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Overview

Motivation: A first application of function approximation is to devise procedures to find the roots
or zeros of a real function of single variavle f : [a, b]→R. The procedures devised for scalar
functions can be subsequently extended to multivariate and vector-valued functions

• Calculus of real functions of one variable

• The root-finding process

− Root locations: qualitative plots

− Interval reduction: bisection
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• Calculus is the study of continuous change, based upon the fundamental concepts of:

Real numbers R Functions f : D→C Function limits limx→cf(x)

• Real numbers measure continuous quantities and are graphically represented by the real axis
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• f associates input x from D (domain) to a single output y from C (codomain)

y = f(x) states that y is the single output of the function f for given input x

f is one-to-one if output y is produced by a single input x, in which case x= f−1(y), f−1:
C→D is the inverse function of f .

• The limit limx→cf(x) describes the function f at an infinity of points near to c.

Formal definition: For any ε > 0 there exists a δ(ε) such that from |x− c|<δ(ε) it follows
that |f(x)−L|<ε.
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• Problem: f :R→R, find Z = {zk: f(zk) = 0, k ∈K} the null set of f

• Assume K⊂N, |K|= m > 0, Z = {zk: f(zk) = 0, k = 1, 2, ...,m}
• Root-finding phases:

− Root localization. Find intervals [ak, bk], ak 6 zk 6 bk, zj ∈/ [ak, bk] for j =/ k

f(ak) f(bk)6 0

− Interval reduction (optional). Find sequence of smaller intervals containing a root: [ak
(n)

,

bk
(n)]⊂ [ak

(n−1)
, bk

(n−1)]⊂ ...[ak
(1)

, bk
(1)]⊂ [ak

(0)
, bk

(0)] = [ak, bk]

− Root refinement. Find approximation zk
(n)

of zk to within:

→ maximum residual δ, |f(zk
(n))|6 δ

→ maximum error e, |zk
(n)− zk |6 e replaced usually by |zk

(n+1)− zk
(n)|6 e

→ maximum relative error ε

|zk
(n)− zk|
|zk|

6 ε, replaced by
|zk

(n+1)− zk
(n)|

|zk
(n+1)|

6 ε
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• How hard is the root-finding problem?

• Define root-finding mathematical problem, mapping F : X→Y

− Input set X = {f :R→R}, the set of functions whose zero sets are sought

− Output set Y =Z = {zk: f(zk) = 0, k = 1, 2, ...,m}, the zero sets

• Note: the mathematical root-finding problem F is different from f ∈X

• Example:

− Find z solution of f(x) = a x+ b= 0 for given a, b∈R, a =/ 0.

X =R\{0}×R, Y =R, z1 = F (a, b)=−b/a.

F is differentiable and has condition number

κ= ‖J ‖,J =

[

∂F

∂a

∂F

∂b

]

=

[

− b

a2
−1

a

]

Intuitively, for a =∼ ǫ, the root finding problem is hard , κ≫ 1.

• In general κ = ‖δF /δf ‖ Gateaux derivative w.r.t. to function f .
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• Consider f ∈C2(a, b), construct plot of f :R→R

Figure 1. Qualitative function plot
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Table 1. Root. Critical point. Inflection point. Increasing. Decreasing. Concave up, down.

• Qualitative function analysis furnishes root intervals [ak, bk]
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• Idea:

− Start from [a, b] with f(a)f(b)6 0

− Obtain smaller interval by computing f(c), c = (a + b)/2 = a + (b− a)/2

→ If f(a)f(c)< 0 then redefine b = c

→ If f(c)f(b) < 0 then redefine a = c

• Obtain a sequence of intervals [an, bn] of decreasing length containing the root

− h0 = (b− a)

− hn = h0/2n = bn− an

− z ∈ [an, bn]

• At iteration n, zn =∼ cn

|zn− z |6 h0/2n+1

Linear order of convergence

|zn+1− z |
|zn− z | =∼

1

2
< 1.
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• Computational complexity: one function evaluation (f(c)) per iteration

Algorithm - Bisection method

Input: f , a, b, ε

if a > b then swap(a, b)
fa← f(a); fb← f(b)
δ← b− a

while δ > ε and fa · fb6 0
δ← δ/2; c← a + δ; fc← f(c)
if fa · fc6 0

b← c; fb← fc

else
a← c; fa← fc

return c

∴ function bisect(f,a,b,ε)

if (a>b) a,b=b,a end

fa=f(a); fb=f(b)

δ=b-a; c=(a+b)/2

while ((δ>ε) && (fa*fb<=0))

δ=δ/2; c=a+δ; fc=f(c)

if (fa*fc<=0)

b,fb=c,fc

else

a,fa=c,fc

end

end

return c

end;

∴ f(x)=x^2-2; a=1; b=2; ε=0.01;

∴ [bisect(f,a,b,ε) sqrt(2.0)]

∴
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if (a>b) a,b=b,a end

fa=f(a); fb=f(b)

δ=b-a; c=(a+b)/2

while ((δ>ε) && (fa*fb<=0))
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if (fa*fc<=0)
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else
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[ 1.4140625 1.4142135623730951 ] (1)

∴
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