MATHb566 Lesson 23: Numerical ODE

Overview

e ODE review
e First-order ODE initial value problem
e Differential operator approximation from polynomial interpolants
— forward Euler scheme
— backward Euler scheme
— Leapfrog scheme
e Schemes based upon numerical quadrature
— Adams-Bashforth schemes
— Adams-Moulton schemes
e Forward Euler analysis

e General analysis techniques: convergence = consistency + stability



ODE review

An n'-order ordinary differential equation given in explicit form

(n)_ / (n—1)
Y dtn =ft,y, 9., y" ).

The problem is to determine the function 1: R — R, y € C™(RR)

y is not given directly but as an equality between two operators acting on ¥

d”

tn’ f Rn+1—>R

Ly=f(t,y,y, ...y V), L=
An n'" order ODE is equivalent to a system of n first-order ODEs

z'=F(t,z)

where

"=[y y ...y y=D 7,

F(t,z)=[2(t) 23(t) ... za(t) f(t,z(t), ..., 2a(t)) '

This leads to the central role of numerical solution of first-order ODEs.

z=[21 Zo ... Zn_1 Zn



First-order ODE initial value problem

e The initial value problem (IVP) for y:IR — R is
y'=f(t,y),y(0) = yo.
e |IVP has a unique solution for (t,y) € [0,T] X [y1, y2| if f Lipschitz-continuous
K € Ry suchthat | f(t, y2) — f(t, y1)| < K |y2 — y1].

| f(t y2) — f(t,y0)| = O(y2— w1|) | f2— fi] goes to zero as [yo — 1.

e Lipschitz is more restrictive than continuity (Ve > 0, 30, such that |ty — 1| < .= |y(t2) —
y(t1)| < e (no relation between how |t — t1],|y2 — 31| go to zero

Figure 1. To solve an ODE IVP is to find a specific integral curve.



Numerical ODE - derivative approximation

e Approaches to numerical solution of Ly = f(t,y), L=d/dt

— Approximation of the differentiation operator £, L=D

— Approximation of the nonlinear operator f, f =~ g

— Approximation of the equality between effect of two operators Dy = ¢g(t, )
e Methods from approximating £L=d /dt, f;= f(t;, v;)

— Forward Euler (an explicit method, next y value given directly)

dy y(tiv) —y (b)) _ yir1—yi |
—(t;) = = = Yir1=Y;+ h »1=0,1,2,...

— Backward Euler (an implicit method, must solve an equation to find ;)

ti) =y (ti— i — Yi— .
y( t)-_:z(l 1):y hy 1:>yi:yz'—1+hf(ti,yi),z:1,2,,,,
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dy
E(tz)

— Leapfrog (centered finite difference)

%(ti ~ Yit1/2— Yi-1/2 _ f,

dt tiv1/2—ti—1/2

= Yi+1/2=Yi—1/2+h [i,



e Integrate y'= f(t,y) over time step [t;,t;v1], Yiv1 — yi=
e Approximate f on data set D ={(t;, v:), (ti_1,yi_1)

Numerical ODE - Adams-Bashforth

D)= G(t) fio, fro= ik (i x)) = f (tisa ks Giv1—4).
k=1

e The resulting schemes are known as Adams-Bashforth explicit methods

yz+1—yz‘|‘z (/.Hrl dt)

k=1

S b1 b2 b3 b4
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Table 1. Adams-Bashforth scheme coefficients.

Sy () dt
RER (ti+1—s, yi-l—l—s)}

fk"‘lhf+'}l:§:: bk j;+l. ks



e Integrate y'= f(t,y) over time step [t;,t;1 1], yiv1— yi=
e Approximate f on data set D={(t;11,yir1), (ti, Yi), --

Numerical ODE - Adams-Moulton

Sy () dt
> (ti+2—s, yi-l—?—s)}

Ce(t) fros fo=f(tiv1—k, Y(tiz1-8)) = f(tiv1—ks Yit1-k)-

e The resulting schemes are known as Adams-Moulton implicit methods

z—l—l
yz+1—yz+2(/ dt)fk—yz—i—hz k. fi1-k;
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Table 2. Adams-Moulton scheme coefficients.



Numerical analysis of forward Euler (FE)

e Introduce error at step i, ¢; = y(t;) — y;- (y(t;) denotes the exact value)
€iv1— € =Y(tiv1) = y(t) = (Yit1— i) =

cion = er=hy/(8) +2y(6) — y(t) — h (1 y(0) =6,

e At each step forward Euler introduces an error (the one-step error)

Ti=€i+1— €= = y//<€7§>~

o After N steps

e Exact start ¢g=0. Obtain for T'= Nh, that FE is first-order of accuracy.

Nh2
ly ”Hoo—h—H "o =0O(R)

eN <



Numerical analysis of backward Euler (BE)

e Introduce error at step i, ¢; = y(t;) — y;- (y(t;) denotes the exact value)
€iv1— € =Y(tiv1) = y(t) = (Yit1— i) =

2
eiv1— €i=Y(tix1) — y(tiv1) +hy'(tiz1) — h y"(&) —hf(tivr, y(tiv1)).

e At each step backward Euler introduces an error (the one-step error)

o After N steps

e Exact start ¢g=0. Obtain for T'= Nh, that BE is first-order of accuracy.

Nh2
ly ”Hoo—h—H "o =0O(R)

eN <



Numerical analysis of leapfrog (LF)

e Introduce error at step i, ¢; = y(t;) — y;- (y(t;) denotes the exact value)
€iv1— € =Y(tiv1) = y(t) = (Yit1— i) =
Ti=e€iy1— €= Y(tiy1) —y(t:) = hf(tiv1y2, y(liv12)) =

h / h2 /! hS ///
Ti=Y(tit1/2) + 5 Y (tit1/2) + 7Y (tit1/2) +

(&) —

h h? h3
o Y(tipr2) + 5 y'(tiv1/2) — Zy//<ti+1/2> T3 — " (i) = h f(tivr2, y(tiv1y2))

e At each step leapfrog introduces an error (the one-step error)

iy PRSI e

4 2
e After N steps with T'= Nh, that LF is second-order of accuracy.

Ti=6Ci+1— 6=

Nh?
8

T
5" o0 =12 519"l o0 = O(R)

eN <



Accuracy is not the whole story!

Consider a small initial error in forward Euler 1o = v+ ¢ (e.g., floating point)
Y= Ay=vyir1=yi+h yi=(1+hN)yi=(1+2)y

After N steps FE with a perturbed initial condition gives

In=(142)"(yo+e)=yn+ (14 2)"e=yn+en

For |1+ 2| > 1 the error ey increases without bound. The forward Euler scheme is said to
be unstable.

How to approach this? First, precisely define a convergent sequence of approximations
{Yn}nen for the solution y(t,) of the IVP y' = f(t,y), y(0) = yo, over the time interval
0,71, t,=nh, h=T/N. A numerical method (scheme) is said to be convergent if

lim yy=y(T).

h—0

Nh=T

Analytical calculations of the above limit are however difficult.



An alternative characterization of convergence

Consider the model problem y'= Ay, y(0) = 10, A <0 with solution

y(t) =eMyo= y(tn) ="M y,.

Now, consider a perturbation of the initial conditions
G(T) =M (yo+0) = e =G(T) — y(T) = 6.

Error € is maintained small if A <0. How does a numerical scheme behave?

Forward Euler: yy = (1 + 2)" 9. Exponential decay of analytical solution only if

2
——>h>0.
N >0

The above is known as a stability condition.

In the limit of A — 0, the error ey < h§|\y”|\oo also goes to zero. This is known as consis-
tency.

In general a numerical scheme is convergent iff it is stable and consistent.
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