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Overview

• Polynomial interpolant forms
− Monomial basis
− Newton basis

• Interpolation accuracy
• Inexact data
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• Recall: f :R→R, “difficult” to compute, and known through a sample

D= {(xi, yi), i = 0, 1, 2, ...,m}, yi = f(xi), i=/ j⇒ xi =/ xj.

• Approximation built from linear combination of {g0(t), g1(t), ..., gn(t)}

g(t)= c0 g0(t)+ c1 g1(t) + ···+ cn gn(t)

• Lagrange basis: li(t) =
∏

j=0

m ′ (t−xj) or ℓi(t) =
∏

j=0

m ′ (t− xj)
∏

j=0

m ′ (xi−xj)

• Monomial basis {1, t, t2, ...}

p(t)= c0 · 1 + c1 t + ···+ cn tn

• Newton basis {n0(t), ..., nn(t)}= {1, t−x0, (t−x0)(t−x1), ...}

p(t) = c0 · 1+ c1 (t−x0) + ···+ cn (t−x0)(t−x1)...(t−xn−1)
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• Monomial basis functions are almost indistinguishable over portions of the function domain,
closer to linearly dependent than the Lagrange basis functions

• Intuitive analogy from linear algebra: b∈R
m can be expressed either in an orthogonal basis

{e1, ...,em} or a non-orthogonal basis {a1, ...,am}

b= b1e1 + ···+ bmem = x1a1 + ···+ xmam⇔ b= Ax

When A is close to singular, small errors in b lead to large errors in x. Orthogonal bases
are preferable.
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• Behavior similar to monomial basis: almost indistinguishable over portions of the domain.

• Ideally the basis functions {g0(t), ..., gn(t)} would be orthonormal with respect to a scalar
product with weight w(t)

(gi, gj)=

∫

a

b

w(t) gi(t) gj(t) dt = δij =

{

1 if i= j

0 if i=/ j

Compare with vector scalar product uT v = u1v1 + ···+ umvm.
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• Interpolation conditions p(xi) = c0 + c1xi + ···+ cn xi
n = f(xi) = yi lead to

p(t)= [ 1 t ... tn ]
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⇔Xc = y.

• The matrix X is known as a Vandermonde matrix and though non-singular for distinct
sample nodes (i =/ j⇒ xi =/ xj), can be become close to singular.

• For given distinct data, the interpolating polynomial is unique
• Coefficients of the monomial basis require solving the linear system, Xc = y, at O(n3/3)

FLOPs, more expensive than the O(n2) for Lagrange form
• Notes:

− Though p(t)=c0 ·1+c1 t+ ···+cn tn is the most often encountered form of a polynomial
in analytical mathematics, other forms are more useful in numerical approximation

− Monomial, Lagrange are different forms of the unique interpolating polynomial
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• Interpolation conditions lead to a triangular system

p(t)= [ n0(t) n1(t) ... nn(t) ]
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• Solving the above system now requires O(n2/2)

• The Newton interpolating polynomial arises in finite difference calculus.
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• The first few coefficients are

d0 = y0, d1 =
y1− d0

x1−x0
=

y1− y0

x1−x0
,

d2 =
y2− (x2−x0)d1− d0

(x2−x0)(x2−x1)
=

y2− y1

x2−x1
−

y1− y0

x1−x0

x2−x0
.

• Introduce divided differences: [yi] = yi,

[yi+1, yi] =
[yi+1]− [yi]

xi+1−xi

=
yi+1− yi

xi+1−xi

, [yi+2, yi+1, yi] =
[yi+2, yi+1]− [yi+1, yi]

xi+2−xi

[yi+k, yi+k−1, ..., yi] =
[yi+k, yi+k−1, ..., yi+1]− [yi+k−1, yi+k−1, ..., yi]

xi+k −xi

• Obtain

p(t) = [y0] · 1 + [y1, y0] · (t−x0) + ···+ [yn, ..., y0] · (t−x0) · ... · (t−xn−1).
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• Polynomial interpolant has no error at sampling nodes, p(xi)= f(xi)

• What about other points. Introduce error function e(t)= f(t)− p(t)

• Assume f ∈C∞(R) (smooth). The error is the reminiscent of Taylor series remainder

f(t)− p(t)=
f (n+1)(ξt)

(n + 1)!

∏

i=0

n

(t−xi)=
f (n+1)(ξt)

(n + 1)!
w(t).

• Above obtained by repeated application of Rolle’s theorem to the function

Φ(u)= f(u)− p(u)−
f(t)− p(t)

w(t)
w(u),

• Φ(u) n+2 has roots at t, x0, x1, ..., xn, hence its (n+1)-order derivative must have a root
in the interval (x0, xn), denoted by ξt

Φ(n+1)(ξt)=
dn+1Φ

dun+1
(ξt)= 0 = f (n+1)(ξt)−

f(t)− p(t)

w(t)
(n + 1)!

• Idea: choose xi to minimize error. This leads to Chebyshev basis, Lessons 9,10.
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• If yi = f(xi) are not known exactly, replace interpolation p(xi) = yi by

g(xi) =∼ yi, g(xi)= yî =∼ yi

• Define Lebesgue function to expresses deviation from known data,

λ(t) =
∑

i=0

n

|ℓi(t)|

• Define the worst case by the Lebesgue constant

Λ = max
a6t6b

λ(t)

• The distance between:
1 the interpolant p(t), p(xi)= yi, and

2 another approximating polynomial g(t), g(xi)= yî,

is bounded by the errors in the data |yi− yî|6 δ and the Lebesgue constant

‖p− g‖∞ = max
a6t6b

|p(t)− g(t)|6 Λδ .

• The Lebesgue constant depends on the chosen sample nodes.
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