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Overview

• Linear system review

• Nonlinear systems of equations

• Gradient descent methods - an introduction

• Newton and quasi-Newton methods - an introduction
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• Ax = b, A ∈R
m×n, x ∈R

n, b ∈R
m a linear system of m equations in n unknowns.

Solutions characterized by fundamental theorem of linear algebra
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m
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• No result available comparable to FTLA

• General form of a nonlinear system F :Rn→R
m, F (x)=0

F (x) =





f1(x1, ..., xn)
···
fm(x1, ..., xn)



=0

• Consider m = n case. Examples:

1 x1 + x2 = 1, tan(x1)+ tan(x2) = 1.10693

2 sin(x1) + sin(x2)= 0.954061, ex1− ex2 = 0.330294

3 x1
2 + x2

2 = 0.52, x1
3 + x2

3 = 0.28

• Approaches:

− transform into an “easier” equivalent problem

− introduce approximant G of F , F =∼G
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• To solve F (x)= 0 use norm properties and restate problem as ‖F (x)‖= 0
• Consider 2-norm and define

g(x)= ‖F (x)‖2
2 =

∑

i=1

n

fi
2(x)

− g is positive semi-definite: ∀x, g(x)> 0 and g(x) = 0 iff F (x)= 0

− g is convex in some neighborhood of a root x: ∃ε > 0 such that ∀y, ‖x− y‖6 ε
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,H = HT

H is positive semi-definite, ∀u∈R
n, uTHu > 0, H has positive eigenvalues.
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• Recall, for g:Rn→R, grad g =∇g is the vector indicating direction of most rapid increase
of g

• Example: Rosenbrock function g(x, y) = (1−x)2 + 100(y −x2)2

Figure 1. The Rosenbrock function
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• Instead of F (x) =0 solve G(x) =0 with F =∼G, G linear approximant

• Linear approximant = Taylor polynomial of degree m = 1

P (t)= F (xn)+ F ′(xn)(t−xn)

• Find next term in approximation sequence {xn}n∈N by setting P (xn+1)= 0⇒

F (xn)+ F ′(xn)(xn+1−xn)= 0⇒

F ′(xn)(xn+1−xn)=−F (xn)

a linear system

• As in the scalar case Newton’s method is second-order convergent near the root

• Difficuly: computation of Jacobian F ′(xn)∈R
n×n at each iteration
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• Recall that secant did not require derivatives

replace xn+1 = xn−
f(xn)

f ′(xn)
by xn+1 = xn−

f(xn)

f(xn)− f(xn−1)
(xn−xn−1)

• Try similar approach for F :Rn→R
m, F (x)= 0.

replacexn+1 = xn− [F ′(xn)]
−1F (xn) by xn+1 = xn−Bn

−1 F (xn)

• Bn is an approximation of the Jacobian F ′(xn), updated at each step

• At iteration n solve Bn sn =−F (xn), sn = xn+1−xn

• How to construct Bn+1? Mimic secant property f ′(ξ)(b− a)= f(b)− f(a)

Bn+1 sn = yn = F (xn+1)−F (xn) (1)

− secant property is obtained along the direction of the most recent update

− Bn+1 has n2 components, (1) specifies only n equations
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• Determine n2 components of Bn+1 by imposing it be close to Bn

min
Bn+1

‖Bn+1−Bn‖

• Choosing the 2-norm, the above minimization problem has solution

Bn+1 = Bn +
(yn−Bn sn)sn

T

sn
T sn
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