
MATH590: Approximation in Rd (NUM)

Module overview

Concepts from mathematical analysis are introduced and reinterpreted as data
analysis procedures, with a particular focus on the structure of the real numbers.

� Number systems: N;Z;Q;R;Qp

� Rigid body motion, data sets

� Approximation in R: interpolation, least-squares, min-max

� Approximation in Rd, d2N

� Data transformations: interpolation, integration, di�erentiation

� Data reduction: least-squares, min-max

� Data representation: functional analysis



Number systems: N

! Set theory de�nition (Zermelo-Fraenkel) of N: 0 = fg= ;; 1 = f0g= f;g;
2= f0; 1g= f;; f;gg; 3= f0; 1; 2g= f;; f;; f;ggg; :::

! Peano axiomatic de�nition of (N; S(n);=):

1. 02N

2. 8n2N; n=n, re�exive

3. 8m;n2N;m=n)n=m, symmetric

4. 8m;n; p2N;m=n^n= p)m= p, transitive

5. 8a; b, a= b^ b2N) a2N

6. 8n2N; S(n)2N

7. 8m;n2N;m=n,S(m)=S(n), injective

8. 8n2N; S(n)=/ 0

9. 02K ^ (8n2N^n2K)S(n)2K))N�K, induction



Number systems: Z

Introduce a shorthand notation for n repeated compositions of successor function

Addition:8m;n2N;
m+n= S(S(:::S(m)))= S �S � ::: �S(m)

n compositions n compositions

Introduce the inverse of the successor function P (n)=S¡1(n).

Note that N is closed under S, (axiom 6), n 2N) S(n) 2N, but not under
P (n) due to axiom 8. Similar to addition, repeated composition of P receives a
shorthand notation

Subtraction:8m;n2N;
m¡n= P (P (:::P (m)))= P �P � ::: �P (m)

n compositions n compositions

The problem that now arises is to de�ne the set under which P is closed. The
closure of N under P (subtraction) is Z, the set of integers.



Isomorphism

� An essential mathematical concept is to establish that seemingly di�erent
objects, e.g., setsA;B are actually instances of a single category. The standard
mathematical technique is to establish an isomorphism (one-to-one mappings)
between elements of A;B

� Questions:

¡ Are the even naturals the same as the naturals? Yes:

E= f2n; n2Ng

¡ Are there as many integers as naturals? (Equivalently, are the integers
countable?) Yes:

g(n)=
h
n
2

i
(¡1)n; n2N

with [x] = ceil(n)



Number systems: Q

The naturals embody the idea of counting forward, the integers that of counting
forward and backward. Besides counting, data analysis often requires comparison.

Consider Z�Znf0g. The rationals Q are the equivalence classes with respect to
= within Z�Znf0g. The rationals are countable
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Addition, division embody the concept of counting p

q
+

m

n
and comparison p

q
/
m

n

of rationals. (Q;+;�) forms an algebraic structure known as a �eld .



Number systems: R

Similar to de�nition of N, there exists an axiomatic de�nition of R, but the
approach presented here is based on extending the idea of completion.

A 1-to-1 mapping ofN to a subset of rationals is a sequence an=
pn
qn
,n2N; pn2Z;

qn2Nnf0g. Sequences are di�erent paths in the table Z�Nnf0g.

A Cauchy sequence is whose elements become arbitrarily �closer�. De�ne �close-
ness� of an; an+p by subtraction and absolute value, jan+p ¡ anj. A Cauchy
sequence satis�es: 8"> 0, 9N"2N, such that n>N"; p2N)jan+p¡ anj<".

The limit of a sequence a is a number that satis�es: 8"> 0, 9N"2N, such that
n>N"; jan¡ aj<". We state an! a as n!1, or limn!1an= a.

There exist sequences of rationals that do not converge to a rational�
1+

1
n

�n

! e;
Fn+1
Fn

! 1+ 5
p

2
; Fn+2=Fn+1+Fn; F0=F1=1

R is the completion of Q w.r.t. the distance (�closeness� concept) ja¡ bj.



Number systems: The Qp completion of Q

Suppose that closeness between rationals is now de�ned di�erently, not using
addition but multiplication. Consider p2N, a prime number. Any rational x2Q
can be written as

x=
r
s
pa

The p-adic norm is de�ned as

jxjp= p¡a

Example. x= 24
55 =23 � 31 � 5¡1 � 11¡1. jxj2=2¡3,jxj3=3¡1,jxj5=5,jxj11= 11.

The p-adic numbers Qp are the completion of Q w.r.t. jjp concept of closeness.



Rigid body motion

A point mass has no dimension, and its position in R3 is given the coordinates
X =(x; y; z) or X =(x1; x2; x3). A rigid body has extent, and maintains relative
position between its constituents. In addition to position, a rigid body has orien-
tation �=(�; ';  ) or �=(�1; �2; �3).

A trajectory is a succession of positions. The trajectory of a rigid body is given by
(X(t);�(t)) with t a label for successive positions. If t2R, (X;�):R!R6.

Newton's laws relate successive positions to forces F =(f1; f2; f3) and moments
(torques) L=(l1; l2; l3)

d

dt

�
m
dX

dt

�
=F ;

d
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�
I
d�

dt

�
=L

with m; I denoting the inertia w.r.t. changes in rectilinear or rotational motion.



Rigid body data sets

� De�ne a rigid body data set from positions of a �smart-phone� carrying human

� Such devices carry embedded accelometers that measure a=X� ; "=��

� Simple questions within this module:

¡ Can we quantify how much information is recorded?

¡ Can we reconstruct trajectories from (a; ")?

¡ Does the reconstruction of trajectories have the same information content
as the data?

¡ Can we represent the positions or trajectories more econmically?

� Complex questions within this module:

¡ Can we identify what the data represents? (e.g., climbing, walking, . . . )

¡ Can we identify the particular human?



Approximation in R: interpolation, least-squares, min-max

The approximation problem: Given x(t), x:R!R, �nd y(t); y:R!R that is
�easier to compute�, and �is close� to x, x=� y. Approximation criteria:

Interpolation. x given by data set X = f(ti; x(ti)); i= 1; :::; mg, �nd y such
that y(ti)=x(ti). To ensure simple computation of the approximation, express
y through a linear combination of basis functions B= fb1(t); :::; bn(t)g:

y(t)=
P

j=1

n
cj bj(t), leading to linear system

P
j=1

n
bj(ti) cj=x(ti), Bc=x.

To satisfy all interpolation conditions, set n=m.

Least-squares. As above, but seek data compression n�m, by relaxing approx-
imation condition to Bc=� x, implemented as minc kBc¡ xk2. Recall that
the 2-norm of a vector x2Rm is kxk2=(

P
i=1

m
xi
2)1/2

Min-max. As above, but seek data compression through a di�erent choice of
norm, minc ky(t; c)¡x(t)k1, where the inf-norm of a function x:R!R is

kxk1= supt jx(t)j=�maxi2f1;:::;mg jx(ti)j.



Approximation in Rd; d2N: curse of dimensionality

Consider now the problem of approximating u(x), u:Rd!R. The multivariate
approximation problem is to �nd v(x), v:Rd!R, such that v=�u and v is �easy
to compute�.

The formalism is identical to d=1:

Interpolation.
P

j=1

n
bj(xi) cj=u(xi), i=1; :::;m, xi2Rd

Least-squares. minc kBc¡uk2, c2Rn

Min-max. minc kBc¡uk1, c2Rn

Consider that k samples are required along each variable direction, the total number
of data points is m= kd, and rapidly increases with d, known as the curse of
dimensionality. Sample placement becomes a crucial consideration.



Data transformations: interpolation

In matrix form interpolation is stated as Bc= Ix, with c;x2Rm, B; I2Rm�m.

Remark 1. There is no data compression, simply a transformation from one
basis (I) to another (B). Interpolation is akin to faithful translation, the same
information is conveyed in two di�erent languages.

Remark 2. The lack of data compression is a direct consequence of the interpo-
lation criterion y(ti) = x(ti), that imposes the strong condition of equality at all
data points. This suggests alternative approaches:

! Replace equality by a di�erent equivalence relation

! Replace data representation by real numbers by alternative constructs

Remark 3. The interpolation operator B¡1 is a square matrix, B¡12Rm�m, a
linear operator between spaces of equal dimension, a feature of non-compressive
data transformations.



Data transformations: integration

Consider a(t) speci�ed by data A= f(ti= ih; a(ti)); i=0; :::;mg.

The running sum of data values, vj=h
P

i=1

j
a(ti), j=1; :::;m, is an equivalent

representation that contains the same amount of data, and obtained by approxi-
mation of the integral

v(ti)=

Z
0

ti

a(� ) d� + v0;

through an upper Darboux sum (rectangle quadrature rule), using samples at
� 2fh;2h; :::ihg. This linear, non-compressive data transformation can again be
expressed through a matrix multiplication

v=h

0BBBB@
1 0 ::: 0
1 1 ::: 0

���
1 1 ::: 1

1CCCCAa=Qa:



Data transformations: di�erentiation

Consider v(t) speci�ed by data V = f(ti= ih; v(ti)); i=0; :::;mg.

The set of data value di�erences, ai=h¡1(vi¡vi¡1), i=1; :::;m, is an equivalent
representation that contains the same amount of data, and obtained by approxi-
mation of the derivative v 0(ti)= ai, through a �nite di�erence formula.

This linear, non-compressive data transformation can again be expressed through
a matrix multiplication

v=Qa) a=Dv=Q¡1v:

D=Q¡1=

0BBBBBBBBBBBB@
1 0 0 ::: 0 0
¡1 1 0 ::: 0 0
0 ¡1 1 ::: 0 0

���
1 0

0 0 0 ::: ¡1 1

1CCCCCCCCCCCCA



Data reduction: least-squares

Consider now the least squares problem

min
c
kBc¡xk2;x2Rm; c2Rn; n<m;B2Rm�n;

a data-compressive procedure, usually with n�m. The non-square matrix B is
not invertible, since invertability would imply no data compression. The same role
is now played by the (Moore-Penrose) pseudo-inverse,B+2Rn�m. Pseudo-inverse
computation:

� if B is an orthogonal matrix (i.e., BTB= In), B+=BT .

� for general B, introduce the singular value decomposition, B=U�VT , with
U2Rm�m;V2Rn�n;�2R+

m�n,�=diag(�1; :::;�r;0; :::;0),U;V orthog-
onal. The pseudo-inverse is given by

B+=V�+UT ;�+=diag(�1
¡1; :::; �r

¡1; 0; :::; 0):



Data reduction: min-max

The general min-max problem minc ky(t; c)¡x(t)k1 is quite di�cult to solve in
general, but the solution y(t; c) is closely approximated by a linear combination
of Chebyshev polynomials y = Tc, with c 2Rn, the solution of the problem
minc kTc¡xk1.

The Chebyshev polynomials are de�ned by

T0(t)= 1; T1(t); Tn+1(t)= 2tTn(t)¡Tn¡1(t):

Within the set �n of all monic polynomials de�ned on a �nite interval (standard-
ized as [¡1; 1]) the monic Chebyshev polynomials 21¡n Tn(t), have the property
of minimal inf-norm, i.e., they are the solution of

min
p2�n

kpk1; kTnk1=21¡n:



Data representation: functional analysis

Consider now the problem of ascertaining data content of a set of trajectories
Tm=fx1(t); :::;xm(t)g, x:R!Rd, e.g., as given by the measured accelerations
of m phone-carrying humans. The analysis point of view would be to think of
small di�erences between individuals and try to de�ne calculus operations. This
can be done by considering the set of all such trajectories T = fx(t)g, and asso-
ciate a scalar �label� to each trajectory, through the mathematical construct of a
functional `: T !R. Small changes in the trajectory would change the value of
the label

�`= `(x+ �x)¡ `(x):

The functional ` is typically approximated by a multivariate function f :RdN!R
with N the number of trajectory samples

f(x1; :::;xN):
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