
MATH590 DIF: Information geometry
In this final module homework we combine concepts of differential geometry with information theory to investigate the utility of the new field of information

geometry to data analysis. We’ll use the same model system of viscoelastic flow in a convergent channel. Recall that this simple physical system corre-

sponds to a generic situation encountered across the sciences: a system subjected to background stochastic  forcing and experiences a change in external

forcing (i.e., the channel wall geometry in this case).

Viscoelastic flow in a convergent channel

Consider the flow of polymers in a convergent channel -1<x<1. The x-velocity of the background flow

in the channel is assumed to be known:

In[  ]:= u[x_] =
2

π

ArcTan[20x] + 2;

Plot[u[x], {x, -1, 1}, Axes -> False, Frame → True, FrameLabel → {"x", "u(x)"},

GridLines → Automatic, PlotLabel → "Background flow velocity"]

Out[  ]=
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Background flow velocity

Assuming  a  dilute aqueous  solution,  the polymers  respond to  changes  in  the liquid  velocity  by

changing their conformation. This  process is  used, for instance, to stretch DNA molecules prior to

identifying base pairs. The simplest model for the complicated internal conformation is  a  vector Q

from one end of the molecule to the other end, the so-called dumbbell model.

We are interested in extracting  the probability distribution functions  for Q from data.  In practice,

this would be obtained by measurements. Here, however, we generate synthetic data from a stochas-

tic  process  that  models  the stretching  of the polymer  by shear  within the flow  according  to  the

stochastic differential equation



dQ = (η u’(x) Q - k Q) dt +σ dW

with η ,k,σ , model constants  that correspond to viscosity,  dumbbell  stiffness,  temperature,  respec-

tively. The dW term is a Wiener process modeling the Brownian motion of the dumbbell ends. Note

that Q=0 is taken to signify that the “spring” between the two ends of the dumbbell is at its equilib-

rium, zero-force length

Thermal effects

Taking η=0 leads to a  model that is  only influenced by temperature dQ = - k Q dt +  σ  dW, in which

thermal  effects  force the dumbbell  away from its  Q=0 equilibrium length  (expressed through  the

mean value μ=0). This is known as an Ornstein-Uhlenbeck process. Generate the synthetic data for 5

instances (i.e., 5 polymers) over 100 time steps of 0.01s.

In[  ]:= η = 0; k = 1; σ = 10; μ = 0; x = 0; nPoly = 5;

proc = OrnsteinUhlenbeckProcess[μ, σ, η u'[x] + k];

db = Table[RandomFunction[proc, {0, 1, 0.01}, 2]["ValueList"], {nPoly}];

Represent the time-evolution of the two components of Q=(Q1,Q2)

In[  ]:= ListPlot[db, Joined → True, AspectRatio → Automatic,

Frame → True, Axes → False, FrameLabel → {"Q1", "Q2"}]

Out[  ]=
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Also construct a direct representation of the evolution of the dumbbell vector itself
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In[  ]:= For[i = 1; dbVec = {}, i ≤ nPoly, i++,

AppendTo[dbVec, Graphics[{ColorData[i, "ColorList"][[i]], Map[Line[{{0, 0}, #}] & , db[[i]]]}]] ];

In[  ]:= Show[dbVec, Frame → True, GridLines → Automatic]

Out[  ]=
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The above can be interpreted as depicting the evolution over 100 time increments of the end-to-end

(dumbbell) vector for nPoly=5 different polymers.

Flow effects

Now turn on viscosity, by setting η>0

In[  ]:= η = .1; k = 1.; σ = 10.; μ = 0; x = 0; nPoly = 5;

proc = OrnsteinUhlenbeckProcess[μ, σ, η u'[x] + k];

db = Table[RandomFunction[proc, {0, 1, 0.01}, 2]["ValueList"], {nPoly}];

Represent the time-evolution of the two components of Q=(Q1,Q2)
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In[  ]:= ListPlot[db, Joined → True, AspectRatio → Automatic,

Frame → True, Axes → False, FrameLabel → {"Q1", "Q2"}]

Out[  ]=
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Karhunen-Loeve, SVD

Homework questions

Question 1

Compute the Fisher metric for univariate Gaussian distributions.

Question 2

Formulate and solve the geodesic equation for univariate Gaussian distributions. Plot the geodesics

in the (μ,σ ) plane, the Poincare hyperbolic plane.
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Question 3

Plot the trajectory of the Gaussian PDFs for Qx,Qy obtained by the SVD in the Poincare hyperbolic

plane along the channel flow for viscosities η=10^(-k), k=1,2,3,4,5.

Question 4

Arbitrarily choose one of the viscosities.  Recompute the Qx,Qy PDFs for a  larger number of sample

paths, e.g., nPoly=250 instead of nPoly=50.  Plot the trajectory in the Poincare plane of the PDFs for

both the nPoly=250 and the nPoly=50 cases.

Question 5

Presumably the means  of Qx,  Qy obtained for  the larger  number  of samples  (nPoly=250) is  more

accurate.  Correct  the  trajectory  for  the  nPoly=50  case  by  geodesic  transport  onto  the  means

obtained from the nPoly=250 case. Plot the initial and corrected trajectories in the Poincare plane.
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