1,

P12 = 12

4
(e0c0d1 + e1c1d0 + 2e1c1d1),

P13 = 12

4
(e0c1d0 + e1c0d1 + 2e1c1d1),

P23 = 12

4
(e0c1d1 + e1c0d0 + 2e1c1d1),

Pdis = 24

4
(e0c1d1 + e1c0d1 + e1c1d0 + e1c1d1).

On the surface it would appear that these five probabilities are functions of six
variables, e0, e1, c0, c1, d0, and d1. But in reality, (15.4.4) holds between e0 and e1.
Since matrices c and d are also stochastic, similar relationships hold for the cs and
ds. These dependencies could be used to eliminate, say, e0, c0, and d0 throughout,

e0 = 1− 3e1, c0 = 1− 3c1, d0 = 1− 3d1. (15.4.5)

With these substitutions, we see that the five probabilities are a function of a three-
dimensional parameter vector θ ,

θ1 = e1, θ2 = c1, θ3 = d1. (15.4.6)

But it is preferable to retain the homogeneous coordinates, that is, both es, both cs,
and both ds, as long as possible and invoke (15.4.5) as the last step. When we refer
to θ , it will be as if the substitutions (15.4.5) and (15.4.6) had been carried out.

Our development so far can be summarized in terms of a vector-valued function, f ,
mapping the three-dimensional parameter space of θ into a five-dimensional outcome
space with the five probabilities as its component functions. In the notation of the
last section, we have f : C3 → C5, with component functions f1 = p123, f2 = p12,
and so on,

f(θ) = (f1, f2, f3, f4, f5) = (p123, p12, p13, p23, pdis).

Notice that each component function fi(θ) is linear as a function of the homogeneous
coordinates and that these components sum to 1.

Now suppose we have three aligned DNA sequences, each n bases long, that
correspond to the three leaves of the tree. Out of the n places, suppose that u1 places
match in all three sequences, u2 places match in the first two sequences only, u3 match
in the first and third only, u4 match in the second and third only, and in u5 places
all three sequences are different. Thus the vector u = [u1 u2 u3 u4 u5] constitutes the



15.4 Algebraic Analysis of Maximum Likelihood 525

observed data. The likelihood function for this outcome is3

L(θ) =
(

n!
u1!u2!u3!u4!u5!

)
f

u1
1 f

u2
2 f

u3
3 f

u4
4 f

u5
5 .

To maximize this, take the logarithm of both sides, set its derivative with respect to
each parameter to zero, and solve the resulting system,

∂ log(L(θ))

θ1
= ∂ log(L(θ))

θ2
= ∂ log(L(θ))

θ3
= 0,

where, for i = 1, 2, 3,

∂ log(L(θ))

∂θi

= u1

f1

∂f1

∂θi

+ u2

f2

∂f2

∂θi

+ u3

f3

∂f3

∂θi

+ u4

f4

∂f4

∂θi

+ u5

f5

∂f5

∂θi

. (15.4.7)

The likelihood variety.

Recall that each function fi is multilinear as a function of the homogeneous coordi-
nates. It follows that by combining the terms of (15.4.7) with a common denominator,
the result is a ratio of polynomials in the homogeneous coordinates or in the θi as
well. For example, invoking (15.4.5) and (15.4.6), we have

f1 = (1− 3e1)(1− 3c1)(1− 3d1)+ 3e1c1d1

= (1− 3θ1)(1− 3θ2)(1− 3θ3)+ 3θ1θ2θ3

and

∂f1

∂θ1
= −3(1− 3θ2)(1− 3θ3)+ 3θ2θ3.

Similar results hold for the other components.
The critical points of the problem are the points θ in three-dimensional space

where the functions (15.4.7) vanish, that is, equal zero, but the denominators of these
equations are not zero. Then to be a solution to our problem, a critical point θ̂ must
also be a vector of probabilities, that is, each component must lie between 0 and 1,
the 3-simplex.

Discounting, temporarily, points where the denominators are zero, the set of
critical points is a variety in 3-space called the likelihood variety. The maximum
likelihood solution we want, the solution in terms of θ , is the computation of this
variety.

3 The point of showing this equation is to note the relationship between the components fi

and the data ui . How does the ratio of factorials come about? The argument is the same as
our derivation of the combinations factor in Section 2.8. For example, there are u1 places
in the three DNA sequences where the bases match, say, all are As. One first imagines that
these As are different, say, A1, . . . , Au1 . This contributes to the n! in the numerator, but too
much so because these As are, in fact, not distinct. Since there are u1! ways to rearrange
the As, dividing by it corrects the overcount. Argue similarly for the other factors.
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In the following Maple code, we enter the component probabilities in terms oft1,
t2, t3 representing θ1, θ2, and θ3. Maple calculates the derivatives and combines
terms over a common denominator to form the three numerators p1, p2, p3. The
denominator is not needed for the critical points of the likelihood derivatives, but is
needed for the Hessian (see next) and to check that a root is admissible. We also
compute the Hessian, or the second derivative matrix, in order to check the nature
of a critical point. If the eigenvalues of the Hessian are all negative, then the critical
point is a maximum point of the surface. If the eigenvalues are all positive, then the
critical point is a minimum. If the eigenvalues are of mixed sign, then the critical
point is a saddle-point and corresponds to a saddle-surface in parameter space there.
(Like the flat spot on a saddle, this means that there are nearby points of the surface
both higher and lower than at the flat spot.) The numerical root finder, fsolve, is
used to solve the system but, owing to the multiplicity of roots, is shown to need
additional help.

In the following, assume that the observed data are u1 = 31, u2 = 5, u3 = 7,
u4 = 11, u5 = 13.

Code 15.4.2.
MAPLE

> f1:=(1-3*t1)*(1-3*t2)*(1-3*t3)+3*t1*t2*t3;
> f2:=3*(1-3*t1)*(1-3*t2)*t3+3*t1*t2*(1-3*t3)+6*t1*t2*t3;
> f3:=3*(1-3*t1)*t2*(1-3*t3)+3*t1*(1-3*t2)*t3+6*t1*t2*t3;
> f4:=3*(1-3*t1)*t2*t3+3*t1*(1-3*t2)*(1-3*t3)+6*t1*t2*t3;
> f5:=6*(1-3*t1)*t2*t3+6*t1*(1-3*t2)*t3+6*t1*t2*(1-3*t3)+6*t1*t2*t3;
> cden:=f1*f2*f3*f4*f5;

#fix t3 to reduce computation time, then p3 won’t be needed
> t3:=1/10;
> u1:=31: u2:=5: u3:=7: u4:=11: u5:=13:
> p1:=u1*diff(f1,t1)*cden/f1 + u2*diff(f2,t1)*cden/f2 + u3*diff(f3,t1)*cden/f3 + u4*diff(f4,t1)*cden/f4

+ u5*diff(f5,t1)*cden/f5;
> p2:=u1*diff(f1,t2)*cden/f1 + u2*diff(f2,t2)*cden/f2 + u3*diff(f3,t2)*cden/f3 + u4*diff(f4,t2)*cden/f4

+ u5*diff(f5,t2)*cden/f5;
#the next for the Hessian matrix

> h11:=cden*diff(p1,t1)-p1*diff(cden,t1);
> h12:=cden*diff(p1,t2)-p1*diff(cden,t2);
> h21:=cden*diff(p2,t1)-p2*diff(cden,t1);
> h22:=cden*diff(p2,t2)-p2*diff(cden,t2);
> simplify(h12-h21); #check that the mixed partials are equal

#use fsolve to find a root
> S1:=fsolve({p1,p2},{t1,t2},{t1=0..1,t2=0..1});

#see if this is a root of cden, check size of cden against p1 and p2
> assign(S1); p1; p2; cden;

#if this is a root of cden, try another
> t1:=’t1’; t2:=’t2’; #reset t1 and t2
> S2:=fsolve({p1,p2},{t1,t2},{t1=0..1,t2=0..1},avoid={S1});

#and avoid={S1,S2} if another round necessary, etc.,
#also check if the eigenvalues of the Hessian are negative

> assign(S2);
> h:=array([[h11,h12],[h21,h22]]);
> evalf(Eigenvals(h));

As the above shows, Maple’s numerical root finder might find a root that is also
a root of the denominator. Then it is necessary to search for another. By contrast,
an algebraic root finder proceeds in a very different way. The public domain com-
puter algebra system SINGULAR is specialized to deal with these kinds of problems.
(SINGULAR is obtainable free of charge from the website www.singular.uni-kl.de.)
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By casting the roots as the variety of an ideal, a more suitable basis, a Gröbner basis,
may be used in place of the original polynomials. Furthermore, there is a clever way
to avoid roots of the common denominator.

Let zi play the role of 1
fi

; then zifi −1 = 0. Adjoin the zi to our ring and work in
the space Q[θ1, . . . , θd , z1, . . . , zm]. Let Ju be the ideal generated by the maximum
likelihood polynomials and these reciprocal relations for the zi ,

Ju =
〈
z1f1 − 1, . . . , zmfm − 1,

m∑
j=1

uj zj

∂fj

∂θ1
, . . . ,

m∑
j=1

uj zj

∂fj

∂θd

〉
.

Apoint (θ, z) ∈ Cd+m belongs to the variety V(Ju) of Ju if θ is a root of the maximum
likelihood equations and if fi(θ)zi = 1, for all i; therefore, fi(θ) �= 0. Since we are
not interested in the zs, only the θs, put

Iu = Ju ∩Q[θ1, . . . , θd ]
to eliminate the zs; Iu is the likelihood ideal. Here is the SINGULAR code for this
problem.

Code 15.4.3.
SINGULAR

> ring bigring = 0, (t1,t2,z1,z2,z3,z4,z5), dp; number t3 = 1/10;
> poly f1 = (1-3*t1)*(1-3*t2)*(1-3*t3)+3*t1*t2*t3;
> poly f2 = 3*(1-3*t1)*(1-3*t2)*t3+3*t1*t2*(1-3*t3)+6*t1*t2*t3;
> poly f3 = 3*(1-3*t1)*t2*(1-3*t3)+3*t1*(1-3*t2)*t3+6*t1*t2*t3;
> poly f4 = 3*(1-3*t1)*t2*t3+3*t1*(1-3*t2)*(1-3*t3)+6*t1*t2*t3;
> poly f5 = 6*(1-3*t1)*t2*t3+6*t1*(1-3*t2)*t3+6*t1*t2*(1-3*t3)+6*t1*t2*t3;

> int u1=31; int u2=5; int u3=7; int u4=11; int u5=13;
> ideal Ju = z1*f1-1, z2*f2-1, z3*f3-1, z4*f4-1, z5*f5-1,

u1*z1*diff(f1,t1)+u2*z2*diff(f2,t1)+u3*z3*diff(f3,t1) +u4*z4*diff(f4,t1)+u5*z5*diff(f5,t1),
u1*z1*diff(f1,t2)+u2*z2*diff(f2,t2)+u3*z3*diff(f3,t2) +u4*z4*diff(f4,t2)+u5*z5*diff(f5,t2);

> ideal Iu = eliminate(Ju,z1*z2*z3*z4*z5);
> ring smallring = 0, (t1,t2), dp;
> ideal Iu = fetch(bigring,Iu); Iu;

// dim(G)=dimension of G, vdim(G)= #roots if dim(G)=0
> ideal G = groebner(Iu); dim(G); vdim(G);

// 20 digits of precision
> ideal G = groebner(Iu); LIB "solve.lib"; solve(G,20);

Of the 16 solutions, only three are in the range 0 < θ1, θ2 < 1. And only one of
those has a negative definite Hessian (making it a maximizing point), as shown in the
Maple calculation above.

15.5 Characterizing Trees by Their Variety, Phylogenetic
Invariants

We now view the problem of the last section in a completely different way. Instead of
studying the problem of maximizing the log-likelihood function from the perspective
of parameter space θ , one can analyze it from the standpoint of the range space of
probabilities. In our three-leaf problem, this is the five-dimensional space of the points
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(p123, p12, p13, p23, pdis). In this section, we no longer regard these as probabilities
but merely as points (p1, p2, p3, p4, p5) in 5-space. In this analysis, we would like
to characterize the image of f ,

image(f) = {p = (p1, p2, . . . , p5) : p = f(θ) for some θ}.
The rationale is that different tree structures will give rise to images in C5 having

different surface structures no matter what the values of the parameters may be. We
seek to characterize these surface structures. Our best hope for this is to regard them
as varieties and compute their generating polynomials. Polynomials that are zero on
the image of f are called phylogenetic invariants.

Phylogenetic invariants characterize the tree without having to solve it.

As we saw in the algebra section, the closure of the image of f is an algebraic variety.
Let If denote the ideal of polynomials in p1, . . . , pm that vanish on this variety. If h

is one such polynomial, then

h(p1, . . . , pm) = 0, where p = f(θ), θ ∈ Cd .

The problem of finding generating polynomials for If is the problem of implic-
itization. As we saw earlier, it amounts to eliminating the θs from the component
functions fi . We illustrate the method for the three-leaf tree of the previous sec-
tion, (15.4.2).

One begins by transforming the equations to a simpler form as prescribed by
Fourier analysis. The theory underlying the Fourier transformation is well known,
but its study is beyond the scope of this text. The transformation for this problem and
for all other small trees is given at the small trees website,

http://www.math.tamu.edu/∼lgp/small-trees.

In this example, the transformed coordinates are simple products of the factors
(e0 − e1) and (e0 + 3e1) and the same in c and d.

In fact, it can be verified that

q111 = p123 − 1

3
p12 − 1

3
p13 − 1

3
p23 + 1

3
pdis = (e0 − e1)(c0 − c1)(d0 − d1).

(15.5.15)

Denote this combination by q111. Similarly, it can be verified that

q000 = p123 + p12 + p13 + p23 + pdis = (e0 + 3e1)(c0 + 3c1)(d0 + 3d1),

(15.5.11)

q011 = p123 − 1

3
p12 − 1

3
p13 + p23 − 1

3
pdis = (e0 + 3e1)(c0 − c1)(d0 − d1),

(15.5.12)

q101 = p123 − 1

3
p12 + p13 − 1

3
p23 − 1

3
pdis = (e0 − e1)(c0 + 3c1)(d0 − d1),

(15.5.13)
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q110 = p123 + p12 − 1

3
p13 − 1

3
p23 − 1

3
pdis = (e0 − e1)(c0 − c1)(d0 + 3d1).

(15.5.14)

The coordinates q000, q011, . . . , q111 are called the Fourier coordinates, and the
equations (15.5.1) constitute the Fourier transform. They have been indexed by the
subgraphs of the tree; q000 corresponds to the empty tree, q111 to the full tree, q011 to
the span of leaves 2 and 3, and so on. An excluded edge corresponds to a factor such
as (e0 + 3e1), an included edge to a factor such as (e0 − e1).

With this simplification we work to eliminate the parameters. First, eliminate
e0 + 3e1; from (15.5.11) and (15.5.12),

q000

(c0 + 3c1)(d0 + 3d1)
= e0 + 3e1 = q011

(c0 − c1)(d0 − d1)
.

Next eliminate c0 + 3c1. Solve the first and third members of this for c0 + 3c1 and
use (15.5.13) to get

q000(c0 − c1)(d0 − d1)

q011(d0 + 3d1)
= c0 + 3c1 = q101

(e0 − e1)(d0 − d1)
.

Use the first and third members of this to solve for d0+3d1 and combine with (15.5.14),

q000(c0 − c1)(d0 − d1)
2(e0 − e1)

q011q101
= d0 + 3d1 = q110

(e0 − e1)(c0 − c1)
.

And finally incorporate (15.5.15) into this; we get

q000q
2
111 = q011q101q110.

Therefore, the ideal If is generated by the homogeneous third-degree polynomial

If = 〈q000q
2
111 − q011q101q110〉.

The molecular clock assumption yields a different ideal.

Recall from Section 15.2 the molecular clock assumption: For any subtree and each
path from the root of that subtree to any leaf, the products of the transition matrices
corresponding to the edges of the path are identical. As applied to the three-taxa
problem we have been following, Figure 15.4.1, this means that

c = d, a = bc = bd.

Or, in terms of the individual parameters,

d0 = c0, d1 = c1,

a0 = b0c0 + 3b1c1, a1 = b0c1 + b1c0 + 2b1c1.

In calculating the five probabilities, the assumption that a and b cannot be dis-
tinguished is no longer valid (since their edges are different distances from the root).
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There are now only two independent matrices, b and c, and four homogeneous pa-
rameters or two independent parameters. Also note that p12 and p13 will be the same,
because c = d , and the one chosen must be counted twice. Hence the data space is
only four-dimensional here. Starting from (15.4.2), we use Maple for the calculation.
Denote the output probabilities by p1, p2, p3, and p4:

MAPLE

#recall that p123,p12,…were defined in Code 15.4.1
> p1:=subs({d0=c0,d1=c1,a0=b0*c0+3*b1*c1,a1=b0*c1+b1*c0+2*b1*c1},p123): p1:=simplify(p1);
> p2:=subs({d0=c0,d1=c1,a0=b0*c0+3*b1*c1,a1=b0*c1+b1*c0+2*b1*c1},p12):
> p2:=2*simplify(p2); #for emphasis
> p3:=subs({d0=c0,d1=c1,a0=b0*c0+3*b1*c1,a1=b0*c1+b1*c0+2*b1*c1},p23): p3:=simplify(p3);
> p4:=subs({d0=c0,d1=c1,a0=b0*c0+3*b1*c1,a1=b0*c1+b1*c0+2*b1*c1},pdis): p4:=simplify(p4);

This gives

p1 = b2
0c

3
0 + 3b2

0c
3
1 + 6b0b1c

2
0c1 + 6b0b1c0c

2
1 + 12b0b1c

3
1 + 3b2

1c
3
0

+ 6b2
1c

2
0c1 + 6b2

1c0c
2
1 + 21b2

1c
3
1,

p2 = 6b2
0c

2
0c1 + 12b0c

2
0b1c1 + 84b1c

2
1b0c0 + 102b2

1c0c
2
1 + 84b2

1c
3
1

+ 6b2
0c

2
1c0 + 48b0c

3
1b1 + 30b2

1c1c
2
0 + 12b2

0c
3
1,

p3 = 3b2
0c

2
0c1 + 42b0c

3
1b1 + 6b1c

3
0b0 + 21b2

1c0c
2
1 + 12b0c

2
0b1c1 + 60b2

1c
3
1

+ 3b2
0c

2
1c0 + 12b1c

2
1b0c0 + 21b2

1c1c
2
0 + 6b2

0c
3
1 + 6b2

1c
3
0,

p4 = 24b0c
2
0b1c1 + 18b2

0c
2
1c0 + 60b1c

2
1b0c0 + 114b2

1c0c
2
1 + 60b0c

3
1b1

+ 78b2
1c

3
1 + 24b2

1c1c
2
0 + 6b2

0c
3
1.

From the small trees website, we can look up the Fourier transformation for this
problem; the Fourier coordinates are

q0000 = p1 + p2 + p3 + p4 = (b0 + 3b1)
2(c0 + 3c1)

3,

q0011 = p1 − 1

3
p2 + p3 − 1

3
p4 = (c0 + 3c1)(b0 + 3b1)

2(c0 − c1)
2,

q0111 = p1 + 1

3
p2 − 1

3
p3 − 1

3
p4 = (c0 + 3c1)(b0 − b1)

2(c0 − c1)
2,

q1111 = p1 − 1

3
p2 − 1

3
p3 + 1

3
p4 = (b0 − b1)

2(c0 − c1)
3.

As before, the Fourier coordinates are indexed according to the portions of the
subtree included and excluded. It is easy to check that q0011q

2
0111 = q0000q

2
1111;

therefore, the ideal is generated by

If = 〈q0011q
2
0111 − q0000q

2
1111〉.

15.6 Constructing the Phylogenetic Tree

Previously, we have seen how to compute branch lengths for an existing phylogenetic
tree using genomic alignments. In this section, we take up the study of how to
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construct the tree itself. For this we need a matrix of pairwise distances, called
a dissimilarity map, between the taxa of the tree. The map can be the result of a
multiple alignment between genomes. For example, it could be calculated by the
public domain software, MAVID, written for this purpose.

The number of possible trees for n taxa is exponential in n.

In Figure 15.6.1(a), we show a two-leaf unrooted tree. Also shown is an equivalent
form more commonly seen in phylogenetic studies. The tree may be described by the
notation (1, 2), indicating the leaves of the tree and their connectivity. This tree has
n = 2 leaves, no interior nodes, and one edge. There is only one such tree.

(a) (1, 2) (b) (1, 2, 3)

1

2

1

2

1

2

1

2

3

3or or
i1

Fig. 15.6.1.

By adding a new leaf, attaching it to the single existing edge, we obtain the n = 3
leaved tree of Figure 15.6.1(b). The notation (1, 2, 3) indicates that the leaves share
a common interior node, i1. By adding the new leaf, we have also added an interior
node. In general, one new interior node will be added for each new leaf, and so
inductively, the number of interior nodes is given by n− 2, equal to 1 here. It is also
seen that by dividing an edge for the leaf addition, we have created two new edges.

so inductively, the number of edges of a tree is given by 2n− 3, equal to 3 here. The
number of such three-leaved trees is one.

Once again we add a new leaf. This time there are three edges at which to make
The possibilities are

shown in Figure 15.6.2. In the first case, the leaf is added to the edge between the
interior node and leaf 3, in the second case to the edge between the interior node and
leaf 1, and in the third case to the edge between the interior node and leaf 2. Each
has n − 2 = 2 interior nodes and 2n − 3 = 5 edges. As noted, for this n = 4 case
there are three different trees.

(a) ((1, 2), (4, 3)) (b) ((1, 4), (3, 2)) (c) ((1, 3), (2, 4))

1

2

3

4

1

4

3

2

4

2

1

3

i1

i2

i2

i1

i2

i1

Fig. 15.6.2.

the attachment, giving rise to three different tree structures.

In general, the number of new edges created by the addition of a new leaf is two, and
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In general, moving from the n to the n+1 case, the number of different possibilities
is equal to the number of existing edges. Hence the number of tree structures increases
according to

1 · 3 · 5 · 7 · · · (2n− 5) = (2n− 5)!!.
The right-hand side of this equation defines a notation for the left-hand side. These
relationships between the number of leaves, interior nodes, edges, and tree structures
hold for unrooted phylogenetic trees having three edges adjacent at each interior
node.4

On the basis of this analysis, we see that the number of trees that have to be
searched in calculating a phylogenetic tree grows very rapidly with n; for n = 6, it is
105 trees, but for n = 10 the number is 2,027,025. As a result, maximum likelihood

Instead, methods are available utilizing
branch lengths, or more generally tree metrics.

Distance functions build trees two leaves at a time.

A dissimilarity map, d , on the first n integers, denoted by [n] = {1, 2, . . . , n}, is a
symmetric nonnegative-valued function satisfying

d(i, j) = d(j, i) ≥ 0, d(i, i) = 0.

The matrix of a dissimilarity map is the n×n matrix D whose (i, j)th element is dij .
A dissimilarity map is a metric on [n] if it satisfies the triangle inequality,

d(i, j) ≤ d(i, k)+ d(k, j), i, j, k ∈ [n].
A dissimilarity map d on [n] is a tree metric if there is a tree T with n leaves and a
nonnegative length for each edge such that for every pair of leaves i and j , the length
of the unique path from i to j equals d(i, j). An example is given in Figure 15.6.3
with corresponding distances presented in (15.6.4). For a tree metric, fix two leaves
i and j and let k be some leaf. It is easy to see that d(i, j) ≤ d(i, k) + d(k, j) by
considering the subtree spanned by i and k. So a tree metric is a metric.

A cherry of a tree is a pair of leaves both adjacent to the same node, their common
ancestor. Let (x, y) be a cherry of a tree, let v be their common ancestor, and let k be
any other leaf. Then5

d(v, k) = 1

2
(d(v, k)+ d(v, k))

= 1

2
(d(k, v)+ d(v, x)+ d(k, v)+ d(v, y)− (d(x, v)+ d(v, y)))

= 1

2
(d(x, k)+ d(y, k)− d(x, y)).

(15.6.1)

4 Since a rooted tree can be created from an unrooted tree by attaching the root to any edge,
the number of rooted binary trees on n leaves is (2n− 3)!!.

5 Use equality here because v is on the unique path from k to either x or y.

is usually infeasible for tree construction.
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Theorem 1 (Saitou and Nei). Let d be a tree metric on [n]. For every pair i, j ∈
[n], put

Qd(i, j) = (n− 2)d(i, j)−
∑
k �=i

d(i, k)−
∑
k �=j

d(j, k). (15.6.2)

The pair x, y ∈ [n] that minimizes Qd(i, j) is a cherry of the tree. Note that Qd(i, j)

will be negative if d is a metric, since d(i, j) ≤ d(i, k)+ d(k, j).

Given a dissimilarity map on n taxa, one can invoke the theorem to identify the
two taxa, x and y, most related, i.e., most likely to be a cherry of a phylogenetic
tree on these taxa. Let v denote their common node. To continue the construction,
we use (15.6.1) to define the distance from v to the other leaves of the tree. The
construction is now continued as if v were a leaf of the reduced set. We are led to the
neighbor-joining algorithm.

Neighbor-joining algorithm.

Step 1. Compute the (
n
2 ) values Qd(i, j) of (15.6.2); let x and y give the minimum.

Add x, y, and their common node v to the tree.

Step 2. Remove x and y from the list [n], but add v to the list. Extend the dissimi-
larity map to v by defining

d(v, k) = 1

2
(d(x, k)+ d(y, k)− d(x, y)) (15.6.1)

for all remaining leaves k in the list.

Step 3. If the reduced list is of length 3 or more, return to Step 1; otherwise, join
the last two with a common edge, completing the tree.

A tree metric, dT , can be created for the tree recursively. Add Step 1.5 between Steps
1 and 2 as follows:

Step 1.5 Pick an arbitrary element of the list, r , different from x and y, and define

dT (x, v) = 1

2
(d(x, y)+ d(x, r)− d(y, r)),

dT (y, v) = d((x, y)− dT (x, v).

(15.6.3)

If d is already a tree metric for some tree T , then the algorithm will find it, and the
metric dT constructed in Step 1.5 will be again d . Otherwise, we hope that dT will
be close to d .

Example. To illustrate the algorithm, let a dissimilarity map be given by the matrix

D =

1 2 3 4

1 − 10 11 14
2 10 − 3 12
3 11 3 − 13
4 14 12 13 −

⎛
⎜⎜⎝

⎞
⎟⎟⎠.

(15.6.4)
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1

4

13

3

8

6

2

2

Fig. 15.6.3.

Since this derives from a tree metric (see Figure 15.6.3), the algorithm should regen-
erate the tree.

First, calculate the Qd matrix using (15.6.2). For example,

Qd(1, 2) = (4− 2) ∗ 10− (10+ 11+ 14)+ (10+ 3+ 12) = −40.

In full, the matrix is

Qd =

⎡
⎢⎢⎣
− −40 −40 −46
−40 − −46 −40
−40 −46 − −40
−46 −40 −40 −

⎤
⎥⎥⎦.

The minimal value is −46 in two places, 1, 4 and 2, 3. This means that we may
choose either; the resulting graphs will be equivalent. Selecting 1 and 4, join them
by an internal node, i2 say, and remove them from the list, Step 2. In their place, add
i2 to the list with distances constructed using (15.6.1),

d(i2, 2) = 1

2
(d(2, 1)+ d(2, 4)− d(1, 4)) = 4,

d(i2, 3) = 1

2
(d(3, 1)+ d(3, 4)− d(1, 4)) = 5.

To figure the tree distances dT (1, i2) and dT (4, i2), select as “root’’ r = 2. Then
from (15.6.3),

dT (1, i2) = 1

2
(d(1, 4)+ d(1, 2)− d(2, 4)) = 6,

dT (4, i2) = d(1, 4)− dT (1, i2) = 8.

At this point the construction is as shown in Figure 15.6.4(a), and the new dis-
similarity distances figured above are noted in D′,

D′ =

2 3 i2

2 − 3 4
3 3 − 5
i2 4 5 −

⎛
⎝

⎞
⎠.
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(b) (c)(a)

Fig. 15.6.4. (a)–(c) Stages of the tree construction.

The next round continues with {2, 3, i2}. Invoking (15.6.2), now with n = 3,
gives −12 for all terms; e.g.,

Qd(2, 3) = 1 · 3− (3+ 4)− (3+ 5) = −12.

In fact, at this final stage, each term of Qd equals the negative of the sum of the
distances, −(3 + 4 + 5) = −12. Therefore, any pair may be selected, and each
choice gives an equivalent graph. So we choose 2 and 3 and join them through a
common vertex i1. The tree distances are calculated via (15.6.3) using, say, r = 1
as root,

dT (2, i1) = 1

2
(d(2, 3)+ d(1, 2)− d(3, 1)) = 1,

dT (3, i1) = d(2, 3)− dT (2, i1) = 2.

This gives the tree of Figure 15.6.4(b).
What remains is i1 and i2; their distance is figured using (15.6.1),

d(i1, i2) = 1

2
(d(2, i2)+ d(3, i2)− d(2, 3)) = 3.

These final two elements are simply joined, finishing the tree, Figure 15.6.4(c).

Exercises/Experiments

1. What is the branch length between the HSPs (high scoring pairs) of the Latimeria
chalumnae Hoxa-11 gene (AF287139) and the Polyodon spathula Hoxa-11 gene
(AY661748.1) as calculated by (15.2.8)? Use blastn to get the “identities’’(match
percent) between these DNA segments.

2. What is the substitution matrix a = eQK80 for the Kimora-80 rate matrix? Notice
that there are three distinct terms in a. Labeling these a0, a1, and a2, work out
the probabilities psame and pdif for the two-claw problem.

3. Under the Jukes–Cantor model, work out the probabilities psame and pdif for the
two-claw problem with an interior node on one edge; see Figure 15.6.5(a).
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a b

c

Fig. 15.6.5.

4. In the text, the maximum likelihood solution for the three-leaved tree with internal
node (Figure 15.4.1 or, equivalently, Figure 15.6.5(b)) was worked out. The
solution for the observed data, u = [31 5 7 11 13], can be computed from
the Maple program on p. 526 or the SINGULAR program on p. 527. Find the
solution to obtain θ1 = e1, θ2 = c1, and θ3 = d1. From these find the branch
length from the internal node i to 2; recall from (15.2.6) that

branchlen2 = 3γ t, and c1 = 1

4
(1− e−4γ t ),

the branch length from i to 3; similarly,

branchlen3 = 3δt, and d1 = 1

4
(1− e−4δt ),

and the branch length from 1 to i,

branchlen1 = 3(α + β)t, and e0 = 1

4
(1+ 3e−4(α+β)t ).

5. Assume that the following matrix defines a dissimilarity function among the pro-
teins: 1 = At1g20880, 2 = Hs20556011, 3 = CE13934, 4 = Hs14192947, and
5 = At5g53680. Construct the phylogenetic tree of these proteins based on this
dissimilarity function. Compare with KOG0149 of the Clusters of Orthogolous
Groups at NCBI, ⎡

⎢⎢⎢⎢⎣
− .96 .46 .54 .38
.96 − .64 .55 .43
.46 .64 − .33 .33
.54 .55 .33 − .39
.38 .43 .33 .39

⎤
⎥⎥⎥⎥⎦.
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Questions for Thought and Discussion

1. Discuss the problem of speciation: How do new species arise? How does a new
organism find a mate (speciation is defined in terms of mating)? How are new
species confirmed (how can you say that a species is new)? What problems are
there in verification?

2. What evidence do fossils and the fossil record provide in helping to fix phyloge-
netic trees?
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