MATH590: Approximation in IR? (NUM)

Module overview

Concepts from mathematical analysis are introduced and reinterpreted as data
analysis procedures, with a particular focus on the structure of the real numbers.

Number systems: IN, Z, 0, R, QQ,

Rigid body motion, data sets

Approximation in IR: interpolation, least-squares, min-max
Approximation in R?, d €N

Data transformations: interpolation, integration, differentiation
Data reduction: least-squares, min-max

Data representation: functional analysis



Number systems: IN

— Set theory definition (Zermelo-Fraenkel) of N: 0={}=0,1={0} = {0},
2=10,1}={0,{0}},3=1{0,1,2} ={0,{0,{0}}}, ...

— Peano axiomatic definition of (N, S(n),=):

1.0eN
. Vn € IN, n=n, reflexive
. Vm,n €N, m=n=-n=m, symmetric
.Vm.,n,peN,m=nAn=p=m=p, transitive
. Va,b,a=bANbeN=a€cN
.VneN,S(n)eN
Vm,neN,m=n< S(m)=5(n), injective
.VYneN,S(n)#0
0eKAN(VneNAne K= S5(n)e K)=NC K, induction
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Number systems: Z

Introduce a shorthand notation for n repeated compositions of successor function

Addition:Ym. ne N, M= S(5(..5(m)))= SoSo..0S5(m)
' ’ ’ n compositions 1 compositions

Introduce the inverse of the successor function P(n)=5S""'(n).

Note that N is closed under S, (axiom 6), n € N=-S(n) &€ N, but not under
P(n) due to axiom 8. Similar to addition, repeated composition of P receives a
shorthand notation

Subtraction: Vm,neN, " "' P(P(...P(m)))= PoPo..oP(m)
' ’ ’ n compositions  n.compositions

The problem that now arises is to define the set under which P is closed. The
closure of IN under P (subtraction) is 7, the set of integers.



Isomorphism

e An essential mathematical concept is to establish that seemingly different
objects, e.g., sets A, B are actually instances of a single category. The standard
mathematical technique is to establish an isomorphism (one-to-one mappings)
between elements of A, B

e Questions:

— Are the even naturals the same as the naturals? Yes:
E={2n,ne N}

— Are there as many integers as naturals? (Equivalently, are the integers
countable?) Yes:

g(n)=| 2| (~1)"neN

with [z] = ceil(n)



Number systems: Q)

The naturals embody the idea of counting forward, the integers that of counting
forward and backward. Besides counting, data analysis often requires comparison.

Consider Z x 7Z\{0}. The rationals () are the equivalence classes with respect to
= within Z x Z\{0}. The rationals are countable

p\qg|0 1 2 3 .
(V123
1 1 1 1
5, |01 23
2 2 2 2
g |01 23
3 3 3 3

Addition, division embody the concept of counting = +— and comparison —/—

of rationals. (@, +, x) forms an algebraic structure known as a field.



Number systems: R

Similar to definition of IN, there exists an axiomatic definition of IR, but the
approach presented here is based on extending the idea of completion.

A 1-to-1 mapping of IN to a subset of rationals is a sequence anzz—”,n e NN, p, €%,
¢, € N\{0}. Sequences are different paths in the table Z x IN\{0}.

A Cauchy sequence is whose elements become arbitrarily “closer”. Define “close-
ness’' of a,, a,i, by subtraction and absolute value, — ay,|. A Cauchy

sequence satisfies: Ve >0, IN. € N, such that n > N.,,pe N=-|a,,., —a,| <e.

The /imit of a sequence a is a number that satisfies: Ve >0, 9/N. € N, such that
n> N, |a, — a| <e. We state a,, — a as n— oo, or lim,, ,.a, = a.

There exist sequences of rationals that do not converge to a rational

1+l —>€>Fn+1 1+\/_ Froio=Fop1+ Fy, Fo=Fi1=1
n F, 2

R is the completion of @ w.r.t. the distance (“closeness” concept) |a — b].



Number systems: The @, completion of Q)

Suppose that closeness between rationals is now defined differently, not using
addition but multiplication. Consider p € N, a prime number. Any rational z € ()
can be written as

The p-adic norm is defined as

’x|p:p_a

Example. z=2=23.31.571.117% [z], =273,

_ __9—1
g_ CIJ|3—3 ,

513’5:5,|CC|11:11.

The p-adic numbers @), are the completion of @ w.r.t. ||, concept of closeness.



Rigid body motion

A point mass has no dimension, and its position in IR’ is given the coordinates
X =(z,y,z) or X =(x1, 19, 73). A rigid body has extent, and maintains relative
position between its constituents. In addition to position, a rigid body has orien-

tation © = (0, @, 1) or © = (61,05, 03).

A trajectory is a succession of positions. The trajectory of a rigid body is given by
(X (t),O(t)) with ¢ a label for successive positions. If 1€ R, (X,0): R— RS,

Newton's laws relate successive positions to forces F'= ( f1, f2, f3) and moments

(torques) L= (lh l27 l3)

d dX d/ . dO
a(mﬁ)—%t@dt )‘L

with m, [ denoting the inertia w.r.t. changes in rectilinear or rotational motion.




Rigid body data sets

e Define a rigid body data set from positions of a “smart-phone” carrying human

e Such devices carry embedded accelometers that measure a = X, =0

e Simple questions within this module:

Can we quantify how much information is recorded?
Can we reconstruct trajectories from (a,¢)?

Does the reconstruction of trajectories have the same information content
as the data?

Can we represent the positions or trajectories more econmically?

e Complex questions within this module:

Can we identify what the data represents? (e.g., climbing, walking, ...)

Can we identify the particular human?



Approximation in IR: interpolation, least-squares, min-max

The approximation problem: Given z(%), z: R — R, find y(t), y: IR — IR that is
“easier to compute’, and “is close” to x, x = y. Approximation criteria:

Interpolation. x given by data set X' = {(¢;, x(¢;)),i=1,...,m}, find y such
that y(t;) =x(t;). To ensure simple computation of the approximation, express
y through a linear combination of basis functions 5= {b(?), ..., b,(?) }:
y(t) = Z;zl c;jbi(t), leading to linear system Z;L:l bi(t;) c;=x(t;), Bc=x.
To satisfy all interpolation conditions, set n =m.

Least-squares. As above, but seek data compression n < m, by relaxing approx-
imation condition to Bc = x, implemented as min. [|[Bc — x||5. Recall that

the 2-norm of a vector x € R™ is ||x|lo= (3", z7)"/?
Min-max. As above, but seek data compression through a different choice of
norm, min ||y(t;c) —x(t)||s, where the inf-norm of a function 2: R — R is

[ oo = sup; [2(0)] = maxieqr,...my le(t)].



Approximation in IR?, d € N: curse of dimensionality

Consider now the problem of approximating u(x), u: IR — IR. The multivariate

approximation problem is to find v(x), v: R — IR, such that v ~w and v is “easy
to compute”.

The formalism is identical to d = 1:
Interpolation. " | b;(z;) c;=u(z;), i=1,...m, ;€ R

2, ccR"

Least-squares. min.||Bc —u|
Min-max. min.|Bc—ul[s, c€ R"

Consider that k& samples are required along each variable direction, the total number
of data points is m = k9, and rapidly increases with d, known as the curse of
dimensionality. Sample placement becomes a crucial consideration.



Data transformations: interpolation

In matrix form interpolation is stated as Bc =1Ix, with ¢, x € R™, B, I € R"™*™.

Remark 1. There is no data compression, simply a transformation from one
basis (I) to another (B). Interpolation is akin to faithful translation, the same
information is conveyed in two different languages.

Remark 2. The lack of data compression is a direct consequence of the interpo-
lation criterion y(t;) = x:(¢;), that imposes the strong condition of equality at all
data points. This suggests alternative approaches:

— Replace equality by a different equivalence relation

— Replace data representation by real numbers by alternative constructs

Remark 3. The interpolation operator B! is a square matrix, B~! € R™*™, 3
linear operator between spaces of equal dimension, a feature of non-compressive

data transformations.



Data transformations: integration

Consider a(t) specified by data A={(t;=1ih,a(t;)),i=0,...,m}.

The running sum of data values, fujzhzgzl a(t;), 7=1,...,m, is an equivalent
representation that contains the same amount of data, and obtained by approxi-
mation of the integral

o(t) = /0 “a(r)dr + o,

through an upper Darboux sum (rectangle quadrature rule), using samples at
T€{h,2h,...ih}. This linear, non-compressive data transformation can again be
expressed through a matrix multiplication

/10...0\
11 0

v=~Ah jf a=Qa.
11 .1



Data transformations: differentiation

Consider v(t) specified by data V={(t;,=ih,v(t;)),i=0,...,m}.

The set of data value differences, a;=h~'(v; —v;_1), i=1,...,m, is an equivalent
representation that contains the same amount of data, and obtained by approxi-
mation of the derivative v'(¢;) = a;, through a finite difference formula.

This linear, non-compressive data transformation can again be expressed through
a matrix multiplication

v=Qa=a=Dv=Q lv.

I 0 0 ..0 O
(—11 0 ... 0 O\
0 —-11 0 0

D-Q"!

\0 0 0 .. -11)



Data reduction: least-squares

Consider now the least squares problem

min [|[Bc —x||2,x € R™, ce R",n<m,BeR™*",
C

a data-compressive procedure, usually with n < m. The non-square matrix B is
not invertible, since invertability would imply no data compression. The same role
is now played by the (Moore-Penrose) pseudo-inverse, B™ € IR *". Pseudo-inverse
computation:

e if B is an orthogonal matrix (i.e., B'/B=1,), BT =B".

e for general B, introduce the singular value decomposition, B=UXV", with
UeR™ ™ VeR"™ " XeR!M" Y =diag(oy,...,0.,0,...,0), U,V orthog-
onal. The pseudo-inverse is given by

Bt =VX*tU” X+ =diag(o;",...,0, %0, ...,0).



Data reduction: min-max

The general min-max problem min. ||y(t;c) —x(%)||o is quite difficult to solve in
general, but the solution y(; c) is closely approximated by a linear combination
of Chebyshev polynomials y = T c, with ¢ € R”, the solution of the problem
ming || Tc — X||so-

The Chebyshev polynomials are defined by
To(t)=1,T1(t), T 1(t) =2t T, (t) — T, 1(1).
Within the set I1,, of all monic polynomials defined on a finite interval (standard-

ized as [—1, 1]) the monic Chebyshev polynomials 2'~" T, (), have the property
of minimal inf-norm, i.e., they are the solution of

min |[plloc, | Zllso =24
pell,



Data representation: functional analysis

Consider now the problem of ascertaining data content of a set of trajectories
T={xi(t),...,z(1)}, z: R—1RY e.g., as given by the measured accelerations
of m phone-carrying humans. The analysis point of view would be to think of
small differences between individuals and try to define calculus operations. This
can be done by considering the set of all such trajectories 7 = {x(%)}, and asso-
ciate a scalar “label” to each trajectory, through the mathematical construct of a
functional /: 7 — IR. Small changes in the trajectory would change the value of
the label

W={(x+ox)—{(x).

The functional 7 is typically approximated by a multivariate function f: RV — R
with NV the number of trajectory samples

f(wl, cees $N>.
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