

Overview

- Mathematical problem solutions
 - exact, symbolic, analytical
 - approximate, numerical
- Computer representations of $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$
 - Unsigned integers: UInt8, UInt16, UInt32, UInt64
 - Signed integers: Int8, Int16, Int32, Int64
 - Floating point numbers: Float32, Float64, Float128
- Approximation sequences

- Analytic solutions: stated within the mathematical formalism
 - In $(\mathbb{R}, +, \cdot)$, $x^3 = 2$ has solution $x = 2^{1/3} = e^{(\ln 2)/3}$
 - In $(\mathbb{R}, +, \cdot)$, $y'(t) = e^t$ has solution $y(t) = e^t + C$
 - In $(\mathbb{R}, +, \cdot)$, $y'(t) = e^{-t^2}$ has solution $y(t) = \frac{\sqrt{\pi}}{2} \operatorname{erf}(t) + C = \int_0^t e^{-x^2} dx + C$
- Though exact, in the sense of being stated within a given formalism, all the above require approximations to obtain quantitative answers

$$e^{t} = \frac{t^{0}}{0!} + \frac{t^{1}}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + \dots$$

$$\operatorname{erf}(t) = \frac{2}{\sqrt{\pi}} \left(\frac{t}{1 \cdot 0!} - \frac{t^3}{3 \cdot 1!} + \frac{t^5}{5 \cdot 2!} - \dots + (-1)^n \frac{t^{2n+1}}{(2n+1) \cdot n!} + \dots \right)$$

Approximations: successive terms of a sequence whose limit is the exact answer

$$x = 2^{1/3} = e^{(\ln 2)/3} = e^a, x_n = 1 + a + \frac{a^2}{2!} + \dots + \frac{a^n}{n!}, \lim_{n \to \infty} x_n = 2^{1/3}$$

- Approximations need not be numerical, e.g., method of exhaustion.
- Multiple sequences can have the same limit

$$y_0 = 1, y_{n+1} = \frac{2}{3} \left(y_n + \frac{1}{y_n^2} \right), \lim_{n \to \infty} y_n = 2^{1/3}$$

- Numerical analysis
 - Devise approximation sequences for mathematical objects, $y'(t), \int y(t) dt$
 - Determine the convergence behavior of the approximation sequences

- Mathematics defines $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, e.g., \mathbb{N} defined by counting by 1.
- Computers have finite memory, hence cannot exactly represent all numbers.
- N approximated by unsigned integers UInt8, UInt16, UInt32, UInt64 using 8, 16, 32, 64 bits. UInt8 can represent naturals from 0 to 2^8-1 .
- \mathbb{Z} approximated by signed integers Int8, Int16, Int32, Int64 using 8, 16, 32, 64 bits. Int8 can represent integers from -2^7 to 2^7-1 .
- Q approximated (in some languages) by pair of signed integers
- ullet R approximated by floating point numbers Float32, Float64, Float128

$$x = \pm 0.m_1 m_2 \dots m_n \times 10^{b_1 b_2 \dots b_p - 2^p}$$

- sign bit: \pm
- mantissa: $m_1 m_2 ... m_n$, $m_i \in \{0, 1\}$
- biased exponent: $b_1b_2...b_p$, $b_i \in \{0,1\}$
- C approximated by pair of floating point numbers

- Number approximations do not necessarily satisfy properties of $\mathbb{N}, \mathbb{Z}, \mathbb{R}$
- Examples:
 - In UInt8: 150+200 cannot be represented, overflow
 - In Float32, the series

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, T_n = \frac{1}{n} + \frac{1}{n-1} + \dots + 1$$

with displayed ordering of terms have different values for large n

• Quantify precision of floating point system by machine epsilon ϵ , smallest number of form $\epsilon = 2^k \in \mathbb{F}$ that satisfies $1 + \epsilon \neq 1$.

```
.: eps=1.0;
.: while (1.0+0.5*eps != 1.0)
    global eps;
    eps=0.5*eps;
end
```

• As mentioned, different sequences can have the same limit

$$x_1 = 1.5, x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right), \lim_{n \to \infty} x_n = \sqrt{2}$$

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ddots}}}$$

The continued fraction can be evaluated through

$$z_1 = 2, z_{n+1} = 2 + \frac{1}{z_n}, y_n = 1 + \frac{1}{z_n}, \lim_{n \to \infty} y_n = \sqrt{2}$$

• A natural question is: which sequence to choose? Considerations involve accuracy attained for given n, computational effort for given n.