
MATH590: Di�erential information geometry (DIF)

Module overview

Information geometry is a relatively new mathematical �eld that seeks to apply
the methods of di�erential geometry to statistical manifolds, i.e., manifolds of
probability distributions. The �eld was mostly developed by S-I. Amari, and the
monograph Methods of Information Geometry contains a concise if rather dense
presentation of the theory.

� Di�erential geometry of curves

� Di�erential geometry of surfaces

� Di�erential geometry of manifolds

� Geodesic transport

� Statistical manifolds

� Fisher information metric



Di�erential geometry of curves

A Cr curve in Rn is a vector-valued function : [a; b]!Rn,  2Cr[a; b], i.e., 
is r-times di�erentiable. For t2 [a; b], (t) is a position vector in Rn

The matrix-valued function, B: [a; b]!R, de�nes a set of column vectors B(t)=¡
 0(t)  00(t) ::: (r)(t)

�
, and let m=mina6t6b rankB(t). The curve is said

to be m-regular.

The length of a curve is l=
R
a

bk 0(t)k dt, usually using a 2-norm (Euclidean)

Orthonormalization (through Gram-Schmidt) ofB(t)=Q(t)R(t) gives the Frenet
reference frame Qm(t)= ( q1(t) ::: qm(t) ).

In particular q1(t)=  0(t)/k 0(t)k is the unit tangent vector , and

qj(t)=uj(t)/kuj(t)k;uj(t)= [In¡Qj(t)Qj
T(t)](j)(t)

de�nes generalized curvature vectors, and �i(t)= (qi
0(t))Tqi+1(t)/k 0(t)k is the

generalized curvature of order i.



Curves in R3

It is convenient to introduce a change of variable s(t) such that k 0(s)k=1, called
the natural parametrization of a curve, i.e., the parameter is the current arc length.

The vectors Q3(s) = ( q1(s) q2(s) q3(s) ) define the Frenet triad , usually

denoted as ( t(s) n(s) b(s) ), the tangent, normal , and binormal unit vec-
tors. The �rst two generalized curvatures are usually denoted as

�(s)=�1(s)= (q1
0(t))Tq2(t); �(s)= (q2

0(t))Tq3(t)

are known as the curvature and torsion of a curve in R3.

A curve can be reconstructed from knowledge of its generalized curvatures. In R3:0@ q1
0(t)
q2
0(t)
q3
0(t)

1A= k 0(t)k
0@ 0 �(t) 0
¡�(t) 0 �(t)
0 ¡�(t) 0

1A0@ q1(t)
q2(t)
q3(t)

1A



Di�erential geometry of surfaces: line element, �rst fundamental form

Note that a curve in Rn is simply a univariate function. A Cr surface in Rn is a
bivariate function �: [a; b]� [c; d]!Rn, with �(u; v) a position vector to a point
on the surface.

A curve within the surface is a restriction (t) =�(u(t); v(t)) =�(w(t)). The
length traversed on the curve during step dt is k 0(t)k, with

 0(t)=
@�
@u

du
dt

+
@�
@v

dv
dt

=u0�u+ v 0�v

k 0(t)k2=(w 0)T

 
�u
T�u �u

T�v
�v
T�u �v

T�v

!
w 0=(w 0)T

�
E F
F G

�
w 0=(w 0)TGw 0

The matrix that arises is known as the metric tensorG, and contains the �rst fun-
damental form of the surface ds2=Edu2+2F dudv+Gdv2. The area element
is dA= k�u��vkdudv= EG¡F 2

p
dudv=det(G)1/2dudv.



Di�erential geometry of surfaces: curvature, second fundamental form

First derivatives furnish tangent vectors. Second derivatives furnish information
on surface curvature. In particular, the second fundamental form is

I=Ldu2+2M dudv+N dv2

�
L M
M N

�
=

 
�uu
T n �uv

T n

�vu
T n �vv

T n

!
with

n=
�u��v
k�u��vk

the unit normal vector to the surface element



Manifolds: A�ne connection

Though linear spaces (e.g., the vector space Rn) dominate most of mathematical
approximation, it is recognized that more insightful models can sometimes be
constructed on non-linear objects. Simplicial complexes were one such construct,
piecewise linear, but not overall. Manifolds are another such concept that features
a local structure similar to Rn.

An n-dimensional topological manifold is a topological space that is locally home-
omorphic to the n-dimensional Euclidean space En (e.g., Rn).

Recall that topological spaces S; T are homeomorphic if there exists a map f :
S!T that is continuous, and with continuous inverse. Two topological manifolds
M;N are di�eomorphic if there exists f :M!N di�erentiable, and with a dif-
ferentiable inverse.

A di�erentiable manifold is a topological manifold that has overlapping di�eomor-
phic neighborhoods around every point on the manifold.

An affine connection A on a differentiable manifold connects nearby tangent
spaces.



Manifolds: connection coe�cients

Denote by TM(P ); TM(P 0) the tangent spaces at in�nitesimally close points P ;
P 0 on manifold M of dimension n on which are de�ned coordinates � 2Rn. Let
BP =

¡
e1
P � @1 ::: en

P � @n
�
, @i� @ /@�i, be a basis for TM(P ), with BP 0 a

basis for TM(Q). De�ne d�i= �i(P 0)¡ �i(P ). Consider action of a�ne connection
AP ;P 0: TM(P )!TM(P 0) on a basis vector ejP

AP ;P 0ej
P = ej

P 0¡ (�e)j=ejP
0¡ �jkekP

0
=ei

P 0¡ �ijejP
0

The coe�cients ¡ijk of the series expansion �jk=¡ij
k d�i are the connection coe�-

cients of the a�ne connection A. These are also known as Christo�el symbols of
the second kind .

Integration of in�nitesimal connections along a curve �(t) onM allows correspon-
dence between TM(P ); TM(Q), with P ; Q at �nite distance from one another.



Manifolds: metric tensor, geodesic equations

The length of a curve on an n-dimensional manifold is

ds2= gij d�
i d�j

where g = (gij)16i;j6n is the metric tensor . Whereas in �at space the scalar
product of vectors u= (ui); v= (vi), is u � v= ui vi, on a manifold the scalar
product becomes u �v= giju

i vi.

The connection coe�cients can also be written in terms of the metric tensor

¡ij
k=

1
2
gkl(gli;j+ glj ;i¡ gij ;l):

The geodesic equation on a manifold is

��k+¡ij
k �_i�_j=0



Fisher information metric

Of particular interest in data analysis is the Fisher information metric

gij=E

�
@log p(x; �)

@�i

@log p(x; �)
@�j

�
=E

�
@2log p(x; �)

@�i @�j

�

For example, for univariate Gaussian distributions p(x; �; �) = (2��)¡1/2exp[¡
(x¡ �)2/(2�2)], log p(x; �; �)=¡1

2
log(2��)¡ (x¡ �)2/(2�2)

g��=¡
1

�2

Z
¡1

+1
p(x; �; �) dx=¡�¡3/2
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