Module overview
Stochastic calculus and process introduces a rigorous mathematical descrip
based upon set theory to describe what is intuitively perceived as randomness
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition Module overview
Stochastic calculus and process introduces a rigorous mathematical description
based upon set theory to describe what is intuitively perceived as randomness．
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition Module overview
Stochastic calculus and process introduces a rigorous mathematical descripti
based upon set theory to describe what is intuitively perceived as randomness．
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition MATH590：Stochastic calculus（STC）
Module overview
Stochastic calculus and process introduces a rigorous mathematical descrip
based upon set theory to describe what is intuitively perceived as randomness
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition Module overview
Stochastic calculus and process introduces a rigorous mathematical descrip
based upon set theory to describe what is intuitively perceived as randomness
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition Module overview
Stochastic calculus and process introduces a rigorous mathematical descrip
based upon set theory to describe what is intuitively perceived as randomness
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition Module overview
Stochastic calculus and process introduces a rigorous mathematical descrip
based upon set theory to describe what is intuitively perceived as randomness
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition


```（
```－
```（
```


\qquad

Module overview
Stochastic calculus and process introduces a rigorous mather
based upon set theory to describe what is intuitively perceived
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomp Module overview
Stochastic calculus and process introduces a rigorous mathem
based upon set theory to describe what is intuitively perceived
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomp Module overview
Stochastic calculus and process introduces a rigorous mathem
based upon set theory to describe what is intuitively perceived
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomp Module overview
Stochastic calculus and process introduces a rigorous mathematical
based upon set theory to describe what is intuitively perceived as rand
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition

$$
0
$$ Module overview

Stochastic calculus and process introduces a rigorous mathematical
based upon set theory to describe what is intuitively perceived as rand
－Probability theory
－Random variables
－Probability densities
－Conditional expectations
－Stochastic processes
－Brownian motion
－Diffusion
－Karhunen－Loève theorem，relation to singular value decomposition
\qquad
都

 ．

.
\qquad
\qquad MATH590：Stochastic calculus（STC）
module overview
Probability theory
Random variables
Conditional expectations
Stochastic processes
Brownian motion
Diffusion
Karhunen－Loève theorem，relation to singular value decomp and process introduces a rigorous mathew
Cons sens theory to describe what is intuitively perceived
Cos
Cons MATH590：Stochastic calculus（STC）
module overview
Probability theory
Random variables
Conditional expectations
Stochastic processes
Brownian motion
Diffusion
Karhunen－Loève theorem，relation to singular value decomp and process introduces a rigorous mathew
Cons sens theory to describe what is intuitively perceived
Cos
Cons
\qquad odule overview
Probability theory
Random variables
Probability densities
Conditional expectations
Stochastic processes
Brownian motion
Diffusion
Karhunen－Loève theorem，relation to singular value decomp
－Karhunen－Loève theorem，relation to singular value decomposition

－

```
                        O
```

```
                        O
```

```
                        O
```

\qquad
\square
\square
■

Nadene overview
Stochastic calculus and process introduces a vigo
based upon set theory to describe what is intuitive
Probability theory
Random variables

\qquad别 odule overview
sedastic calculus and process introduces a rigorous mathematical description
Probability theory
Random variables
Conditional expectations ． odule overview
Probability theory
Random variables
Probability densities
Conditional expectations
Stochastic processes
Brownian motion
Diffusion
Karhunen－Loève theorem，relation to singular value decomp

（

號
III
Module
Stochastic
based upor
\qquad

 $\overline{4}$
 0

Definition. A σ-algebra on a set A is a collection of subsets $\mathcal{S} \subseteq 2^{A}$ that includes A, and is closed under complement and is closed under countable unions.

Definition. A probability space (Ω, \mathcal{F}, P) consists of:
a) a sample space Ω, a set of all possible outcomes of a random trial;
b) a σ-algebra \mathcal{F} of measurable subsets of Ω whose elements are events about which it is possible to obtain information
c) a probability measure $P: \mathcal{F} \rightarrow[0,1]$, with $P(A)$ interpreted as the probability that event $A \in \mathcal{F}$ occurs. For $P(A)=1$, it is said that event A occurs almost surely.

Example. The open subsets of \mathbb{R} or $[0,1]$ form a σ-algebra called the Borel algebra \mathcal{B} on \mathbb{R} or $[0,1]$. With $\Omega=[0,1], \mathcal{F}$ the Borel algebra on $[0,1]$, and P given by (Lebesgue) interval length, (Ω, \mathcal{F}, P) forms a probability space.

A function $X: \Omega \rightarrow \mathbb{R}$, with \mathcal{F} a σ-algebra on Ω is said to be \mathcal{F}-measurable, if $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{B}$ in \mathbb{R}.

A random variable on probability space (Ω, \mathcal{F}, P) is a real-valued, \mathcal{F}-measurable function $X: \Omega \rightarrow \mathbb{R}$. A random variable is a real-valued quantity that can be measured from the outcome of a random trial.

The expected value of random variable X is $\mathbb{E}[X]$, also called the mean value, $\mu=\mathbb{E}[X]$. It is assumed that X is integrable, hence $\mathbb{E}[X]<\infty$.
The variance is the expected value of the squared deviation from the mean, $\sigma^{2}=$ $\mathbb{E}\left[(X-\mu)^{2}\right]$, with σ the standard deviation.

The covariance of two random variables X_{1}, X_{2} with means μ_{1}, μ_{2}, and standard deviations σ_{1}, σ_{2} is $\operatorname{cov}\left(X_{1}, X_{2}\right)=\mathbb{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]$. The correlation is

$$
\operatorname{cor}\left(X_{1}, X_{2}\right)=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

The expectation operator is a linear functional

The expectation operator can be expressed as an integral over probability measure

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} P(\omega)
$$

The probability of an event A is the expectation of its indicator function 1_{A}

$$
P(A)=\mathbb{E}\left[1_{A}\right], 1_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}
$$

```(
```

$$
\begin{aligned}
& \text { The expectation opera } \\
& \text { The expectation opera } \\
& \text { The probability of an es }
\end{aligned}
$$

.
保
pr
$P(A)=\mathbb{E}\left[1_{A}\right], 1_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}$

$$
\mathbb{E}[X]=\int_{s}
$$

保

[^0] (
$$
\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y], a, b \in \mathbb{R}
$$

$$
\square
$$

$$
\operatorname{Sin}_{2}
$$

.

$$
Q(A)=\int_{A} f(\omega) \mathrm{d} P(\omega), \text { or, } \mathrm{d} Q=f \mathrm{~d} P
$$

The expectations w．r．t．P, Q are related by

$$
\mathbb{E}^{Q}[X]=\int_{\Omega} X \mathrm{~d} Q(\omega)=\int_{\Omega} f \cdot X \mathrm{~d} P(\omega)=\mathbb{E}^{P}[f X]
$$

The probability measures P, Q are singular if $\exists A \in \mathcal{F}$ such that $P(A)=1, Q(A)=$ 0 ．

-
\square
\square
re reatea dy
ت

$$
{ }_{E}
$$

f
正號
I

The distribution function $F: \mathbb{R} \rightarrow[0,1]$ of a random variable $X: \Omega \rightarrow \mathbb{R}$ is defined

A random variable is continuous if its distribution function is absolutely continuous

If a random variable is continuous with distribution function F ，then F is differ－號

\qquad

\qquad

.
entiable and $p(x)=F^{\prime}(x)$ is the probability density function of X ，and

(
\qquad －
路

E
.

$$
\square
$$ － R

$$
5
$$

$$
0
$$

[e

$$
0
$$

\qquad \square
\qquad

\qquad D (\bigcirc \square

$$
5
$$

■
$X_{1}, \ldots, X_{n}: \Omega \rightarrow \mathbb{R}$ are independent if

$$
P\left\{X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right\}=P\left\{X_{1} \in A_{1}\right\} \cdot \ldots \cdot P\left\{X_{n} \in A_{n}\right\}
$$

For any $f_{1}, \ldots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}: \mathbb{E}\left[f_{1}\left(X_{1}\right) \cdot \ldots \cdot f_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[f\left(X_{1}\right)\right] \cdot \ldots \cdot \mathbb{E}\left[f_{n}\left(X_{n}\right)\right]$
For jointly continuous random variables the probability density can be factorized

$$
p\left(x_{1}, \ldots, x_{n}\right)=p_{1}\left(x_{1}\right) \cdot \ldots \cdot p_{n}\left(x_{n}\right)
$$

If $p_{1}=\ldots=p_{n}, X_{1}, \ldots, X_{n}$ are independent, identically distributed random variables, (iid random variables).

Each random variable defines a different coordinate axis in probability space
Gaussian random variables are independent if the covariance matrix is diagonal. Linear transformations of Gaussian random variables are Gaussian.

Often, there is interest in the expectation of a random variable in probability space $\left(\Omega, \mathcal{F} \subseteq 2^{\Omega}, P\right)$ after certain prior events have taken place. This is translated into set-theoretic formulations of probability theory through subsets of σ-algebras. Recall that σ-algebras on A are subsets of 2^{A} that allow a measurement operation: one can unambigously assign a number that reflects the size of each member of the σ-algebra.

With $\mathcal{E} \subseteq 2^{A}$, denote by $\sigma(\mathcal{E})$ the smallest σ-algebra that contains \mathcal{E}.
Consider an infinite sequence of coin flips. The probability space is $\Omega=\{0,1\}^{\infty}$, or $\Omega=\left\{\left(x_{1}, x_{2}, \ldots\right), x_{i} \in\{0,1\}\right\}$. Suppose that after n flips, a change is desired in the betting strategy for successive flips. The relevant σ-algebra is

$$
\mathcal{F}_{n}=\left\{A \times\{0,1\}^{\infty}, A \in\{0,1\}^{n}\right\} \cup \varnothing \subseteq 2^{\Omega}, \mathcal{F}_{n} \text { coarser than } \mathcal{F}_{n+1},
$$

which is the collection of subsets of Ω decided by the first n flips. and the inclusions $\mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{\infty}$ hold, with \mathcal{F}_{∞} the smallest σ-algebra that contains all the others, and $\mathcal{F}_{n+1}=\sigma\left(\mathcal{F}_{n}\right) .\left(\Omega, \mathcal{F}_{0}=\bigcup_{i \in \mathbb{N}} \mathcal{F}_{n}, P_{0}=\left|A^{(n)}\right| / 2^{n}\right)$ is a probability space.
$X: \Omega \rightarrow \mathbb{R}$ a random variable in probability space (Ω, \mathcal{F}, P). Consider another σ algebra, $\mathcal{G} \subset \mathcal{F}$. The conditional expectation of X given \mathcal{G} (i.e., some event in \mathcal{G} has occured), denoted as $Y=\mathbb{E}[X \mid \mathcal{G}]$, is itself a \mathcal{G}-measurable random variable $Y: \Omega \rightarrow \mathbb{R}$, such that for all \mathcal{G}-measurable random variables Z

$$
\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] Z]=\mathbb{E}[Y Z]=\mathbb{E}[X Z]
$$

In particular for $\forall B \in \mathcal{G}$, choose $Z=1_{B}$, and the following must hold $\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}] 1_{B}\right]=\int_{\Omega} \mathbb{E}[X \mid \mathcal{G}] 1_{B} \mathrm{~d} P=\int_{B} Y \mathrm{~d} P=\int_{\Omega} X 1_{B} \mathrm{~d} P=\int_{B} X \mathrm{~d} P$

In essence, Y corresponds to the average of X over the finer σ-algebra \mathcal{F} to obtain a random variable measurable w.r.t. coarser σ-algebra \mathcal{G}, as exemplified by:

Consider $\mathcal{G}=\left\{\varnothing, B, B^{c}, \Omega\right\}: \mathbb{E}[X \mid \mathcal{G}]=p 1_{B}+q 1_{B^{c}}$, with $p=\int_{B} X \mathrm{~d} P / P(B)$, $q=\int_{B^{c}} X \mathrm{~d} P / P\left(B^{c}\right)$.

 \qquad

In
V

\qquad
\qquad
\qquad
\qquad
\qquad
 \qquad
\qquad
\qquad
\qquad

.
\square

\qquad

$$
1
$$

$$
+
$$

$$
3
$$

$$
1
$$

Abstract

$$
5
$$

$$
\begin{align*}
& \text { Consider random va } \\
& Y_{1, \ldots,} Y_{n} \text { is the rand } \\
& \text { For continuous rand } \\
& \text { density } p\left(x_{1}, \ldots, x_{m}\right. \text {, } \\
& \text { with the marginal de } x_{1} \text {, } \\
& \text { m er } y_{1} \text {, }
\end{align*}
$$

$$
\begin{aligned}
& \qquad Z=\mathbb{E}\left[X \mid Y_{1}, \ldots, Y_{n}\right]=\mathbb{E}\left[X \mid \sigma\left(Y_{1}, \ldots, Y_{n}\right)\right] \\
& \text { For continuous random variables } X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n} \text { with a joint } \\
& \text { density } p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \text {, the following holds } \\
& \qquad p\left(x_{1}, \ldots, x_{m} \mid y_{1}, \ldots, y_{n}\right)=\frac{p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)}{p_{Y}\left(y_{1}, \ldots, y_{n}\right)} \\
& \text { with the marginal density } p_{Y} \text { defined as } \\
& \qquad p_{Y}\left(y_{1}, \ldots, y_{n}\right)=\int_{\mathbb{R}^{m}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m}
\end{aligned}
$$

,

The main motivation for introducing previous concepts is to set the framework for discussing stochastic processes, i.e., collections of random variables. In particular, the interest here is in continuous-time random processes $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}$.

- Fix $\omega \in \Omega, X^{\omega}:[0, \infty) \rightarrow \mathbb{R}, X^{\omega}: t \rightarrow X(t, \omega)$ is a sample function
- Fix $t \in[0, \infty), X_{t}: \Omega \rightarrow \mathbb{R}, X_{t}: \omega \rightarrow X(t, \omega)$ is a collection of random variables indexed by t

For each t, let $p(x, t)$ be the PDF of $X_{t}(\omega)$. However, such one-point PDFs do not characterize relationships at different times in a stochastic process.

Example. $X_{t}=1$ or $X_{t}=-1$ at all times t with probability $1 / 2$, is different from Y_{t} in which Y_{s}, Y_{t} are iid for $s \neq t$, and $Y_{t}= \pm 1$ equiprobably

$$
\mathbb{E}\left[X_{t}\right]=0, \mathbb{E}\left[Y_{t}\right]=0, \mathbb{E}\left[X_{s} X_{t}\right]=1, \mathbb{E}\left[Y_{s} Y_{t}\right]=\delta_{s, t}
$$

$$
\begin{align*}
& \text { Defil } \\
& n \text { fir } \\
& \text { has } \tag{I}\\
& p\left(x_{n}\right. \tag{I}\\
& \text { Cons } \\
& \text { A st }
\end{align*}
$$

$$
\begin{aligned}
& \text { Define relationships between different times in a stochastic process by considering } \\
& n \text { times, } 0 \leqslant t_{1}<t_{2}<\ldots \ll t_{n}, \text { and } A_{1}, A_{2}, \ldots, A_{n} \text {, Bore subsets of } \mathbb{R} \text {. Event } E \\
& \qquad E=\left\{\omega \in \Omega: X_{t_{j}}(\omega) \in A_{j}, 1 \leqslant j \leqslant n, j \in \mathbb{N}\right\} \\
& \text { has probability } \\
& \qquad P(E)=\int p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}, A=A_{1} \times \cdots \times A_{n} \subset \mathbb{R}^{n}
\end{aligned}
$$

$$
P(E)=\int_{A} p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}, A=A_{1} \times \cdots \times A_{n} \subset \mathbb{R}^{n},
$$

.
$p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right)$ is the joint probability density for random variables $X_{t_{1}}, \ldots, X_{t_{n}}$ ． Consistency condition

$$
\int_{\mathbb{R}} p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right) \mathrm{d} x_{i}=p\left(x_{n}, t_{n} ; \ldots ; x_{i+1}, t_{i+1} ; x_{i-1}, t_{i-1} ; \ldots ; x_{1}, t_{1}\right)
$$

A stochastic process described by PDF at countably many times is separable．
.
Г Define re

俋

$$
-10
$$

\qquad

$$
y m
$$ 0

F

E

.

$$
5
$$－

\square

$$
\int_{\mathbb{R}} p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right) \mathrm{d} x_{i}=p\left(x_{n}, t_{n} ; \ldots ; x_{i+1}, t_{i+1} ; x_{i-1}, t_{i-1} ; \ldots ; x_{1}, t_{1}\right)
$$

■
I

 $+1$

$$
3
$$

I
x^{2}
\square

$$
\left.\ldots ; x_{1}, t_{1}\right) \text { is the joint probability density for random variables } X_{t_{1}} \text {, }
$$

\qquad

Consider $X:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ a stochastic process on (Ω, \mathcal{F}, P). Inspired by the infinite coin-flip example, consider a coarser σ-algebra

$$
\mathcal{F}_{t}=\sigma\left(X_{s}: 0 \leqslant s \leqslant t\right)
$$

For $0 \leqslant s<t, \mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$. The family of all such σ-algebras $\left\{\mathcal{F}_{t}: 0 \leqslant t<\infty\right\}$ is a filtration of \mathcal{F}. \mathcal{F}_{t} is the collection of events observed up to time t, and $\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]$ is the expectation of X based on observations up to time t.

A stochastic process is said to be a Markov process if $\forall 0 \leqslant s<t$ and any Borelmeasurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with finite $\mathbb{E}\left[f\left(X_{t}\right)\right]$ we have

$$
\mathbb{E}\left[f\left(X_{t}\right) \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[f\left(X_{t}\right) \mid X_{s}\right] .
$$

Read this as stating that the expectation over all possible histories is the same as that for the history that actually occured, hence the process has no memory of how it arrived at time t.

Characterize a Markov process by its finite-dimensional PDFs at times $0 \leqslant t_{1}<\cdots<$ $t_{m}<t_{m+1}<\cdots<t_{n}$. Introduce notation $r_{i}=\left(x_{i}, t_{i}\right)$ The conditional PDF that $X_{i}=x_{i}$ for $m+1 \leqslant i \leqslant n$ given that $X_{i}=x_{i}$ for $1 \leqslant i \leqslant m$ is

$$
p\left(r_{n}, \ldots, r_{m+1} \mid r_{m}, \ldots, r_{1}\right)=\frac{p\left(r_{n}, \ldots, r_{m+1}, r_{m}, \ldots, r_{1}\right)}{p\left(r_{m}, \ldots, r_{1}\right)}
$$

For a Markov process $p\left(r_{n+1} \mid r_{n}, \ldots, r_{1}\right)=p\left(r_{n+1} \mid r_{n}\right)$, hence

$$
p\left(r_{n}, r_{n-1}, \ldots, r_{2} \mid r_{1}\right)=p\left(r_{n} \mid r_{n-1}\right) \cdot \ldots \cdot p\left(r_{2} \mid r_{1}\right)
$$

and satisfy the Chapman-Kolmogorov relation

$$
p(x, t \mid y, s)=\int_{\mathbb{R}} p(x, t \mid z, r) p(z, r \mid t, s) \mathrm{d} z, \forall s<r<t
$$

meaning the process must pass through some z at time r going from y, s to x, t.
\squarer
-

1. $B(0, \omega)=0, \forall \omega \in \Omega$
2. $\forall 0 \leqslant t_{1}<t_{2}<\cdots<t_{n}$, the increments $B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$
dent random variables
3. $\forall 0 \leqslant s<t<\infty, B_{t}-B_{s}$ is a Gaussian random variable with
vraiance $t-s$
4. Sample paths $B^{\omega}:[0, \infty) \rightarrow \mathbb{R}$ are continuous functions $\forall \omega \in \mathbb{R}$
With $A_{0}, A_{1}, \ldots, A_{n}, \ldots$ id Gaussian random variables, $A_{i} \sim \mathcal{N}(0,1)$

$$
B(t)=\frac{1}{\sqrt{\pi}}\left(A_{0} t+2 \sum_{k=1}^{\infty} A_{k} \frac{\sin (k t)}{k}\right)
$$

The transition density is $p(x, t \mid y, 0)=\mathcal{N}(y, \sqrt{t})$, satisfying $p_{t}=\frac{1}{2} p$ 1. $B(0, \omega)=0, \forall \omega \in \Omega$
2. $\forall 0 \leqslant t_{1}<t_{2}<\cdots<t_{n}$, the increments $B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$
dent random variables
3. $\forall 0 \leqslant s<t<\infty, B_{t}-B_{s}$ is a Gaussian random variable with
vraiance $t-s$
4. Sample paths $B^{\omega}:[0, \infty) \rightarrow \mathbb{R}$ are continuous functions $\forall \omega \in \mathbb{R}$
With $A_{0}, A_{1}, \ldots, A_{n}, \ldots$ id Gaussian random variables, $A_{i} \sim \mathcal{N}(0,1)$

$$
B(t)=\frac{1}{\sqrt{\pi}}\left(A_{0} t+2 \sum_{k=1}^{\infty} A_{k} \frac{\sin (k t)}{k}\right)
$$

The transition density is $p(x, t \mid y, 0)=\mathcal{N}(y, \sqrt{t})$, satisfying $p_{t}=\frac{1}{2} t$

The transition density is $p(x, t \mid y, 0)=\mathcal{N}(y, \sqrt{t})$, satisfying $p_{t}=\frac{1}{2} p_{x x}$. 1. $B(0, \omega)=0, \forall \omega \in \Omega$
2. $\forall 0 \leqslant t_{1}<t_{2}<\cdots<t_{n}$, the increments $B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n}}$
dent random variables
3. $\forall 0 \leqslant s<t<\infty, B_{t}-B_{s}$ is a Gaussian random variable with
vraiance $t-s$
4. Sample paths $B^{\omega}:[0, \infty) \rightarrow \mathbb{R}$ are continuous functions $\forall \omega \in \mathbb{I}$
With $A_{0}, A_{1}, \ldots, A_{n}, \ldots$ id Gaussian random variables, $A_{i} \sim \mathcal{N}(0,1$

$$
B(t)=\frac{1}{\sqrt{\pi}}\left(A_{0} t+2 \sum_{k=1}^{\infty} A_{k} \frac{\sin (k t)}{k}\right)
$$

The transition density is $p(x, t \mid y, 0)=\mathcal{N}(y, \sqrt{t})$, satisfying $p_{t}=\frac{1}{2}$
distymg

$$
p_{t}=
$$

\qquad
\qquad

Abstract

[

\qquad
\qquad
\square
 .
rex
\qquad

$$
0
$$

$$
\begin{equation*}
\square \tag{e}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2. $\forall 0 \leqslant t_{1}<t_{2}<\cdots<t_{n}$, the increments $B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ are indepen-
3. $\forall 0 \leqslant s<t<\infty, B_{t}-B_{s}$ is a Gaussian random variable with mean 0 and

```
.
```號
.
\(\qquad\)

(1010
\[
A_{1}, \ldots, A_{n}, \ldots \text { ind udusbidin rdinumi vandinies, } A_{i} \sim \mathcal{N}(U, \perp)
\]
\(\ldots, B_{t_{n}}-B_{t_{n-1}}\) are indepen-
-
 ind en

```

                    *
    ```
.

\[
ـ
\]
■
\(\qquad\) \(\leftrightharpoons\)
E -

\(\qquad\)

\begin{abstract}
F
\end{abstract}

號
F

.
\(\square\) \(\square\)```

[^0]:

