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Overview

• Mathematical problem solutions

− exact, symbolic, analytical

− approximate, numerical

• Computer representations of N,Z,R,C

− Unsigned integers: UInt8, UInt16, UInt32, UInt64

− Signed integers: Int8, Int16, Int32, Int64

− Floating point numbers: Float32, Float64, Float128

• Approximation sequences
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• Analytic solutions: stated within the mathematical formalism

− In (R, +, ·), x3 = 2 has solution x = 21/3 = e(ln2)/3

− In (R, +, ·), y ′(t)= et has solution y(t)= et + C

− In (R, +, ·), y ′(t)= e−t2 has solution y(t) =
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• Though exact, in the sense of being stated within a given formalism, all the above require
approximations to obtain quantitative answers
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• Approximations: successive terms of a sequence whose limit is the exact answer

x= 21/3 = e(ln2)/3 = ea, xn = 1 + a +
a2

2!
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, lim
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xn = 21/3

• Approximations need not be numerical, e.g., method of exhaustion.

• Multiple sequences can have the same limit
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• Numerical analysis

− Devise approximation sequences for mathematical objects, y ′(t),
∫

y(t)dt

− Determine the convergence behavior of the approximation sequences
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• Mathematics defines N,Z,Q,R,C, e.g., N defined by counting by 1.

• Computers have finite memory, hence cannot exactly represent all numbers.

• N approximated by unsigned integers UInt8, UInt16, UInt32, UInt64 using 8, 16, 32,
64 bits. UInt8 can represent naturals from 0 to 28− 1.

• Z approximated by signed integers Int8, Int16, Int32, Int64 using 8, 16, 32, 64 bits.
Int8 can represent integers from −27 to 27− 1.

• Q approximated (in some languages) by pair of signed integers

• R approximated by floating point numbers Float32, Float64, Float128

x =±0.m1m2...mn× 10
b1b2...bp−2p

− sign bit: ±
− mantissa: m1m2...mn, mj ∈{0, 1}
− biased exponent: b1b2...bp, bj ∈{0, 1}

• C approximated by pair of floating point numbers
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• Number approximations do not necessarily satisfy properties of N,Z,R

• Examples:

− In UInt8: 150+200 cannot be represented, overflow
− In Float32, the series
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with displayed ordering of terms have different values for large n

• Quantify precision of floating point system by machine epsilon ǫ, smallest number of form

ǫ = 2k ∈F that satisfies 1 + ǫ =/ 1.

∴ eps=1.0;

∴ while (1.0+0.5*eps != 1.0)

global eps;

eps=0.5*eps;

end
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• As mentioned, different sequences can have the same limit
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• The continued fraction can be evaluated through
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• A natural question is: which sequence to choose? Considerations involve accuracy attained
for given n, computational effort for given n.
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