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Overview

• First-order PDEs

− advection equation
− convection equation
− characteristic solution

• Second-order PDE classification, canonical forms

− hyperbolic, wave equation
− parabolic, heat equation
− elliptic, Poisson equation

• Reformulating second-order PDEs as first-order PDE system, eigenproblems

• Overview of numerical method development: finite differences, finite volume, finite element,
spectral methods

• Finite difference example: leapfrog discretization of wave equation
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• Many (most) phenomena depend on multiple independent variables

• Natural phenomena are governed by conservation laws (mass, momentum, energy, charge):
change in quantity q(t,x) in an infinitesimal volume at time t and position x equals difference
of what is going out/in and what was produced

q(t, x)dx

f(t, x− dx/2) f(t, x+ dx/2, q)

∂q

∂t
=−∂f(t, x, q)

∂x
+ σ(t, x, q)

f(t, x, q) is the flux of quantity q, σ(t, x, q) is the source of quantity q.

• Advection: transport of quantity q in space x and time t by velocity field u

− Constant velocity advection IBVP, u = constant, flux f = uq

qt + uqx = 0, q(x, t = 0) = f(x), q(x = 0, t) = g(t), q(x = 1, t) = h(t).

− Variable velocity advection, u(x, t), same equations as above

Examples: transport of a pollutant in a river, drug in the blood stream

• Convection: transport of quantity q in space-time (x, t) by a velocity field that depends on
q, e.g., Burgers’ equation for q(t, x), qt≡ ∂q/∂t, qx≡ ∂q/∂x

qt + qqx = 0 (nonlinear, similar IBVP conditions as above)
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• Theory of conic sections highlights quadratic forms in (x, y) coordinates

Ax2 + 2Bxy + Cy2 + Dx+ Ey −G = 0⇒

[ x y ]

[

A B

B C

][

x

y

]

+ [ D E ]

[

x

y

]

−G = 0 ,M =

[

A B

B C

]

, q =

[

x

y

]

M symmetric ⇒ orthogonal diagonalizable, real eigenvalues, M = U ΛUT .

qT(U ΛUT)q + cTq =−F ,z = UTq⇒zT
Λz + mTz =−F

• Denote Λ=diag(a, b), consider G=0 (homogeneous), mT =cT U =[ 2s 2t ]. Quadratic

form becomes zT
Λz + mTz = 0 under change of coordinates

z =

[

u

v

]

= UTq = UT

[

x

y

]

− ab > 0⇒ ξ2 + η2 = 0 an ellipse, ξ = a
√

u+ s/ a
√

, η = b
√

v + t/ b
√

− ab < 0⇒ ξ2− η2 = 0, a hyperbola

− ab= 0⇒ ξ2 = η, a parabola
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• Mathematical physics highlights certain ubiquitous PDEs of form

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G

• Simplest case: A, ..., G constant, linear PDE, classified similar to quadratics

(

[ ∂x ∂y ]

[

A B

B C

][

∂x

∂y

]

+ [ D E ]

[

∂x

∂y

]

+ F

)

u= G

• As in case of quadratics, changes of variables lead to canonical forms

− Poisson equation uξξ + uηη = f , an elliptical PDE

− Wave equation uξξ −uηη = f , a hyperbolic PDE

− Heat equation uξξ −uη = f , a parabolic PDE

• The above classification is of special relevance to numerical analysis since different numerical
methods are applicable for each type of equation
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• Homogeneous wave equation utt−uxx = 0, v≡ut, w = ux, utx = uxt⇒

vt = wx

wt = vx

, q =

[

v

w

]

, qt + Aqx = 0,A =

[

0 −1
−1 0

]

A = UΛUT =
1

2
√
[

1 1
−1 1

][

−1 0
0 1

]

1

2
√
[

1 −1
1 1

]

Second-order wave equation leads to a first order system with real eigenvalues
• Homogeneous Poisson equation uxx + uyy = 0, v≡ux, w = uy, uxy = uyx⇒

vy = wx

wy =−vx

, q =

[

v

w

]

, qy + Aqx = 0,A =

[

0 −1
1 0

]

A = UΛUT =
1

2
√
[

i 1
−i 1

][

i 0
0 −i

]

1

2
√
[

i −i

1 1

]

Second-order elliptic equation leads to a first order system with imaginary eigenvalues
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• Basic ideas: discretize both operators (∂t, ∂x) or discretize only one operator (typically ∂x)
and reduce to an ODE system (typically in t)

• Approaches:
− finite difference discretization of differentiation operators, ui

n = u(nk, ih)

utt−uxx = 0⇒ ui+1
n − 2ui

n + ui−1
n

h2
− ui

n+1− 2ui
n + ui

n−1

k2
= 0

− finite difference discretization of ∂xx operator only, ui(t)= u(t, ih)

d2ui

dt2
=

ui+1− 2ui + ui−1

h2

− introduce a piecewise approximation in space for u(t, x)

u(t, x) =∼Ui(t) + [Ui+1(t)−Ui(t)](x−xi)/(xi+1−xi)

a finite element method .
• Different approximations of u(t, x) lead to finite volume, spectral methods.
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• Consider the wave equation utt−uxx = 0 with initial, boundary conditions

u(0, x) = sinx, ut(0, x)= 0, u(t, 0)= 0, u(t, π)= 0.

This is known as the plucked string problem, and models a guitar string plucked at midpoint.
• Construct a numerical method by introducing a centered derivative approximation in space,

xj = jh, h = π/m

uxx(t, jh) =∼
ui+1(t)− 2ui(t) + ui−1(t)

h2
, j = 1, ...,m− 1

• Replace above approximation in wave equation at x = xj

d2uj(t)

dt2
=

ui+1(t)− 2ui(t)+ ui−1(t)

h2
, j = 1, ...,m− 1

• Transform second-order ODE into two first-order ODEs

dvj

dt
=

ui+1(t)− 2ui(t) + ui−1(t)

h2
,
duj

dt
= vj
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• Obtain a system of ODEs

dq

dt
= Mq , q =

[

u

v

]

,u =





u1
···
um−1



,v =





v1
···
vm−1



,M =

[

0 I

D 0

]

• Note the block matrix structure with I the identity matrix, and

D =
1

h2













−2 1
1 −2 1

··· ··· ···
1 −2 1

1 −2













, I ,D ∈R
(m−1)×(m−1)

• Apply leap-frog to the ODE system with time step k, qn = q(nk)

qn+1− qn−1

2k
= Mqn
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• Leap-frog has a stability region z = λk on the slit from z =−i to z = +i

• Eigenvalues of M are required. These can be determined analytically

Mq = λq⇒
[

0 I

D 0

][

u

v

]

= λ

[

u

v

]

⇒
{

v = λu

Du = λv
⇒Du= λ2u= µu

• The eigenvalues of D are

µl =− 4

h2
sin2

(

lh

2

)

, l = 1, 2, ...,m− 1, h= π/m

• The eigenvalues of M are therefore

λl = µl

√
=±2i

h
sin

(

lh

2

)

, l = 1, 2, ...,m− 1

and are purely imaginary, and therefore leap-frog numerical solutions can be made stable by
an appropriate time step restriction.
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