

Overview

Motivation: A first application of function approximation is to devise procedures to find the roots or zeros of a real function of single variable $f: [a, b] \to \mathbb{R}$. The procedures devised for scalar functions can be subsequently extended to multivariate and vector-valued functions

- Calculus of real functions of one variable
- The root-finding process
 - Root locations: qualitative plots
 - Interval reduction: bisection

Calculus is the study of continuous change, based upon the fundamental concepts of:

Real numbers ${\mathbb R}$	Functions $f: D \rightarrow C$	Function limits $\lim_{x\to c} f(x)$
----------------------------	--------------------------------	--------------------------------------

• Real numbers measure continuous quantities and are graphically represented by the real axis

- f associates input x from D (domain) to a single output y from C (codomain) y = f(x) states that y is the single output of the function f for given input x f is one-to-one if output y is produced by a single input x, in which case $x = f^{-1}(y)$, f^{-1} : $C \to D$ is the inverse function of f.
- The limit $\lim_{x\to c} f(x)$ describes the function f at an infinity of points near to c. Formal definition: For any $\varepsilon>0$ there exists a $\delta(\varepsilon)$ such that from $|x-c|<\delta(\varepsilon)$ it follows that $|f(x)-L|<\varepsilon$.

- Problem: $f: \mathbb{R} \to \mathbb{R}$, find $\mathcal{Z} = \{z_k: f(z_k) = 0, k \in \mathcal{K}\}$ the null set of f
- Assume $\mathcal{K} \subset \mathbb{N}$, $|\mathcal{K}| = m > 0$, $\mathcal{Z} = \{z_k: f(z_k) = 0, k = 1, 2, ..., m\}$
- Root-finding phases:

- Root localization. Find intervals $[a_k, b_k]$, $a_k \leqslant z_k \leqslant b_k$, $z_j \notin [a_k, b_k]$ for $j \neq k$

$$f(a_k) f(b_k) \leqslant 0$$

- Interval reduction (optional). Find sequence of smaller intervals containing a root: $a_k^{(n)}$, $|b_{k}^{(n)}| \subset [a_{k}^{(n-1)}, b_{k}^{(n-1)}] \subset \dots [a_{k}^{(1)}, b_{k}^{(1)}] \subset [a_{k}^{(0)}, b_{k}^{(0)}] = [a_{k}, b_{k}]$
- Root refinement. Find approximation $z_k^{(n)}$ of z_k to within:
 - \rightarrow maximum residual δ , $|f(z_k^{(n)})| \leqslant \delta$
 - \rightarrow maximum error e, $|z_k^{(n)} z_k| \leqslant e$ replaced usually by $|z_k^{(n+1)} z_k^{(n)}| \leqslant e$
 - maximum relative error arepsilon

$$\frac{|z_k^{(n)} - z_k|}{|z_k|} \leqslant \varepsilon, \text{ replaced by } \frac{|z_k^{(n+1)} - z_k^{(n)}|}{|z_k^{(n+1)}|} \leqslant \varepsilon$$

- How hard is the root-finding problem?
- Define root-finding mathematical problem, mapping $F: X \to Y$
 - Input set $X = \{f: \mathbb{R} \to \mathbb{R}\}$, the set of functions whose zero sets are sought
 - Output set $Y = \mathbb{Z} = \{z_k: f(z_k) = 0, k = 1, 2, ..., m\}$, the zero sets
- ullet Note: the mathematical root-finding problem F is different from $f\in X$
- Example:
 - Find z solution of f(x) = ax + b = 0 for given $a, b \in \mathbb{R}$, $a \neq 0$.

$$X = \mathbb{R} \setminus \{0\} \times \mathbb{R}, Y = \mathbb{R}, z_1 = F(a, b) = -b/a.$$

F is differentiable and has condition number

$$\kappa = \|\boldsymbol{J}\|, \boldsymbol{J} = \begin{bmatrix} \frac{\partial F}{\partial a} & \frac{\partial F}{\partial b} \end{bmatrix} = \begin{bmatrix} -\frac{b}{a^2} & -\frac{1}{a} \end{bmatrix}$$

Intuitively, for $a \cong \epsilon$, the root finding problem is *hard*, $\kappa \gg 1$.

• In general $\kappa = \|\delta F / \delta f\|$ Gateaux derivative w.r.t. to function f.

• Consider $f \in C^2(a,b)$, construct plot of $f: \mathbb{R} \to \mathbb{R}$

Figure 1. Qualitative function plot

x	$-\infty$	-2	-0.93	0	0.93	2	∞
f	$-\infty$			0		0	∞
f'	+	+	0	_	0	+	+
J	ا ا	י א	O		O	ا ح	ا ح
f''				\(\rangle \)			/
J	U	_	_	U	+	+	U

 Table 1. Root. Critical point. Inflection point. Increasing. Decreasing. Concave up, down.

ullet Qualitative function analysis furnishes root intervals $[a_k,b_k]$

- Idea:
 - Start from [a, b] with $f(a)f(b) \leq 0$
 - Obtain smaller interval by computing f(c), c = (a+b)/2 = a + (b-a)/2
 - \rightarrow If f(a)f(c) < 0 then redefine b = c
 - \rightarrow If f(c) f(b) < 0 then redefine a = c
- ullet Obtain a sequence of intervals $[a_n,b_n]$ of decreasing length containing the root
 - $h_0 = (b a)$
 - $h_n = h_0/2^n = b_n a_n$
 - $-z \in [a_n, b_n]$
- At iteration n, $z_n \cong c_n$

$$|z_n - z| \leqslant h_0 / 2^{n+1}$$

Linear order of convergence

$$\frac{|z_{n+1}-z|}{|z_n-z|} \cong \frac{1}{2} < 1.$$

• Computational complexity: one function evaluation (f(c)) per iteration

```
Algorithm - Bisection method
      Input: f, a, b, \varepsilon
      if a > b then swap(a, b)
      fa \leftarrow f(a); fb \leftarrow f(b)
      \delta \leftarrow b - a
      while \delta > \varepsilon and fa \cdot fb \leq 0
         \delta \leftarrow \delta/2; c \leftarrow a + \delta; fc \leftarrow f(c)
                                                                                           else
          if fa \cdot fc \leq 0
                 b \leftarrow c; fb \leftarrow fc
                                                                                            end
                                                                                        end
          else
                 a \leftarrow c; fa \leftarrow fc
                                                                                    end;
      return c
```

```
\therefore function bisect(f,a,b,\varepsilon)
      if (a>b) a,b=b,a end
     fa=f(a); fb=f(b)
     \delta = b - a; c = (a + b)/2
     while ((\delta > \epsilon) \&\& (fa*fb <= 0))
        \delta = \delta/2; c=a+\delta; fc=f(c)
        if (fa*fc<=0)
           b,fb=c,fc
           a,fa=c,fc
     return c
f(x)=x^2-2; a=1; b=2; \epsilon=0.01;
\therefore [bisect(f,a,b,\epsilon) sqrt(2.0)]
```

• Computational complexity: one function evaluation (f(c)) per iteration

```
Algorithm - Bisection method
      Input: f, a, b, \varepsilon
      if a > b then swap(a, b)
      fa \leftarrow f(a); fb \leftarrow f(b)
      \delta \leftarrow b - a
      while \delta > \varepsilon and fa \cdot fb \leq 0
          \delta \leftarrow \delta/2; c \leftarrow a + \delta; fc \leftarrow f(c)
          if fa \cdot fc \leq 0
                  b \leftarrow c; fb \leftarrow fc
          else
                  a \leftarrow c: fa \leftarrow fc
      return c
```

```
\therefore function bisect(f,a,b,\varepsilon)
     if (a>b) a,b=b,a end
     fa=f(a); fb=f(b)
     \delta = b - a; c = (a + b)/2
     while ((\delta > \epsilon) \&\& (fa*fb <= 0))
       \delta = \delta/2; c=a+\delta; fc=f(c)
        if (fa*fc<=0)
          b,fb=c,fc
       else
          a,fa=c,fc
       end
     end
     return c
  end;
f(x)=x^2-2; a=1; b=2; \epsilon=0.01;
\therefore [bisect(f,a,b,\epsilon) sqrt(2.0)]
     (1)
```