MATHb566 Lesson 27: Numerical PDE - Introduction

Overview

e First-order PDEs

— advection equation
— convection equation
— characteristic solution

e Second-order PDE classification, canonical forms

— hyperbolic, wave equation
— parabolic, heat equation
— elliptic, Poisson equation

e Reformulating second-order PDEs as first-order PDE system, eigenproblems
e Overview of numerical method development: finite differences, finite volume, finite element,
spectral methods

e Finite difference example: leapfrog discretization of wave equation



| First-order PDEs

e Many (most) phenomena depend on multiple independent variables
e Natural phenomena are governed by conservation laws (mass, momentum, energy, charge):
change in quantity ¢(¢,x) in an infinitesimal volume at time ¢ and position x equals difference

of what is going out/in and what was produced
f@,z—dz/2) f(t,z+dz/2,q) o
f(t,x,q) is the flux of quantity ¢, o(t,x, q) is the source of quantity ¢.

e Advection: transport of quantity ¢ in space x and time ¢ by velocity field u
— Constant velocity advection IBVP, u = constant, flux f =ug

gt +uq,=0,q(r,t=0)= f(z), q(x=0,t) = g(t), g(x =1,t) = h(t).

— Variable velocity advection, u(x,t), same equations as above
Examples: transport of a pollutant in a river, drug in the blood stream

e Convection: transport of quantity ¢ in space-time (i, t) by a velocity field that depends on
q, e.g., Burgers' equation for ¢(t,z), ¢ =0q/0t, q.=0q/Ox

q: + qq. = 0 (nonlinear, similar IBVP conditions as above)



Analytical geometry refresher - quadratic classification

e Theory of conic sections highlights quadratic forms in (x,y) coordinates

Ar?+2Bxy+Cy*’+Dr+Ey—G=0=

sl gl |l —em0m-| 8 a-] 7]

M symmetric = orthogonal diagonalizable, real eigenvalues, M =U AU’
g (UAUq+clq=—F,z=U'q=2"Az+ mlz=—-F

e Denote A =diag(a,b), consider G =0 (homogeneous), m’ =c¢’ U =[ 2s 2t |. Quadratic
form becomes z' A z +m?’z =0 under change of coordinates

SRR

— ab>0=£24+1n?=0 an e//ipse,é’:\/auqts/\/ﬁ,77:\/5@+t/\/5
— ab<0=£2—n?=0, a hyperbola
— ab=0= £?>=m, a parabola



Second order PDE classification

Mathematical physics highlights certain ubiquitous PDEs of form
Atgy +2Bugy + Cuyy + Dug + Euy+ Fu=G

Simplest case: A, ..., G constant, linear PDE, classified similar to quadratics

([am ay][g g”gﬂﬂp E][%]H?)u—a

As in case of quadratics, changes of variables lead to canonical forms
— Poisson equation uge 4wy, = [, an elliptical PDE

— Wave equation uge — u,,, = f, a hyperbolic PDE

— Heat equation uge — u, = f, a parabolic PDE

The above classification is of special relevance to numerical analysis since different numerical
methods are applicable for each type of equation



Reformulating second-order PDEs as first-order systems

e Homogeneous wave equation Uy — U, =0, UV =Up, W = Uy, Uy = Upr =

Ut = Wy | v o o 0 —1

Wy =1Vyp

asonr=Gol b ot el

Second-order wave equation leads to a first order system with real eigenvalues
e Homogeneous Poisson equation ., + Uy, =0, U= Uy, W= Uy, Uypy = Uy; =

Uy = Wy | v B o —1
wy:_va:?q_[w]7qy+Aq£B—O7A__1 0 ]

B r_ Llé 1[0 |1[i —i
A_UAU_\/ﬁ —i 1] 0 —i |2 11

Second-order elliptic equation leads to a first order system with imaginary eigenvalues




LI PDE numerical method development 6/9

e Basic ideas: discretize both operators (0;, 0,.) or discretize only one operator (typically 0,)
and reduce to an ODE system (typically in ?)

e Approaches:
— finite difference discretization of differentiation operators, u' =wu(nk,ih)

n+1 n—1
Ui —2ui Fui up = 2ug + U,

h2 2 =0

— finite difference discretization of 0., operator only, u;(t) =u(t,ih)

d*ui  wit1—2ui+ui

dt? h?

— introduce a piecewise approximation in space for u(t, z)

u(t, ) 2Ui(t) + [Uira(t) — Ui(t) [(x — 23) [ (Tig1 — 75)

a finite element method.
e Different approximations of u(¢,x) lead to finite volume, spectral methods.



Numerical PDE example: leap-frog in time, centered in space

Consider the wave equation u; — u,, = 0 with initial, boundary conditions
u(0, ) =sinxz, u (0, 2) =0,u(t,0)=0,u(t,7)=0.

This is known as the plucked string problem, and models a guitar string plucked at midpoint.

Construct a numerical method by introducing a centered derivative approximation in space,
r;j=7jh, h=m/m

iyt ) 2 L) 2“,;‘2“ Fuil®) g w1

Replace above approximation in wave equation at = x;

d2’LLj(t) _ ui+1(t) — Qui(t) — ui_1(t)
dt? h2 "

Transform second-order ODE into two first-order ODEs

dej B u@'+1(t) — 2ui(t) - ui_1(t) d”LLj B
dt h? Tdt




Numerical PDE example: leap-frog in time, centered in space

e Obtain a system of ODEs

Uq U1
@=Mq,q=[u],u= : U= ,M=[O I]

e Note the block matrix structure with I the identity matrix, and

2 1

1 -2 1

D=— 7I7DE]R(m—l)X(m—l)

1 -2 1
1 —2

e Apply leap-frog to the ODE system with time step k, ¢" = g(nk)

qn—l—l_ qn—l .

2k




Stability considerations

Leap-frog has a stability region z = Ak on the slit from 2= —i to 2 =+1
Eigenvalues of M are required. These can be determined analytically

B 0O I||lu| |u vV=\u U
Mq—)\q:>[ Do ”v ]—A[ v ]:>{ Dau— \v = Du= ) u=puu

The eigenvalues of D are

4 Lk B B B
p=—75sin (7>,l—1,2,...,m l,h=m/m

The eigenvalues of M are therefore
)\l:\/m::l:%sir(l?h),l:lﬂ, om—1

and are purely imaginary, and therefore leap-frog numerical solutions can be made stable by
an appropriate time step restriction.
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