

Overview

- Weighted quadrature method of moments
- Optimal sampling Gauss quadrature
- Common Gauss quadrature methods:
 - Gauss-Legendre $\int_{-1}^{1} f(t) dt$
 - Gauss-Chebyshev $\int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^2}} dt$
 - Gauss-Laguerre $\int_0^\infty e^{-t} f(t) dt$
 - Gauss-Legendre $\int_{-\infty}^{\infty} e^{-t^2} f(t) dt$

• $f: \mathbb{R} \to \mathbb{R}$ known through data set (f sample) $\mathcal{D} = \{(x_i, f_i), i = 0, 1, ..., n\}$

$$\int_a^b f(t) dt \cong \sum_{i=0}^n \left(\int_a^b \ell_i(t) dt \right) f_i = \sum_{i=0}^n w_i f_i$$

- ullet Set a simple, predefined integration domain, e.g., [0,1], $x_i\!=\!i\,h$, $h\!=\!1/n$
- Monomial basis set: $\mathcal{M} = \{1, t, t^2, ...\}$ conditions

$$f(t) = 1: \int_0^1 1 \, dt = 1 = \sum_{i=0}^n w_i$$

$$f(t) = t: \int_0^1 t \, dt = \frac{1}{2} = h \sum_{i=0}^n w_i i$$

$$f(t) = t^2: \int_0^1 t^2 \, dt = \frac{1}{3} = h \sum_{i=0}^n w_i i^2$$
....

- Solve above system to find weights w_i , obtain formula with error $e \propto \|f^{(n)}\|_{\infty}$
- What if $f^{(n)}$ is not defined (infinite) at some points in the integration domain?

Consider integrals of form

$$I_{ab}(f) = \int_{a}^{b} \omega(t) f(t) dt$$

- Typically:
 - f is smooth, e.g., $f \in C^{\infty}[a,b]$ (all derivatives exist, are finite)
 - $-\ w$ captures some singular behavior of the integral
- Examples:
 - Chebyshev weight

Laguerre weight

Hermite weight

$$T(f) = \int_{-1}^{1} \frac{f(t)}{\sqrt{1 - t^2}} \, \mathrm{d}t$$

$$L(f) = \int_0^\infty e^{-t} f(t) dt$$

$$H(f) = \int_{-\infty}^{\infty} e^{-t^2} f(t) dt$$

- As in the $\omega(t)=1$ case, choose f evaluation points, $x_i=a+i\,h$, h=(b-a)n
- Choose a basis set, e.g., monomials $\mathcal{M} = \{1, t, t^2, ...\}$ and impose exact result when using exact, analytical weight function $\omega(t)$
- Example for Chebyshev, $\omega(t) = (1-t^2)^{-1/2}$, $x_i = ih 1$, h = 2/n, i = 0, ..., n

$$f(t) = 1: \int_{-1}^{1} \omega(t) 1 \, dt = \int_{-1}^{1} \frac{1}{\sqrt{1 - t^2}} \, dt = \pi = \sum_{i=0}^{n} w_i$$

$$f(t) = t: \int_{-1}^{1} \omega(t) t \, dt = \int_{-1}^{1} \frac{t}{\sqrt{1 - t^2}} \, dt = 0 = \sum_{i=0}^{n} w_i (ih - 1)$$

$$f(t) = t^2: \int_{-1}^{1} \omega(t) t^2 \, dt = \int_{-1}^{1} \frac{t^2}{\sqrt{1 - t^2}} \, dt = \frac{\pi}{2} = \sum_{i=0}^{n} w_i (ih - 1)^2$$

• Up to now the sampling points x_i were arbitrarily chosen

$$I_{ab}(f) = \int_{a}^{b} f(t) dt \cong Q_{ab}(f) = \sum_{i=0}^{n} w_{i} f(x_{i})$$

- One could obtain more accurate method by optimal choice of x_i , more of the moment equations could be satisfied, 2(n+1) instead of only n+1
- Difficult to do within method of moments since a non-linear system results

$$f(t) = 1: \int_0^1 1 \, dt = 1 = \sum_{i=0}^n w_i$$

$$f(t) = t: \int_0^1 t \, dt = \frac{1}{2} = \sum_{i=0}^n w_i x_i$$

$$f(t) = t^2: \int_0^1 t^2 \, dt = \frac{1}{3} = \sum_{i=0}^n w_i x_i^2$$

- Solving the nonlinear system can be avoided by use of orthogonal polynomials
- Consider

$$I_{ab}(f) = \int_{a}^{b} \omega(t) f(t) dt \cong Q_{ab}(f) = \sum_{i=0}^{n} w_{i} f_{i}, f_{i} = f(x_{i})$$

- ullet In method of moments there are 2(n+1) parameters, n+1 weights, n+1 x_i 's
- Can impose exact quadrature up to degree 2n+1
- Consider $p_{2n+1}(t)$ a polynomial of degree 2n+1

$$I_{ab}(p) = \int_{a}^{b} \omega(t) p(t) dt$$

• Introduce scalar product

$$(f,g)_{\omega} = \int_{a}^{b} \omega(t) f(t) g(t) dt$$

with $\omega(t)$ assumed to satisfy scalar product properties $(t \in [a, b] \Rightarrow \omega(t) \ge 0)$

• Introduce $\varphi_k(t)$ polynomials orthogonal w.r.t. $(f,g)_\omega$ scalar product

$$(\varphi_j, \varphi_k)_{\omega} = \delta_{jk}$$

- φ_k polynomials can be found by Gram-Schmidt algorithm applied to $\{1, t, ...\}$
- Divide $p_{2n+1}(t)$ by $\varphi_{n+1}(t)$

$$p_{2n+1}(t) = q_n(t) \varphi_{n+1}(t) + r_n(t)$$

• Example $p(t) = 3t^3 - 2t^2 + t + 1$ divided by $\varphi_1(t) = t^2 + t + 1$, $p_3(t) = q_1(t) \varphi_2(t) + r_1(t)$, $q_1(t) = 3t - 5$, $r_1(t) = 3t + 6$

• Integrate p_{2n+1}

$$\int_a^b \omega(t) p_{2n+1}(t) dt = \int_a^b \omega(t) q_n(t) \varphi_{n+1}(t) dt + \int_a^b \omega(t) r_n(t) dt$$

ullet However, $arphi_{n+1}$ orthogonal w.r.t. to all polynomials of degree at most n \Rightarrow

$$\int_{a}^{b} \omega(t) q_{n}(t) \varphi_{n+1}(t) dt = 0$$

Obtain

$$\int_{a}^{b} \omega(t) p_{2n+1}(t) dt = \int_{a}^{b} \omega(t) r_{n}(t) dt = \sum_{i=0}^{n} w_{i} r_{n}(x_{i})$$

implying that a formula that is exact for polynomials up to degree n is also exact for p_{2n+1} of degree 2n+1.

- Gauss observation: the only values of p_{2n+1} that arise are $p_{2n+1}(x_i)$. Can x_i be chosen such that $r_n(x_i) = p_{2n+1}(x_i) = q_n(x_i) \varphi_{n+1}(x_i) + r_n(x_i)$? Yes!
- Choose evaluation point x_i such that $\varphi_{n+1}(x_i) = 0$, roots of φ_{n+1}

- $I(f) = \int_{-1}^{1} f(t) dt$, weight $\omega(t) = 1$, scalar product $(f, g) = \int_{-1}^{1} f(t) g(t) dt$
- Orthogonal family of polynomials are the Legendre polynomials

$$\left\{1, t, \frac{1}{2}(3t^2 - 1), \frac{1}{2}(5t^3 - 3t), \frac{1}{8}(35t^4 - 30t^2 + 3), \dots\right\}$$

- Gauss-Legendre quadrature formulas
 - GL2 $n+1=2 \Rightarrow \varphi_2(t)=\frac{1}{2}(3t^2-1)$ with roots $x_0=-\frac{1}{\sqrt{3}}$, $x_1=\frac{1}{\sqrt{3}}$.

$$I(f) = \int_{-1}^{1} f(t) dt \cong Q(f) = f(x_0) + f(x_1), w_0 = w_1 = 1,$$

exact up to cubics $I(p_3) = Q(p_3)$

 $- \quad \text{GL3 } n+1=3 \Rightarrow \varphi_3(t) = \frac{1}{2}(5t^3-3t) \text{ with roots } x_{0,2} = -\frac{\sqrt{3}}{\sqrt{35}}, x_1=0,$

$$\int_{-1}^{1} f(t) dt \cong Q(f) = \frac{5}{9} f(x_0) + \frac{8}{9} f(x_1) + \frac{5}{9} f(x_2), w_0 = w_2 = \frac{5}{9}, w_1 = \frac{8}{9}$$

exact up to quintics $I(p_5) = Q(p_5)$

• Gauss-Chebyshev sample points given by roots of $T_{n+1}(\theta) = \cos(n\theta)$, $x = \cos\theta$

$$x_i = \cos \frac{(2i+1)\pi}{2(n+1)}, i = 0, 1, 2, ..., n$$

Gauss-Chebyshev weights are especially simple, they're all equal!

$$w_i = \frac{\pi}{n+1}$$

$$\int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^2}} dt \cong Q(f) = \sum_{i=0}^{n} w_i f_i, f_i = f(x_i)$$

Relevant for Laplace transforms

$$\int_0^\infty e^{-t} f(t) dt \cong Q(f) = \sum_{i=0}^n w_i f_i, f_i = f(x_i)$$

Gauss-Laguerre 2, exact up to cubics

$$x_0 = 0.585786, w_0 = 0.853853, x_1 = 3.41421, w_1 = 0.146447$$

Gauss-Laguerre 3, exact up to quintics

$$x_0 = 0.415775, w_0 = 0.711093, x_1 = 2.29428, w_1 = 0.278518$$

 $x_2 = 6.28995, w_2 = 0.0103893$

Relevant for Gauss distributions, diffusion equations

$$\int_{-\infty}^{\infty} e^{-t^2} f(t) dt \cong Q(f) = \sum_{i=0}^{n} w_i f_i, f_i = f(x_i)$$

Gauss-Hermite 2, exact up to cubics

$$x_{0,1} = \pm 0.707107, w_{0,1} = 0.886227$$

Gauss-Hermite 3, exact up to quintics

$$x_{0,2} = \pm 1.22474, w_{0,1} = 0.0813128, x_1 = 0, w_1 = 1.18164$$

• Wiener transform F(x) of f(y) is

$$F(x) = \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4} f(y) \, dy$$

specifies the temperature after one unit of time of a bar whose initial temperature was f(y).