
MATH590: Stochastic calculus (STC)

Module overview

Stochastic calculus and process introduces a rigorous mathematical description
based upon set theory to describe what is intuitively perceived as randomness.

� Probability theory

� Random variables

� Probability densities

� Conditional expectations

� Stochastic processes

� Brownian motion

� Di�usion

� Karhunen-Loève theorem, relation to singular value decomposition



Probability

De�nition. A �-algebra on a set A is a collection of subsets S �2A that includes
A, and is closed under complement and is closed under countable unions.

De�nition. A probability space (
;F ; P ) consists of:

a) a sample space 
, a set of all possible outcomes of a random trial;

b) a �-algebra F of measurable subsets of 
 whose elements are events about
which it is possible to obtain information

c) a probability measure P :F! [0; 1], with P (A) interpreted as the probability
that event A2F occurs. For P (A)=1, it is said that event A occurs almost
surely.

Example. The open subsets of R or [0; 1] form a �-algebra called the Borel
algebra B on R or [0; 1]. With 
= [0; 1], F the Borel algebra on [0; 1], and P
given by (Lebesgue) interval length, (
;F ; P ) forms a probability space.



Random variables

A function X : 
!R, with F a �-algebra on 
 is said to be F -measurable, if
X¡1(A)2F for all A2B in R.

A random variable on probability space (
;F ; P ) is a real-valued, F -measurable
function X : 
!R. A random variable is a real-valued quantity that can be
measured from the outcome of a random trial.

The expected value of random variable X is E[X ], also called the mean value,
�=E[X]. It is assumed that X is integrable, hence E[X]<1.

The variance is the expected value of the squared deviation from the mean, �2=
E[(X ¡ �)2], with � the standard deviation.

The covariance of two random variables X1; X2 with means �1; �2, and standard
deviations �1; �2 is cov(X1; X2)=E[(X1¡ �1)(X2¡ �2)]. The correlation is

cor(X1; X2)=
cov(X1; X2)

�1�2



Expectation operator

The expectation operator is a linear functional

E[aX + bY ] = aE[X] + bE[Y ]; a; b2R:

The expectation operator can be expressed as an integral over probability measure

E[X ] =

Z



X(!) dP (!)

The probability of an event A is the expectation of its indicator function 1A

P (A)=E[1A]; 1A(!)=

�
1 ! 2A
0 !2/ A



Absolutely continuous, singular measures

Let P ; Q:F! [0; 1] be measures on the same �-algebra F , and sample space 
.

Q is absolutely continuous w.r.t. P if there exists an integrable random variable
f : 
!R, called the density of Q w.r.t. P , such that 8A2F

Q(A)=

Z
A

f(!)dP (!); or; dQ= f dP :

The expectations w.r.t. P ; Q are related by

EQ[X] =

Z



X dQ(!)=

Z



f �XdP (!)=EP [fX ]:

The probability measures P ;Q are singular if 9A2F such that P (A)=1, Q(A)=
0.



Probability densities

The distribution function F :R! [0;1] of a random variable X:
!R is de�ned
as F (x)=P fX 6xg.

A random variable is continuous if its distribution function is absolutely continuous
w.r.t. Lebesgue measure.

If a random variable is continuous with distribution function F , then F is di�er-
entiable and p(x)=F 0(x) is the probability density function of X, and

P (X 2A)=
Z
A

p(x) dx

For any f :R!R, Borel-measurable

E[f(X)] =

Z
¡1

1
f(x) p(x) dx



Joint probability densities

X1; :::;Xn: 
!R are jointly continuous if there exists a joint probability density
function p(x1; :::; xn) such that

P (X12A1; :::; Xn2An)=

Z
A

p(x1; :::; xn) dx1:::dxn

with A=A1� ����An.

Gaussian probability densities:

p(x)=
1

2��2
p exp

�
¡(x¡ �)

1

2�2
(x¡ �)

�

p(x)=
1

(2�)n/2(detC)1/2
exp[¡(x¡�)TC¡1(x¡�)]



Independent random variables

X1; :::; Xn: 
!R are independent if

P fX12A1; :::; Xn2Ang=P fX12A1g � ::: �P fXn2Ang

For any f1; :::; fn:R!R: E[f1(X1) � ::: � fn(Xn)] =E[f(X1)] � ::: �E[fn(Xn)]

For jointly continuous random variables the probability density can be factorized

p(x1; :::; xn)= p1(x1) � ::: � pn(xn)

If p1= :::= pn, X1; :::; Xn are independent, identically distributed random vari-
ables, (iid random variables).

Each random variable de�nes a di�erent coordinate axis in probability space

Gaussian random variables are independent if the covariance matrix is diagonal.

Linear transformations of Gaussian random variables are Gaussian.



Sub �-algebras

Often, there is interest in the expectation of a random variable in probability space
(
; F � 2
; P ) after certain prior events have taken place. This is translated
into set-theoretic formulations of probability theory through subsets of �-algebras.
Recall that �-algebras on A are subsets of 2A that allow a measurement operation:
one can unambigously assign a number that re�ects the size of each member of
the �-algebra.

With E � 2A, denote by �(E) the smallest �-algebra that contains E .

Consider an in�nite sequence of coin �ips. The probability space is 
= f0; 1g1,
or 
= f(x1; x2; :::); xi2f0; 1gg. Suppose that after n �ips, a change is desired
in the betting strategy for successive �ips. The relevant �-algebra is

Fn= fA�f0; 1g1; A2f0; 1gng[?� 2
;Fn coarser thanFn+1;

which is the collection of subsets of 
 decided by the �rst n �ips. and the inclusions
F1� ����F1 hold, with F1 the smallest �-algebra that contains all the others,
and Fn+1=�(Fn). (
;F0=

S
i2NFn; P0= jA

(n)j/2n) is a probability space.



Conditional expectation

X: 
!R a random variable in probability space (
;F ; P ). Consider another �-
algebra, G �F . The conditional expectation of X given G (i.e., some event in G
has occured), denoted as Y =E[X jG], is itself a G-measurable random variable
Y : 
!R, such that for all G-measurable random variables Z

E[E[X jG]Z] =E[YZ] =E[XZ]:

In particular for 8B 2 G , choose Z = 1B, and the following must hold
E[E[X jG] 1B] =

R


E[X jG] 1B dP =

R
B
Y dP =

R


X 1B dP =

R
B
XdP

In essence, Y corresponds to the average of X over the �ner �-algebra F to obtain
a random variable measurable w.r.t. coarser �-algebra G, as exempli�ed by:

Consider G = f?; B; Bc;
g: E[X jG] = p1B+ q1Bc, with p=
R
B
X dP /P (B),

q=
R
Bc
XdP /P (Bc).



Conditional expectation of random variables

Consider random variables Y1; :::; Yn. The conditional expectation of X given
Y1; :::; Yn is the random variable Z de�ned by

Z =E[X jY1; :::; Yn] =E[X j�(Y1; :::; Yn)]:

For continuous random variables X1; :::; Xm; Y1; :::; Yn with a joint probability
density p(x1; :::; xm; y1; :::; yn), the following holds

p(x1; :::; xmjy1; :::; yn)=
p(x1; :::; xm; y1; :::; yn)

pY (y1; :::; yn)
;

with the marginal density pY de�ned as

pY (y1; :::; yn)=

Z
Rm

p(x1; :::; xm; y1; :::; yn) dx1:::dxm



Stochastic processes

The main motivation for introducing previous concepts is to set the framework for
discussing stochastic processes, i.e., collections of random variables. In particular,
the interest here is in continuous-time random processes X : [0;1)�
!R.

� Fix ! 2
, X!: [0;1)!R, X!: t!X(t; !) is a sample function

� Fix t2 [0;1), Xt:
!R, Xt:!!X(t;!) is a collection of random variables
indexed by t

For each t, let p(x; t) be the PDF of Xt(!). However, such one-point PDFs do
not characterize relationships at di�erent times in a stochastic process.

Example. Xt=1 or Xt=¡1 at all times t with probability 1/2, is di�erent from
Yt in which Ys; Yt are iid for s=/ t, and Yt=�1 equiprobably

E[Xt] = 0;E[Yt] = 0;E[XsXt] = 1;E[YsYt] = �s;t



Joint probability densities for stochastic processes

De�ne relationships between di�erent times in a stochastic process by considering
n times, 06 t1<t2< ���<<tn, and A1; A2; :::; An, Borel subsets of R. Event E

E= f! 2
:Xtj(!)2Aj ; 16 j6n; j 2Ng

has probability

P (E)=

Z
A

p(xn; tn; :::;x1; t1) dx1:::dxn; A=A1� ����An�Rn;

p(xn; tn; :::;x1; t1) is the joint probability density for random variables Xt1; :::;Xtn.

Consistency conditionZ
R

p(xn; tn; :::;x1; t1) dxi= p(xn; tn; :::;xi+1; ti+1;xi¡1; ti¡1; :::;x1; t1)

A stochastic process described by PDFs at countably many times is separable.



Markov processes

Consider X: [0;1)�
!R a stochastic process on (
;F ; P ). Inspired by the
in�nite coin-�ip example, consider a coarser �-algebra

Ft=�(Xs: 06 s6 t)

For 06 s<t, Fs�Ft�F . The family of all such �-algebras fFt: 06 t<1g is a
�ltration of F . Ft is the collection of events observed up to time t, and E[X jFt]
is the expectation of X based on observations up to time t.

A stochastic process is said to be a Markov process if 806 s< t and any Borel-
measurable function f :R!R with �nite E[f(Xt)] we have

E[f(Xt)jFs] =E[f(Xt)jXs]:

Read this as stating that the expectation over all possible histories is the same as
that for the history that actually occured, hence the process has no memory of
how it arrived at time t.



Chapman-Kolmogorov equation

Characterize a Markov process by its �nite-dimensional PDFs at times 06 t1< ���<
tm< tm+1< ���< tn. Introduce notation ri= (xi; ti)The conditional PDF that
Xi= xi for m+16 i6n given that Xi=xi for 16 i6m is

p(rn; :::; rm+1jrm; :::; r1)=
p(rn; :::; rm+1; rm; :::; r1)

p(rm; :::; r1)
:

For a Markov process p(rn+1jrn; :::; r1)= p(rn+1jrn), hence

p(rn; rn¡1; :::; r2jr1)= p(rnjrn¡1) � ::: � p(r2jr1);

and satisfy the Chapman-Kolmogorov relation

p(x; tjy; s)=
Z
R

p(x; tjz; r)p(z; r jt; s) dz;8s< r < t;

meaning the process must pass through some z at time r going from y; s to x; t.



Brownian motion (Wiener process)

B(t; !) is a Brownian motion or Wiener process if:

1. B(0; !)= 0, 8! 2


2. 8 06 t1<t2< ���<tn, the increments Bt2¡Bt1; :::; Btn¡Btn¡1 are indepen-
dent random variables

3. 806 s < t <1, Bt¡Bs is a Gaussian random variable with mean 0 and
vraiance t¡ s

4. Sample paths B!: [0;1)!R are continuous functions 8! 2R

With A0; A1; :::; An; ::: iid Gaussian random variables, Ai�N (0; 1)

B(t)=
1

�
p
 
A0t+2

X
k=1

1

Ak
sin (kt)

k

!

The transition density is p(x; tjy; 0)=N (y; t
p

), satisfying pt=
1

2
pxx.



Karhunen-Loève theorem and SVD

The Wiener expression of a Brownian motion as a Fourier series,

B(t)=
1

�
p
 
A0t+2

X
k=1

1

Ak
sin (kt)

k

!

can be generalized to an arbitrary stochastic process of zero mean, E[Xt] = 0,
through the Karhunen-Loève theorem

Xt=
X
k=1

1

Zkuk(t); Zk=

Z
Xt uk(t)dt;E[Zk]0;E[ZiZj] = �ij�j

The singular value decomposition carries out a discrete version,

X=( x(!1) ::: x(!N) )=U�V
T ;x=( x(t1) ::: x(tn) )

T

with �=diag(�1; :::; �n), U=( u1 ::: un ), uk=( uk(t1) ::: uk(tn) )
T :
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