

Overview

- Mathematical problems: condition number
- Mathematical algorithms: absolute, relative errors and residuals
- Rate of convergence

- ullet A mathematical problem is a mapping from input set X to output set Y
- Often the mapping is a function: a single output $y \in Y$ for given input $x \in X$

$$f: X \to Y, y = f(x), x \xrightarrow{f} y$$

- Examples:
 - Compute the square of a real: $X = \mathbb{R}, Y = \mathbb{R}, y = f(x) = x^2$.
 - Find x solution of ax + b = c for given $a, b, c \in \mathbb{R}$, $a \neq 0$.

$$X = \mathbb{R} \setminus \{0\} \times \mathbb{R} \times \mathbb{R}, Y = \mathbb{R}, f(a, b, c) = (c - b) / a.$$

— Compute the innner product of two vectors $u, v \in \mathbb{R}^n$:

$$X = \mathbb{R}^n \times \mathbb{R}^n, Y = \mathbb{R}, y = f(\boldsymbol{u}, \boldsymbol{v}) = \sum_{i=1}^n u_i v_i$$

• For u, v continuous functions $u, v \in C^{(0)}([a, b])$, compute definite integral

$$f(u,v) = (u,v) = \int_a^b u(x) \, v(x) \, \mathrm{d}x, X = C^{(0)}([a,b]) \times C^{(0)}([a,b]), Y = \mathbb{R}.$$

• Compute the derivative of a function $g \in C^{(1)}(\mathbb{R})$

$$X = C^{(1)}(\mathbb{R}), Y = C^{(0)}(\mathbb{R}), f = d/dx$$
 (an operator).

• Find roots of polynomial $p_n(x) = a_n x^n + ... + a_1 x + a_0$. Input: polynomial coefficients $\mathbf{a} \in \mathbb{R}^{n+1}$, $a_n \neq 0$. Output: $\mathbf{x} \in \mathbb{R}^n$, $p_n(x_i) = 0$. $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$. The function $f: X \to Y$ cannot be written explicitly (corollary of Abel-Ruffini theorem), but there are approximations \tilde{f} of the root-finding function that can be implemented such $\tilde{f} \cong f$.

- How hard is it to solve a mathematical problem? Idea: a problem is difficult to solve if small changes in inputs produce large changes in output. "Small" and "large" require definition of a way to measure mathematical objects including numbers, vectors, functions.
- Organize mathematical objects as a vector space $\mathcal{V} = (V, S, +, \cdot)$

Addition rules for	$\forall a, b, c \in V$
$a + b \in V$	Closure
a + (b + c) = (a + b) + c	Associativity
a+b=b+a	Commutativity
0+a=a	Zero vector
a+(-a)=0	Additive inverse
Scaling rules for	$\forall a, b \in V$, $\forall x, y \in S$
$x \mathbf{a} \in V$	Closure
x(a+b) = xa + xb	Distributivity
$(x+y)\boldsymbol{a} = x\boldsymbol{a} + y\boldsymbol{a}$	Distributivity
x(ya) = (xy)a	Composition
1a = a	Scalar identity

• Examples: $(\mathbb{R}, \mathbb{R}, +, \cdot), (\mathbb{R}^n, \mathbb{R}, +, \cdot), (C^0[a, b], \mathbb{R}, +, \cdot)$

Definition. A norm on vector space \mathcal{X} is a function $\|\cdot\|: X \to \mathbb{R}_+$, that for any $x, y, z \in X$, $\alpha \in \mathbb{R}$ satisfies the properties:

- 1. ||x|| = 0 if and only if x=0.
- 2. ||ax|| = |a| ||x||
- 3. $||x+y|| \le ||x|| + ||y||$
- In $(\mathbb{R}, \mathbb{R}, +, \cdot)$, $x \in \mathbb{R}, ||x|| = |x|$
- In $(\mathbb{R}^m,\mathbb{R},+,\cdot)$, $m{x}\in\mathbb{R}^n$, $\|m{x}\|_p=(\sum_{i=1}^m|x_i|^p)^{1/p}$
- In $(C[a,b], \mathbb{R}, +, \cdot)$, $g \in C[a,b]$, $||g||_{\infty} = \max_{a \leqslant x \leqslant b} |g(x)|$
- In $(C[a,b], \mathbb{R}, +, \cdot)$, $g \in C[a,b]$, $||g||_2 = (\int_a^b [g(x)]^2 dx)^{1/2}$
- In $(C[a,b], \mathbb{R}, +, \cdot)$, $g \in C(a,b)$, $||g||_{\infty} = \sup_{a < x < b} |g(x)|$

• With an appropriate formalism now defined (vector space, norm), quantify the idea of "large output change for small input change"

Definition. The problem $f: X \rightarrow Y$ has absolute condition number

$$\hat{\kappa} = \lim_{\varepsilon \to 0} \sup_{\|\delta x\| \leqslant \varepsilon} \frac{\|f(x + \delta x) - f(x)\|}{\|\delta x\|}$$

For f differentiable, the absolute condition number is norm of the Jacobian

$$\hat{\kappa} = \|\boldsymbol{J}\|, \boldsymbol{J} = \partial f / \partial x$$

Definition. The problem $f: X \rightarrow Y$ has relative condition number

$$\kappa = \lim_{\varepsilon \to 0} \sup_{\|\delta x\| \leqslant \varepsilon} \frac{\|f(x + \delta x) - f(x)\|}{\|f(x)\|} \cdot \frac{\|x\|}{\|\delta x\|}.$$

• Condition number of the identity mapping, $f: X \to X$, f(x) = x

$$\hat{\kappa} = ||f'|| = 1$$

Change in output is as large as that in input: the problem is well conditioned.

• Condition number of subtraction: $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_1 - x_2$

$$\hat{\kappa} = \|\boldsymbol{J}\|, \boldsymbol{J} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix}, \hat{\kappa} = \|\boldsymbol{J}\|_{\infty} = 2$$

$$\kappa = \frac{\|\boldsymbol{J}\|_{\infty}}{\|f\|/\|\boldsymbol{x}\|} = \frac{2}{|x_1 - x_2|/\max(x_1, x_2)}$$

Problem is well conditioned in absolute terms, ill conditioned in relative terms for $x_1 \cong x_2$.

- - For $f: X \to Y$ that cannot be solved analytically, devise an algorithm $\tilde{f}: \tilde{X} \to \tilde{Y}$ to furnish an approximate solution.
 - Assume $\tilde{X} = X$ and $\tilde{Y} = Y$, no error in representation of domain, codomain.

Definition. The absolute error of algorithm $\tilde{f}: X \to Y$ that approximates the problem $f: X \to Y$ is

$$e = \|\tilde{f}(x) - f(x)\| = \|\tilde{y} - y\|.$$

Definition. The relative error of algorithm $\tilde{f}: X \to Y$ that approximates the problem $f: X \to Y$ is

$$\varepsilon = \frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = \frac{\|\tilde{y} - y\|}{\|y\|}.$$

Definition. An algorithm $\tilde{f}: X \to Y$ is accurate if there exists finite $M \in \mathbb{R}_+$ such that

$$\varepsilon = \frac{\|f(x) - f(x)\|}{\|f(x)\|} \leqslant M\epsilon_{\text{mach}}$$

- Let $\{y_n\}_{n\in\mathbb{N}}$ be a sequence of approximations of y, $\lim_{n\to\infty}y_n=y$
- Recall definition of limit: $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$ such that for $n > N_{\varepsilon}$, $|y_n y| < \varepsilon$
- Difficulty: y is not known! (that's the whole point of a numerical algorithm that constructs approximations of y)
- Two approaches:
 - Adopt Cauchy sequence criterion: $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$ such that for $n > N_{\varepsilon}$, $p \in \mathbb{N}^*$, $|y_{n+p} y| < \varepsilon$. This means successive terms are getting closer to one another. Most often p = 1. In complete metric spaces (\mathbb{R} , \mathbb{R}^m) Cauchy sequences converge.
 - 2 Estimate approximation convergence through *residual*. For mathematical problem y=f(x), formulate F(x,y)=y-f(x)=0. The residual at step n of the approximation sequence is $r_n=F(x,y_n)$. Estimate convergence in terms of $\{r_n\}_{n\in\mathbb{N}}$, $\lim_{n\to\infty}r_n=0$.

• Practical computation is concerned not only with accuracy, but also with minimizing computational effort.

Definition. $\{y_n\}_{n\in\mathbb{N}}$ converges to y with rate $r\in(0,1)$ and order p if

$$\lim_{n \to \infty} \frac{|y_{n+1} - y|}{|y_n - y|^p} = r. \tag{1}$$

ullet The above definition requires knowledge of the exact solution y. Replace with a Cauchy-type definition

$$\lim_{n \to \infty} \frac{|y_{n+2} - y_{n+1}|}{|y_{n+1} - y_n|^p} = r.$$

• p = 1, 2, 3 are known as *linear*, *quadratic*, *cubic convergence*, respectively.