Module overview

$$
\begin{aligned}
& \text { mathematics that studies what properties of an object } \\
& \text { luous deformation. Geometry studies equivalence under } \\
& \text { uniform scaling (similarity), or projection. Topology } \\
& \text { continuous transformations, such that a circle becomes } \\
& \text { Concepts from topology are relevant to data analysis, } \\
& \text { g efficient representations of sparse data sets. } \\
& \text { of Königsberg, Hairy ball theorem }
\end{aligned}
$$

Topology is a branch of mathematics that studies what properties of an object are preserved under continuous deformation．Geometry studies equivalence under translation（congruence），uniform scaling（similarity），or projection．Topology extends this to study of all continuous transformations，such that a circle becomes
equivalent to a square．Concepts from topology are relevant to data analysis， extends this to study of all continuous transformations，such that a circle becomes
equivalent to a square．Concepts from topology are relevant to data analysis， in particular in ascertaining efficient representations of sparse data sets．
－Brief history：Bridges of Königsberg，Hairy ball theorem
－Formal definition in terms of set theory
－Complexes
－Morse functions
－Persistent homology都都
－Persistent homology
\square
\qquad
MATH590：Topological data analysis（TOP）

路 $+$

 ，
\qquad ，
 ，

\author{

}

[^0]－Königsberg（Kaliningrad）Mayor writes to Leonhard Euler in 1735 to ask：is
there a way to cross all bridges in his city only once？Euler complains that the
－Königsberg（Kaliningrad）Mayor writes to Leonhard Euler in 1735 to ask：is
there a way to cross all bridges in his city only once？Euler complains that the
－Solution did not depend on＂geometry＂（i．e．，measurements of a space），but only on connectivity leading to both topology and graph theory
－Further thought by Euler led to his polyhedron formula（1750）：$V-E+F=2$
－Notice that the structure of the graph of the Königsberg bridges is markedly different from the structure of the real line or real plane
正
號 －

.

．

路

question is not within the sphere of interest of a mathematician．

路

History of topology: Hairy ball theorem

- There exists no non-vanishing continuous tangent vector field on even-dimen-
sional spheres, or, ...
"you can't comb a hairy ball flat without creating a cowlick"
"you can't comb the hair on a coconut"
Every smooth vector field on a sphere has a singular point

Il theorem
nt vector field on even-dimen-
go a cowlick'
gular point

History

eld on even-dimen| vector field on even-dimen- |
| :--- |
| a cowlick" |
| alar point |
| $1 / 2$ |

 vector field on even-dimen-

都

enen-dimen-
 Id on even-dimen-

$$
\bigcup_{i \in I} \mathcal{S}_{i} \in \mathcal{T} \text { if } \mathcal{S}_{i} \in \mathcal{T}
$$

3．Any finite intersection of elements of \mathcal{T} is an element of \mathcal{T}
;ot

$$
\bigcap_{i=1}^{n} \mathcal{S}_{i} \in \mathcal{T}, i, n \in \mathbb{N}
$$

Example．The trivial topology on \mathcal{A} is $\mathcal{T}=\{\varnothing, \mathcal{T}\}$

\qquad
hent

$$
\text { ens of } \mathcal{T}
$$

$$
x_{2}
$$

$$
0202
$$

\qquad

Definition．A topological space is an ordered pair $(\mathcal{A}, \mathcal{T} \subseteq$
a set of subsets of \mathcal{A}, \mathcal{T} called the topology on \mathcal{A} such that：

1．$\varnothing \in \mathcal{T}, \mathcal{A} \in \mathcal{T}$ ，the empty set and the full set belong to the topology
2．Any union of elements of \mathcal{T} is an element of \mathcal{T}

Definition．A topological space is an ordered pair $\left(\mathcal{A}, \mathcal{T} \subseteq 2^{\mathcal{A}}\right)$ of a set \mathcal{A} and都

 Definition．A topological space is an ordered pair $(\mathcal{A}, \mathcal{T} \subseteq$
a set of subsets of \mathcal{A}, \mathcal{T} called the topology on \mathcal{A} such that： \qquad都
元
.
an union of elements of is an element of


```
                    *
```

\qquad
\square
\qquad
\qquad
.
\qquad位

A point $\boldsymbol{x}=\sum_{i=0}^{k} \lambda_{i} \boldsymbol{u}_{i}$, with $\lambda_{i} \in \mathbb{R}$ is an affine combination of points $\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots$, $\boldsymbol{u}_{k} \in \mathbb{R}^{d}$, if $\sum_{i=0}^{k} \lambda_{i}=1$.
The set of all affine combinations is the affine hull of points $\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbb{R}^{d}$. $\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbb{R}^{d}$ are affinely independent if any two affine combinations $\boldsymbol{x}=$ $\sum_{i=0}^{k} \lambda_{i} \boldsymbol{u}_{i}, \boldsymbol{y}=\sum_{i=0}^{k} \mu_{i} \boldsymbol{u}_{i}$ are equal iff $\lambda_{i}=\mu_{i}$
An affine hull is a k-plane if $\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbb{R}^{d}$ are affinely independent.
The $k+1$ points $\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbb{R}^{d}$ are affinely independent iff the vectors \boldsymbol{u}_{1} $\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{k}-\boldsymbol{u}_{0}$ are linearly independent.
An affine combination $\boldsymbol{x}=\sum_{i=0}^{k} \lambda_{i} \boldsymbol{u}_{i}$ is a convex combination if $\lambda_{i} \geqslant 0$.
The set set of all convex combinations is a convex hull.
A k-simplex is convex hull of $k+1$ affinely independent points, $\sigma=\operatorname{conv}\left\{\boldsymbol{u}_{0}, \ldots\right.$, $\left.\boldsymbol{u}_{k}\right\}$, with dimension $\operatorname{dim} \sigma=k$

The 0,1,2,3-dimensional simplices are named: vertex, edge, triangle, tetrahedron. Any subset of affinely independent points again defines a simplex.

A face τ of the simplex $\sigma=\operatorname{conv}\left\{\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{k}\right\}$ is the convex hull of some subset of the points, $\tau \leqslant \sigma$. It is a proper face if the subset is not the entire set of points, $\tau<\sigma$, and σ is said to be the coface of τ.

The union of all proper faces is the boundary of σ, denoted as $\operatorname{bd}(\sigma)$. The interior is the complement of the boundary, $\operatorname{int}(\sigma)=\sigma-\operatorname{bd}(\sigma)$. A point $\boldsymbol{x}=\sum_{i=0}^{k} \lambda_{i} \boldsymbol{u}_{i} \in$ σ is in the interior, $x \in \operatorname{int}(\sigma)$ if $\lambda_{i}>0$. The point x belongs to the interior of the face spanned by the points for which $\lambda_{i}>0$.

Definition. A simplicial complex is a finite collection \mathcal{K} of simplices such that $\sigma \in \mathcal{K}$ and $\tau \leqslant \mathcal{K}$ implies $\tau \in \mathcal{K}$, and $\sigma, \sigma_{0} \in \mathcal{K}$ implies $\sigma \cap \sigma_{0}$ is either empty or a face of both.

Restated, \mathcal{K} is closed under taking faces and has no improper intersections.

The dimension of simplicial complex \mathcal{K} is the maximum of any of its simplices.
The underlying space $|\mathcal{K}|$ is the union of its simplices together with the topology of the embedding Euclidean space $\left(\mathbb{R}^{d}\right)$.

A homeomorphism between topological spaces \mathcal{S}, \mathcal{T} is a function $f: \mathcal{S} \rightarrow \mathcal{T}$ that is a bijection, continuous and with continuous inverse.

A triangulation $\mathbb{T}=(\mathcal{K}, f: \mathcal{T} \rightarrow|\mathcal{K}|)$ of a topological space \mathcal{T} is a simplicial complex \mathcal{K} together with a homemorphism f.

A subcomplex of \mathcal{K} is a complex \mathcal{L} with $\mathcal{L} \subseteq \mathcal{K}$. The subcomplex is said to be full if it contains all simplices spanned by the vertices in \mathcal{L}.
The j-skeleton is the set of all simplices of dimension j or less, $\mathcal{K}^{(j)}=\{\sigma \in$ $\mathcal{K} \mid \operatorname{dim} \sigma \leqslant j\}$. The 0 -skeleton is the vertex set, $\operatorname{Vert}(\mathcal{K})=\mathcal{K}^{(0)}$.
The star of simplex τ is the set of all cofaces, $\operatorname{St}(\tau)=\{\sigma \in \mathcal{K} \mid \tau \leqslant \sigma\}$. Generally the star is not closed under taking faces.

Thine
III
Con
The
\mathcal{V}_{u}
The
$\left\{\mathcal{V}_{u}\right.$
The
The
號 （1930
.
■

1

 列
 $$
1
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\square
，
－

都
\qquad

\square

（
－
.
\qquad
\qquad

[^1]
Abstract

\qquad

\qquad

\qquad

． | 1 |
| :--- |
| |

A homeomorphism f is continuous function with continuous inverse between two topological spaces $\left(\mathcal{A}, \mathcal{T} \subseteq 2^{\mathcal{A}}\right),\left(\mathcal{B}, \mathcal{U} \subseteq 2^{\mathcal{A}}\right), f: \mathcal{A} \rightarrow \mathcal{B}, f \in C(\mathcal{A}), f^{-1} \in \mathcal{C}(\mathcal{B})$.

A topological invariant of the topological space $\left(\mathcal{A}, \mathcal{T} \subseteq 2^{\mathcal{A}}\right)$ is a property that remains invariant under homeomorphism. Examples:

- Cardinality of $\mathcal{A},|\mathcal{A}|$
- Cardinality of the topology on $\mathcal{A},|\mathcal{T}|$

An abelian group is an algebraic structure that satisfies properties of: closure, associativity, existence of an indentity element, existence of inverse element, and commutativity

It is common to describe a topology by associating the topological space to a sequence of abelian groups, a procedure known as a homology. The homology of a topological space $\left(\mathcal{A}, \mathcal{T} \subseteq 2^{\mathcal{A}}\right)$ is formally the set of topological invariants given by the homology groups $H_{0}(\mathcal{T}), H_{1}(\mathcal{T}), H_{2}(\mathcal{T}), \ldots$ that, informally characterize the holes in a manifold.

[^2]

[^0]:

[^1]: 保
 （

[^2]: ## (
 \footnotetext{

 }