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Chapter 7

Hierarchical Clustering
Techniques

Hard clustering algorithms are subdivided into hierarchical algorithms and partitional algo-
rithms. A partitional algorithm divides a data set into a single partition, whereas a hierar-
chical algorithm divides a data set into a sequence of nested partitions. As we mentioned
in Chapter 1, hierarchical algorithms are subdivided into agglomerative hierarchical algo-
rithms and divisive hierarchical algorithms (see Figure 1.5).

Agglomerative hierarchical clustering starts with every single object in a single cluster.
Then it repeats merging the closest pair of clusters according to some similarity criteria until
all of the data are in one cluster. There are some disadvantages for agglomerative hierarchical
clustering, such as (a) data points that have been incorrectly grouped at an early stage cannot
be reallocated and (b) different similarity measures for measuring the similarity between
clusters may lead to different results.

If we treat agglomerative hierarchical clustering as a bottom-up clustering method,
then divisive hierarchical clustering can be viewed as a top-down clustering method. Divi-
sive hierarchical clustering starts with all objects in one cluster and repeats splitting large
clusters into smaller pieces. Divisive hierarchical clustering has the same drawbacks as ag-
glomerative hierarchical clustering. Figure 7.1 gives an intuitive example of agglomerative
hierarchical clustering and divisive hierarchical clustering.

Hierarchical algorithms can be expressed in terms of either graph theory or matrix
algebra (Jain and Dubes, 1988). A dendrogram, a special type of tree structure, is often used
to visualize a hierarchical clustering. Figure 7.1 is an example of a dendrogram.

7.1 Representations of Hierarchical Clusterings
A hierarchical clustering can be represented by either a picture or a list of abstract symbols.
A picture of a hierarchical clustering is much easier for humans to interpret. A list of abstract
symbols of a hierarchical clustering may be used internally to improve the performance of
the algorithm. In this section, some common representations of hierarchical clusterings are
summarized.
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110 Chapter 7. Hierarchical Clustering Techniques

x1,x2,x3,x4,x5

x1,x2,x3

x2,x3

x1 x2 x3
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Figure 7.1. Agglomerative hierarchical clustering and divisive hierarchical clustering.

7.1.1 n-tree

A hierarchical clustering is generally represented by a tree diagram. An n-tree is a simple
hierarchically nested tree diagram that can be used to represent a hierarchical clustering.
Let D = {x1, x2, . . . , xn} be a set of objects. Then an n-tree on D is defined to be a set T
of subsets of D satisfying the following conditions (Bobisud and Bobisud, 1972; McMorris
et al., 1983; Gordon, 1996):

1. D ∈ T ;

2. empty set ? ∈ T ;

3. {xi} ∈ T for all i = 1, 2, . . . , n;

4. if A,B ∈ T , then A ∩ B ∈ {?,A,B}.
A 5-tree is illustrated in Figure 7.2. The terminal nodes or leaves depicted by an open

circle represent a single data point. The internal nodes depicted by a filled circle represent
a group or cluster. n-trees are also referred to as nonranked trees (Murtagh, 1984b). If an
n-tree has precisely n−1 internal nodes, then the tree is called a binary tree or a dichotomous
tree.

Tree diagrams, such as n-trees and dendrograms (discussed later), contain many in-
determinacies. For example, the order of the internal nodes and the order of leaves can be
interchanged. Also, tree diagrams have many variations. For example, rotating the tree 90◦
gives a horizontal tree. Alternative properties of trees have been presented in (Hartigan,
1967) and (Constantinescu, 1966).

7.1.2 Dendrogram

A dendrogram is also called a valued tree (Gordon, 1996). A dendrogram is an n-tree in
which each internal node is associated with a height satisfying the condition

h(A) ≤ h(B)⇔ A ⊆ BD
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7.1. Representations of Hierarchical Clusterings 111

x1 x2 x3 x4 x5

A
B

C

Figure 7.2. A 5-tree.

for all subsets of data points A and B if A ∩ B �= ?, where h(A) and h(B) denote the
heights of A and B, respectively.

As an illustration, Figure 7.3 shows a dendrogram with five data points. The dotted
lines indicate the heights of the internal nodes. For each pair of data points (xi , xj ), let
hij be the height of the internal node specifying the smallest cluster to which both xi and
xj belong. Then a small value of hij indicates a high similarity between xi and xj . In
the dendrogram given in Figure 7.3, for example, we have h12 = 1, h23 = h13 = 3, and
h14 = 4.

The heights in the dendrogram satisfy the following ultrametric conditions (Johnson,
1967):

hij ≤ max{hik, hjk} ∀i, j, k ∈ {1, 2, . . . , n}. (7.1)

In fact, the ultrametric condition (7.1) is also a necessary and sufficient condition for a
dendrogram (Gordon, 1987).

Mathematically, a dendrogram can be represented by a function c : [0,∞)→ E(D)

that satisfies (Sibson, 1973)

c(h) ⊆ c(h′) if h ≤ h′,
c(h) is eventually in D ×D,

c(h+ δ) = c(h) for some small δ > 0,

where D is a given data set and E(D) is the set of equivalence relations on D. As an
example, the function c given below contains the information of the dendrogram given in
Figure 7.3:

c(h) =




{(i, i) : i = 1, 2, 3, 4, 5} if 0 ≤ h < 1,

{(i, i) : i = 3, 4, 5}∪
{(i, j) : i, j = 1, 2} if 1 ≤ h < 2,

{(3, 3)}∪
{(i, j) : i, j = 1, 2}∪
{(i, j) : i, j = 4, 5} if 2 ≤ h < 3,

{(i, j) : i, j = 4, 5}∪
{(i, j) : i, j = 1, 2, 3} if 3 ≤ h < 4,

{(i, j) : i, j = 1, 2, 3, 4, 5} if 4 ≤ h.

(7.2)

Other characterizations of a dendrogram have been presented in (Johnson, 1967),
(Jardine et al., 1967), and (Banfield, 1976). van Rijsbergen (1970) suggested an algorithmD
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112 Chapter 7. Hierarchical Clustering Techniques

x1 x2 x3 x4 x5
0

2

1

3

4

he
ig

ht

Figure 7.3. A dendrogram of five data points.

for finding the single-link dendrogram from the input dissimilarity matrix. Algorithms for
plotting dendrograms have been discussed in (Rohlf, 1974), (Gower and Ross, 1969), and
(Ross, 1969). Comparison of dendrograms has been discussed in (Sokal and Rohlf, 1962).

7.1.3 Banner

A banner (Rousseeuw, 1986) is a list of symbols and codes that represent a hierarchical
structure. Banners can be constructed from dendrograms. In a banner, the heights in the
dendrogram are represented on a horizontal axis. Each data point in the banner is assigned
a line and a code that is repeated with a separator (such as “+”) along the line until truncated
at the right-hand margin. The presence of a symbol (such as “∗”) between two data points
indicates that the two points are in the same group for this value of the height.

Figure 7.4 illustrates a banner that contains the information in the dendrogram given
in Figure 7.3. In this banner, each data point is labeled by a two-number code. Alterna-
tive examples of banner representations are presented in (Kaufman and Rousseeuw, 1990,
Chapter 6) and Gordon (1996).

7.1.4 Pointer Representation

A pointer representation (Sibson, 1973) is a pair of functions which contain information on
a dendrogram. It is defined to be a pair of functions π : {1, 2, . . . , n} → {1, 2, . . . , n} and
λ : π({1, 2, . . . , n})→ [0,∞] that have the following properties:

π(n) = n, π(i) > i for i < n, (7.3a)

λ(n) = ∞, λ(π(i)) > λ(i) for i < n, (7.3b)

where n is the number of data points in D.
Given a dendrogram, the corresponding λ(i) is the lowest level at which the ith object

is no longer the last object in its cluster and π(i) is the last object in the cluster that it joins.D
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1 2 3 4

0 1 +

+0 2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 4

0 5

0 1 +

+0 2

0 4

0 5

0 1 +

+0 2

0 4

0 5

0 1

0 2
∗ ∗ ∗ ∗ ∗
0 3 + 0 3

∗ ∗
+ +

0 5+ +
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Figure 7.4. A banner constructed from the dendrogram given in Figure 7.3.

Mathematically, let c be the function that denotes a dendrogram. Then the corresponding
pointer representation is defined by

λ(i) = inf {h : ∃j > i such that (i, j) ∈ c(h)},
π(i) = max{j : (i, j) ∈ c(λ(i))}

for i < n.
The pair of functions λ and π illustrated in Table 7.1 is the pointer representation of

the dendrogram given in Figure 7.3.
It can be shown that there is a one-to-one correspondence between dendrograms and

pointer representations (Sibson, 1973). The pointer representation of a dendrogram allows
a new object to be inserted in an efficient way. Usually, pointer representations are used
internally in hierarchical algorithms in order to improve the performance. The pointer
representation of a dendrogram is not helpful from a user’s point of view; therefore, a
so-called packed representation, which will be presented in the next section, is used for
output.

Table 7.1. The pointer representation corresponding to the dendrogram given in
Figure 7.3.

i π(i) λ(i)

1 2 1
2 3 3
3 5 4
4 5 2
5 5 ∞
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114 Chapter 7. Hierarchical Clustering Techniques

Table 7.2. The packed representation corresponding to the pointer representation
given in Table 7.1.

i τ (i) ν(i)

1 1 1
2 2 3
3 3 4
4 4 2
5 5 ∞

Table 7.3. A packed representation of six objects.

i 1 2 3 4 5 6
τ(i) 4 1 3 5 2 6
ν(i) 2 1.5 1 2.5 0.5 ∞
λ(i) 1.5 0.5 1 2 2.5 ∞
π(i) 5 6 5 5 6 6
λ(τ(i)) 2 1.5 1 2.5 0.5 ∞
π(τ(i)) 5 5 5 6 6 6
τ−1(π(τ(i))) 4 4 4 6 6 6

7.1.5 Packed Representation

Packed representations (Sibson, 1973) are developed in order to facilitate the output of
dendrograms. A packed representation consists of two functions. Let λ, π be a pointer rep-
resentation. Then the corresponding packed representation is defined as a pair of functions
τ, ν (Sibson, 1973),

τ : {1, 2, . . . , n} → {1, 2, . . . , n}, ν : {1, 2, . . . , n} → [0,+∞)

which satisfy the following conditions:

τ is one-to-one and onto,

τ−1(π(τ(i))) > i if i < n,

ν(i) = λ(τ(i)),

ν(j) ≤ ν(i) if i ≤ j < τ−1(π(τ(i))).

The packed representation defined above determines a dendrogram uniquely. In fact,
the order of the objects in the dendrogram is specified by the function τ , i.e., the index of
the object in position i is τ(i). Table 7.2 gives the packed representation corresponding to
the pointer representation given in Table 7.1.

Another example of a packed representation is illustrated in Table 7.3. The dendro-
gram determined by this packed representation is shown in Figure 7.5.D
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x4 x1 x3 x5 x2 x6

0.5
1

1.5
2

2.5

Figure 7.5. The dendrogram determined by the packed representation given in Table 7.3.
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x1 x2 x3 x4 x5

Figure 7.6. An icicle plot corresponding to the dendrogram given in Figure 7.3.

7.1.6 Icicle Plot

An icicle plot, proposed by Kruskal and Landwehr (1983), is another method for presenting
a hierarchical clustering. It can be constructed from a dendrogram. The major advantage of
an icicle plot is that it is easy to read off which objects are in a cluster during a live process
of data analysis.

In an icicle plot, the height and the hierarchical level are represented along the vertical
axis; each object is assigned a vertical line and labeled by a code that is repeated with
separators (such as “&”) along the line from top to bottom until truncated at the level where
it first joins a cluster, and objects in the same cluster are joined by the symbol “=” between
two objects.

The list of symbols in Figure 7.6 is an icicle plot corresponding to the dendrogram
given in Figure 7.3. Each object in this icicle plot is labeled by its name.

7.1.7 Other Representations

Other representations of hierarchical structures have been presented in (Sokal and Sneath,
1973), (Friedman and Rafsky, 1981), (Everitt and Nicholls, 1975), (Wirth et al., 1966),
and (Hartigan and Wong, 1979), such as skyline plots (Wirth et al., 1966), silhouette plots
(Rousseeuw, 1987), loop plots (see Figure 7.7) (Kruskal and Landwehr, 1983), and three-D
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116 Chapter 7. Hierarchical Clustering Techniques

x1

x2
x3

x4 x5

Figure 7.7. A loop plot corresponding to the dendrogram given in Figure 7.3.

dimensional plots (Kruskal and Landwehr, 1983). It seems, however, that these represen-
tations are only suitable for representing small data sets.

7.2 Agglomerative Hierarchical Methods
According to different distance measures between groups, agglomerative hierarchical meth-
ods can be subdivided into single-link methods, complete link methods, etc. Some com-
monly used hierarchical methods are given in Figure 7.8. The single, complete, average,
and weighted average linkage methods are also referred to as graph methods, while Ward’s
method, the centroid method, and the median method are referred to as geometric meth-
ods (Murtagh, 1983), since in graph methods a cluster can be represented by a subgraph
or interconnected points and in geometric methods a cluster can be represented by a center
point.

Murtagh (1983) gives a survey for hierarchical clustering algorithms, especially for
agglomerative hierarchical clustering algorithms. The performance of hierarchical clus-
tering algorithms can be improved by incorporating efficient nearest neighbor searching
algorithms into the clustering algorithms. For hierarchical methods, the storage require-
ments are reduced if each cluster is represented by a center point or a set of points, since

Weighted group average method

Single-link method
Complete link method
Group average method

Centroid method
Ward’s method

Median method

Geometric methods
Graph methods

Agglomerative hierarchical methods

Figure 7.8. Some commonly used hierarchical methods.
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7.2. Agglomerative Hierarchical Methods 117

Table 7.4. The cluster centers agglomerated from two clusters and the dissimilar-
ities between two cluster centers for geometric hierarchical methods, where µ(C) denotes
the center of cluster C.

Hierarchical Method µ(Ci ∪ Cj) Dissimilarity between Ci and Cj

Median µ(Ci)+µ(Cj )

2 ‖µ(Ci)− µ(Cj )‖2

Centroid |Ci |µ(Ci)+|Cj |µ(Cj )

|Ci |+|Cj | ‖µ(Ci)− µ(Cj )‖2

Ward’s |Ci |µ(Ci)+|Cj |µ(Cj )

|Ci |+|Cj |
|Ci ||Cj |
|Ci |+|Cj | ‖µ(Ci)− µ(Cj )‖2

O(n2) storage is required for a dissimilarity matrix, where n is the number of data points.
Also for geometric hierarchical methods, the representative point of a cluster can be derived
directly from that of the two clusters that form the cluster (see Table 7.4).

In agglomerative hierarchical clustering algorithms, the Lance-Williams formula (cf.
Section 6.8) is used to calculate the dissimilarity between a cluster and a cluster formed
by merging two other clusters. The single-link and complete link hierarchical clustering
algorithms induce a metric on the data known as the ultrametric (Johnson, 1967). But the
hierarchical structures produced by other clustering algorithms that use the Lance-Williams
recurrence formula may violate the ultrametric inequality (Milligan, 1979).

The distances D(Ck, Ci ∪Cj) are said to increase monotonically if D(Ck, Ci ∪Cj) ≥
D(Ci, Cj ) at each level in the hierarchy. If an algorithm produces a monotonic hierarchy,
then the algorithm induces a type of distance metric known as the ultrametric (Milligan,
1979). The centroid method and median method are examples of hierarchical algorithms
that do not produce monotonic hierarchies.

Milligan (1979) has shown that the hierarchical clustering strategy (α1, α2, β, γ )based
on the Lance-Williams recurrence formula (Lance and Williams, 1967b) is monotonic, i.e.,

D(Ck, Ci ∪ Cj) ≥ D(Ci, Cj ) ∀i, j, k,

if the following conditions are satisfied:

1. γ ≥ 0 ∨ (γ < 0 ∧ |γ | ≤ α1, α2),

2. min{α1, α2} ≥ 0,

3. α1 + α2 + β ≥ 1.

Also, Batagelj (1981) gives a necessary and sufficient condition for the hierarchical
clustering strategy (α1, α2, β, γ ) to be monotonic:

1. γ ≥ −min{α1, α2},
2. α1 + α2 ≥ 0,

3. α1 + α2 + β ≥ 1.D
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118 Chapter 7. Hierarchical Clustering Techniques

7.2.1 The Single-link Method

The single-link method is one of the simplest hierarchical clustering methods. It was
first introduced by Florek et al. (1951) and then independently by McQuitty (1957) and
Sneath (1957). The single-link method is also known by other names, such as the nearest
neighbor method, the minimum method, and the connectedness method (Rohlf, 1982). The
single-link method is invariant under monotone transformations (such as the logarithmic
transformation) of the original data (Johnson, 1967).

It employs the nearest neighbor distance (cf. Section 6.8) to measure the dissimilarity
between two groups. Let Ci , Cj , and Ck be three groups of data points. Then the distance
between Ck and Ci ∪ Cj can be obtained from the Lance-Williams formula as follows:

D(Ck, Ci ∪ Cj)

= 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj )− 1

2
|D(Ck, Ci)−D(Ck, Cj )|

= min{D(Ck, Ci),D(Ck, Cj )}, (7.4)

where D(·, ·) is a distance between two clusters.
From equation (7.4), it is not difficult to verify that

D(C,C ′) = min
x∈C,y∈C ′ d(x, y),

where C and C ′ are two nonempty, nonoverlapping clusters and d(·, ·) is the distance
function by which the dissimilarity matrix is computed.

Rohlf (1982) has classified single-link algorithms into five different types:

1. connectedness algorithms,

2. algorithms based on an ultrametric transformation,

3. probability density estimation algorithms,

4. agglomerative algorithms,

5. algorithms based on the minimum spanning tree.

The connectedness algorithms are based on graph theory. In a connectedness algo-
rithm, the data points are represented as vertices in a graph: a pair (i, j) of vertices are
connected with an edge if and only if the distance between data points i and j dij ≤ @.
The single-link clusters at level @ correspond to the connected subgraphs of the graph.
The connectedness algorithms require a considerable amount of computational effort. van
Groenewoud and Ihm (1974) presented such an algorithm, whose total time complexity is
O(n5), where n is the size of the data set.

More single-link algorithms will be presented in later sections of this chapter. What
follows is a simple example that illustrates the idea of the single-link algorithm.

For the data set given in Figure 7.9, for example, the dissimilarity matrix computed
using the Euclidean distance is described in Table 7.5. If a single-link hierarchical clustering
algorithm is applied to this data set, then x1 and x2 will be agglomerated to form a big clusterD
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7.2. Agglomerative Hierarchical Methods 119

x

y

O 1 2 3 4

1

2

3

x1

x2

x3

x4

x5

x1 = (1, 2)
x2 = (1, 2.5)
x3 = (3, 1)
x4 = (4, 0.5)
x5 = (4, 2)

Figure 7.9. A two-dimensional data set with five data points.

Table 7.5. The dissimilarity matrix of the data set given in Figure 7.9. The entry
(i, j) in the matrix is the Euclidean distance between xi and xj .

x1 x2 x3 x4 x5

x1 0 0.5 2.24 3.35 3

x2 0.5 0 2.5 3.61 3.04

x3 2.24 2.5 0 1.12 1.41

x4 3.35 3.61 1.12 0 1.5

x5 3 3.04 1.41 1.5 0

at the first stage of the algorithm, since they have the least distance in the dissimilarity matrix.
The distance between {x1, x2} and x3, x4, and x5 now becomes

D({x1, x2}, x3) = min{d(x1, x3), d(x2, x3)} = 2.24,

D({x1, x2}, x4) = min{d(x1, x4), d(x2, x4)} = 3.35,

D({x1, x2}, x5) = min{d(x1, x5), d(x2, x5)} = 3,

which can also be obtained from the formula given in (7.4). After x1 and x2 are merged, the
dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.24 3.35 3

x3 2.24 0 1.12 1.41

x4 3.35 1.12 0 1.5

x5 3 1.41 1.5 0

At the second stage of the algorithm, x3 and x4 will be merged, since they have the
least distance. Then the distances between the group {x3, x4} and the remaining groupsD
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become

D({x3, x4}, {x1, x2})
= min{d(x1, x3), d(x2, x3), d(x1, x4), d(x2, x4)}
= min{D({x1, x2}, x3),D({x1, x2}, x4)} = 2.24

and
D({x3, x4}, x5) = min{d(x3, x5), d(x4, x5)} = 1.41.

After x3 and x4 are merged, the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.24 3

{x3, x4} 2.24 0 1.41

x5 3 1.41 0

At the third stage of the algorithm, {x3, x4} and x5 will be merged. The dissimilarity
matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.24

{x3, x4, x5} 2.24 0

At the fourth stage, all the data points are merged into a single cluster. The dendrogram
of this clustering is shown in Figure 7.10.

7.2.2 The Complete Link Method

Unlike the single-link method, the complete link method uses the farthest neighbor distance
(cf. Section 6.8) to measure the dissimilarity between two groups. The complete link

x1 x2 x3 x4 x5
0

0.5

1.12
1.41

2.24

Figure 7.10. The dendrogram produced by applying the single-link method to the
data set given in Figure 7.9.D
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7.2. Agglomerative Hierarchical Methods 121

method is also invariant under monotone transformations (Johnson, 1967). Let Ci , Cj , and
Ck be three groups of data points. Then the distance betweenCk andCi∪Cj can be obtained
from the Lance-Williams formula as follows:

D(Ck, Ci ∪ Cj)

= 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj )+ 1

2
|D(Ck, Ci)−D(Ck, Cj )|

= max{D(Ck, Ci),D(Ck, Cj )}, (7.5)

where D(·, ·) is a distance between two clusters.
The distance defined in equation (7.5) has the following property:

D(C,C ′) = max
x∈C,y∈C ′ d(x, y),

where C and C ′ are two nonempty, nonoverlapping clusters and d(·, ·) is the distance
function by which the dissimilarity matrix is computed.

Applying the complete link method to the dissimilarity matrix given in Table 7.5,
at the first stage we merge x1 and x2. The distances between the group {x1, x2} and the
remaining three points are updated as

D({x1, x2}, x3) = max{d(x1, x3), d(x2, x3)} = 2.5,

D({x1, x2}, x4) = max{d(x1, x4), d(x2, x4)} = 3.61,

D({x1, x2}, x5) = max{d(x1, x5), d(x2, x5)} = 3.04,

which can also be obtained from the formula given in equation (7.5). After x1 and x2 are
merged at the first stage of the algorithm, the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.5 3.61 3.04

x3 2.5 0 1.12 1.41

x4 3.61 1.12 0 1.5

x5 3.04 1.41 1.5 0

Again, at the second stage of the algorithm, x3 and x4 will be merged, since they have
the least distance between them. After x3 and x4 are merged, the distances between the
group {x3, x4} and the remaining groups are updated as

D({x3, x4}, {x1, x2})
= max{d(x1, x3), d(x2, x3), d(x1, x4), d(x2, x4)}
= max{D({x1, x2}, x3),D({x1, x2}, x4)} = 3.61

and
D({x3, x4}, x5) = max{d(x3, x5), d(x4, x5)} = 1.5.

After x3 and x4 are merged, the dissimilarity matrix becomesD
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x1 x2 x3 x4 x5
0

0.5

1.12
1.5

3.61

Figure 7.11. The dendrogram produced by applying the complete link method to
the data set given in Figure 7.9.

{x1, x2} {x3, x4} x5

{x1, x2} 0 3.61 3.04

{x3, x4} 3.61 0 1.5

x5 3.04 1.5 0

At the third stage of the algorithm, {x3, x4} and x5 must be merged, since they have
the least distance. After x4 and x5 are merged, the distance between the two groups is

D({x1, x2}, {x3, x4, x5})
= max{d13, d14, d15, d23, d24, d25}
= max{D({x1, x2}, {x3, x4}),D({x1, x2}, x5)}
= 3.61,

where dij = d(xi , xj ) for i = 1, 2 and j = 3, 4, 5, and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 3.61

{x3, x4, x5} 3.61 0

The dendrogram produced by the complete link method is shown in Figure 7.11, which
is the same as the dendrogram produced by the single-link method except for the heights.

7.2.3 The Group Average Method

The group average method is also referred as UPGMA, which stands for “unweighted pair
group method using arithmetic averages” (Jain and Dubes, 1988). In the group average
method, the distance between two groups is defined as the average of the distances between
all possible pairs of data points that are made up of one data point from each group. Let Ci ,
Cj , and Ck be three groups of data points. Then the distance between Ck and Ci ∪ Cj canD
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7.2. Agglomerative Hierarchical Methods 123

be obtained from the Lance-Williams formula as follows:

D(Ck, Ci ∪ Cj)

= |Ci |
|Ci | + |Cj |D(Ck, Ci)+ |Cj |

|Ci | + |Cj |D(Ck, Cj ), (7.6)

where D(·, ·) is a distance between two clusters.
Let C and C ′ be two nonempty, nonoverlapping clusters. Then in the group average

method, we have

D(C,C ′) = 1

|C||C ′|
∑

x∈C,y∈C ′
d(x, y), (7.7)

where d(·, ·) is the distance function by which the dissimilarity matrix is computed.
In fact, let C1, C2, and C3 be three nonempty, mutually nonoverlapping clusters, and

assume

D(Ci, Cj ) = 1

ninj
�(Ci, Cj ), 1 ≤ i < j ≤ 3, (7.8)

where ni = |Ci |, nj = |Cj |, and �(Ci, Cj ) is the total between-clusters distance of Ci and
Cj , that is,

�(Ci, Cj ) =
∑

x∈Ci,y∈Cj

d(x, y).

Now from equations (7.6) and (7.8), we have

D(C1, C2 ∪ C3)

= n2

n2 + n3
D(C1, C2)+ n3

n2 + n3
D(C1, C3)

= n2

n2 + n3
· 1

n1n2
�(C1, C2)+ n3

n2 + n3
· 1

n1n3
�(C1, C3)

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3),

since �(C1, C2)+�(C1, C3) = �(C1, C2 ∪ C3). This verifies equation (7.7).
Applying the group average method to the data set given in Figure 7.9, we note that

again the first stage is to merge x1 and x2. After x1 and x2 are merged, the distances between
{x1, x2} and the remaining three data points become

D({x1, x2}, x3) = 1

2
d(x1, x3)+ 1

2
d(x2, x3) = 2.37,

D({x1, x2}, x4) = 1

2
d(x1, x4)+ 1

2
d(x2, x4) = 3.48,

D({x1, x2}, x5) = 1

2
d(x1, x5)+ 1

2
d(x2, x5) = 3.02,

and the dissimilarity matrix becomesD
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124 Chapter 7. Hierarchical Clustering Techniques

{x1, x2} x3 x4 x5

{x1, x2} 0 2.37 3.48 3.02

x3 2.37 0 1.12 1.41

x4 3.48 1.12 0 1.5

x5 3.02 1.41 1.5 0

Again, at the second stage of the algorithm, x4 and x3 will be merged. The distances
between {x3, x4} and the other clusters become

D({x1, x2}, {x3, x4}) = 1

2
D({x1, x2}, x4)+ 1

2
D({x1, x2}, x3) = 2.93,

D({x3, x4}, x5) = 1

2
d(x3, x5)+ 1

2
d(x4, x5) = 1.46.

After x3 and x4 are merged into one cluster, the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.93 3.02

{x3, x4} 2.93 0 1.46

x5 3.02 1.46 0

At the third stage of the algorithm, {x3, x4} and x5 must be merged, since they have
the least distance. Then the distance between {x1, x2} and {x3, x4, x5} becomes

D({x1, x2}, {x3, x4, x5})
= 2

3
D({x1, x2}, {x3, x4})+ 1

3
D({x1, x2}, x5)

= 2.96.

Hence, the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.96

{x3, x4, x5} 2.96 0

The distances can also be calculated by equation (7.7). In the last stage, for example,
the distance between {x1, x2} and {x3, x4, x5} can be computed as

D({x1, x2}, {x3, x4, x5})
= 1

6
(d13 + d14 + d15 + d23 + d24 + d25) = 2.96,

where dij = d(xi , xj ), i.e., the (i, j)th entry of the dissimilarity matrix.
The dendrogram of this clustering is shown in Figure 7.12.D
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7.2. Agglomerative Hierarchical Methods 125

x1 x2 x3 x4 x5
0

0.5

1.12
1.46

2.96

Figure 7.12. The dendrogram produced by applying the group average method to
the data set given in Figure 7.9.

7.2.4 The Weighted Group Average Method

The weighted group average method is also referred to as the “weighted pair group method
using arithmetic average” (Jain and Dubes, 1988). Using the Lance-Williams formula, the
distance between clusters is

D(Ck, Ci ∪ Cj) = 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj ),

where Ck, Ci , and Cj are three clusters in one level of clustering.
Applying the weighted group average method to the five-point data set given in Fig-

ure 7.9, the first stage is the same as in the other methods, i.e., we merge x1 and x2. After
x1 and x2 are merged, the distances between clusters are updated as

D({x1, x2}, x3) = 1

2
(d(x1, x3)+ d(x2, x3)) = 2.37,

D({x1, x2}, x4) = 1

2
(d(x1, x4)+ d(x2, x4)) = 3.48,

D({x1, x2}, x5) = 1

2
(d(x1, x5)+ d(x2, x5)) = 3.02,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.37 3.48 3.02
x3 2.37 0 1.12 1.41
x4 3.48 1.12 0 1.5
x5 3.02 1.41 1.5 0
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x1 x2 x3 x4 x5
0

0.5

1.12
1.46

2.98

Figure 7.13. The dendrogram produced by applying the weighted group average
method to the data set given in Figure 7.9.

At the second stage of this method, x3 and x4 will be merged. After x3 and x4 are
merged, the distances between clusters are updated as

D({x3, x4}, {x1, x2}) = 1

2
(2.37+ 3.48) = 2.93,

D({x3, x4}, x5) = 1

2
(1.41+ 1.5) = 1.46,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.93 3.02
{x3, x4} 2.93 0 1.46

x5 3.02 1.46 0

Clusters {x3, x4} and x5 will be merged at the third stage of this method. The distance
is updated as

D({x1, x2}, {x3, x4, x5}) = 1

2
(2.93+ 3.02) = 2.98,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.98

{x3, x4, x5} 2.98 0

The whole process of this clustering can be represented by the dendrogram shown in
Figure 7.13.

7.2.5 The Centroid Method

The centroid method is also referred to as the “unweighted pair group method using cen-
troids” (Jain and Dubes, 1988). With the centroid method, the new distances betweenD
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7.2. Agglomerative Hierarchical Methods 127

clusters can be calculated by the following Lance-Williams formula:

D(Ck, Ci ∪ Cj)

= |Ci |
|Ci | + |Cj |D(Ck, Ci)+ |Cj |

|Ci | + |Cj |D(Ck, Cj )

− |Ci ||Cj |
(|Ci | + |Cj |)2

D(Ci, Cj ), (7.9)

where Ck, Ci , and Cj are three clusters in one level of clustering.
Let C and C ′ be any two nonoverlapping clusters, i.e., C ∩ C ′ = φ. Then it follows

from equation (7.9) that

D(C,C ′)

= 1

|C||C ′|
∑

x∈C,y∈C ′
d(x, y)− 1

2|C|2
∑

x,y∈C
d(x, y)

− 1

2|C ′|2
∑

x,y∈C ′
d(x, y), (7.10)

where d(·, ·) is the distance function by which the dissimilarity matrix is calculated.
In fact, let C1, C2, and C3 be three nonempty, mutually nonoverlapping clusters, and

assume

D(Ci, Cj ) = 1

ninj
�(Ci, Cj )− 1

2n2
i

�(Ci)− 1

2n2
j

�(Cj ) (7.11)

for 1 ≤ i < j ≤ 3, where ni = |Ci |, nj = |Cj |, �(Ci, Cj ) is the total between-clusters
distance of Ci and Cj , that is,

�(Ci, Cj ) =
∑

x∈Ci,y∈Cj

d(x, y),

�(Ci) is the total within-cluster distance of Ci , that is,

�(Ci) =
∑

x,y∈Ci

d(x, y),

and �(Cj ) is defined similarly.
We should prove that

D(C1, C2 ∪ C3)

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3)− 1

2n2
1

�(C1)

− 1

2(n2 + n3)2
�(C2 ∪ C3). (7.12)
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128 Chapter 7. Hierarchical Clustering Techniques

From equation (7.9), we have

D(C1, C2 ∪ C3)

= n2

n2 + n3
D(C1, C2)+ n3

n2 + n3
D(C1, C3)

− n2n3

(n2 + n3)2
D(C2, C3),

Substituting equation (7.11) into the above equation and performing some simple manipu-
lations, we have

D(C1, C2 ∪ C3)

= n2

n2 + n3

(
1

n1n2
�(C1, C2)− 1

2n2
1

�(C1)− 1

2n2
2

�(C2)

)

+ n3

n2 + n3

(
1

n1n3
�(C1, C3)− 1

2n2
1

�(C1)− 1

2n2
3

�(C3)

)

− n2n3

(n2 + n3)2

(
1

n2n3
�(C2, C3)− 1

2n2
2

�(C2)− 1

2n2
3

�(C3)

)

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3)− 1

2n2
1

�(C1)

− 1

2(n2 + n3)2
[�(C2)+�(C3)+ 2�(C2, C3)]

= 1

n1(n2 + n3)
�(C1, C2 ∪ C3)− 1

2n2
1

�(C1)− 1

2(n2 + n3)2
�(C2 ∪ C3).

In the above, we used

�(C1, C2)+�(C1, C3) = �(C1, C2 ∪ C3)

and
�(C2)+�(C3)+ 2�(C2, C3) = �(C2 ∪ C3).

In particular, if we take d(·, ·) in equation (7.10) as the squared Euclidean distance,
then the distance D(C,C ′) is exactly the squared Euclidean distance between the centroids
of C and C ′.

Actually, if d(·, ·) in equation (7.10) is the squared Euclidean distance, then we have

D(C,C ′)

= 1

|C||C ′|
∑

x∈C,y∈C ′
(x − y)(x − y)T − 1

2|C|2
∑

x,y∈C
(x − y)(x − y)T

− 1

2|C ′|2
∑

x,y∈C ′
(x − y)(x − y)T
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7.2. Agglomerative Hierarchical Methods 129

= 1

|C|
∑
x∈C

xxT − 2

|C||C ′|
∑

x∈C,y∈C ′
xyT + 1

|C ′|
∑
x∈C ′

xxT

− 1

|C|
∑
x∈C

xxT + 1

|C|2
∑

x,y∈C
xyT − 1

|C ′|
∑
y∈C ′

yyT

+ 1

|C ′|2
∑

x,y∈C ′
xyT

= 1

|C|2
∑

x,y∈C
xyT + 1

|C ′|2
∑

x,y∈C ′
xyT − 2

|C||C ′|
∑

x∈C,y∈C ′
xyT

=
(

1

|C|
∑
x∈C

x − 1

|C ′|
∑
x∈C ′

x

) 1

|C|
∑
y∈C

y − 1

|C ′|
∑
y∈C ′

y




T

,

since (x − y)(x − y)T = xxT − 2xyT + yyT and xyT = yxT .
Equation (7.10) provides another way to compute the distances between new clusters

and old ones. Applying the centroid method to the data set given in Figure 7.9, the first
stage is still the same as in other methods, i.e., x1 and x2 will be merged. After x1 and x2

are merged, the distances are updated as

D({x1, x2}, x3) = 1

2
(d(x1, x3)+ d(x2, x3))− 1

4
d(x1, x2) = 2.245,

D({x1, x2}, x4) = 1

2
(d(x1, x4)+ d(x2, x4))− 1

4
d(x1, x2) = 3.355,

D({x1, x2}, x5) = 1

2
(d(x1, x5)+ d(x2, x5))− 1

4
d(x1, x2) = 2.895,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.245 3.355 2.895
x3 2.245 0 1.12 1.41
x4 3.355 1.12 0 1.5
x5 2.895 1.41 1.5 0

At the second stage, x3 and x4 will be merged, and the distances are updated as

D({x3, x4}, {x1, x2}) = 1

2
(2.245+ 3.355)− 1

4
(1.12) = 2.52,

D({x3, x4}, x5) = 1

2
(1.41+ 1.5)− 1

4
(1.12) = 1.175,
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130 Chapter 7. Hierarchical Clustering Techniques

and the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.52 2.895
{x3, x4} 2.52 0 1.175

x5 2.895 1.175 0

At the third stage, x5 will be merged with {x3, x4}, and the distance is updated as

D({x1, x2}, {x3, x4, x5}) = 2

3
(2.52)+ 1

3
(2.895)− 2

9
(1.175) = 2.384,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.39

{x3, x4, x5} 2.39 0

The distances can also be updated by equation (7.10). For example, the distance
between {x1, x2} and {x3, x4, x5} in the last stage can be computed as

D({x1, x2}, {x3, x4, x5})
= 1

6
(d13 + d14 + d15 + d23 + d24 + d25)− 1

8
(2d12)

− 1

18
(2d34 + 2d35 + 2d45)

= 1

6
(2.24+ 3.35+ 3+ 2.5+ 3.61+ 3.04)− 1

4
(0.5)

−1

9
(1.12+ 1.41+ 1.5)

= 2.957− 0.125− 0.448

= 2.384,

where dij = d(xi , xj ).
The whole process of this clustering can be represented by the dendrogram shown in

Figure 7.14.

7.2.6 The Median Method

The median method is also referred to as the “weighted pair group method using centroids”
(Jain and Dubes, 1988) or the “weighted centroid” method. It was first proposed by Gower
(1967) in order to alleviate some disadvantages of the centroid method. In the centroid
method, if the sizes of the two groups to be merged are quite different, then the centroid
of the new group will be very close to that of the larger group and may remain within that
group (Everitt, 1993). In the median method, the centroid of a new group is independent of
the size of the groups that form the new group.

A disadvantage of the median method is that it is not suitable for measures such as
correlation coefficients, since interpretation in a geometrical sense is no longer possible
(Lance and Williams, 1967a).D
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7.2. Agglomerative Hierarchical Methods 131

x1 x2 x3 x4 x5
0

0.5

1.121.175

2.39

Figure 7.14. The dendrogram produced by applying the centroid method to the
data set given in Figure 7.9.

In the median method, the distances between newly formed groups and other groups
are computed as

D(Ck, Ci ∪ Cj) = 1

2
D(Ck, Ci)+ 1

2
D(Ck, Cj )− 1

4
D(Ci, Cj ), (7.13)

where Ck, Ci , and Cj are three clusters in one level of clustering.
We now take the data set given in Figure 7.9 as an example to illustrate the median

method. The first stage of the median method is still the same as in other methods. After
x1 and x2 are merged, the distances are updated as

D({x1, x2}, x3) = 1

2
(d(x1, x3)+ d(x2, x3))− 1

4
d(x1, x2) = 2.245,

D({x1, x2}, x4) = 1

2
(d(x1, x4)+ d(x2, x4))− 1

4
d(x1, x2) = 3.355,

D({x1, x2}, x5) = 1

2
(d(x1, x5)+ d(x2, x5))− 1

4
d(x1, x2) = 2.895,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 2.245 3.355 2.895
x3 2.245 0 1.12 1.41
x4 3.355 1.12 0 1.5
x5 2.895 1.41 1.5 0

At the second stage of this method, x3 and x4 will be merged. After x3 and x4 are
merged, the distances between clusters are updated as

D({x3, x4}, {x1, x2}) = 1

2
(2.245+ 3.355)− 1

4
(1.12) = 2.52,

D({x3, x4}, x5) = 1

2
(1.41+ 1.5)− 1

4
(1.12) = 1.175,

and the dissimilarity matrix becomesD
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132 Chapter 7. Hierarchical Clustering Techniques

x1 x2 x3 x4 x5
0

0.5

1.121.175

2.414

Figure 7.15. The dendrogram produced by applying the median method to the
data set given in Figure 7.9.

{x1, x2} {x3, x4} x5

{x1, x2} 0 2.52 2.895
{x3, x4} 2.52 0 1.175

x5 2.895 1.175 0

Clusters {x3, x4} and x5 will be merged at the third stage of this method. The distance
is updated as

D({x1, x2}, {x3, x4, x5}) = 1

2
(2.52+ 2.895)− 1

4
(1.175) = 2.414,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4, x5}
{x1, x2} 0 2.414

{x3, x4, x5} 2.414 0

The whole process of this clustering can be represented by the dendrogram shown in
Figure 7.15.

7.2.7 Ward’s Method

Ward Jr. (1963) and Ward Jr. and Hook (1963) proposed a hierarchical clustering procedure
seeking to form the partitions Pn, Pn−1, . . . , P1 in a manner that minimizes the loss of
information associated with each merging. Usually, the information loss is quantified in
terms of an error sum of squares (ESS) criterion, so Ward’s method is often referred to as
the “minimum variance” method.

Given a group of data points C, the ESS associated with C is given by

ESS(C) =
∑
x∈C

(x − µ(C))(x − µ(C))T ,
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7.2. Agglomerative Hierarchical Methods 133

or

ESS(C) =
∑
x∈C

xxT − 1

|C|

(∑
x∈C

x

)(∑
x∈C

x

)T

=
∑
x∈C

xxT − |C|µ(C)µ(C)T , (7.14)

where µ(C) is the mean of C, that is,

µ(C) = 1

|C|
∑
x∈C

x.

Suppose there are k groups C1, C2, . . . , Ck in one level of the clustering. Then the
information loss is represented by the sum of ESSs given by

ESS =
k∑

i=1

ESS(Ci),

which is the total within-group ESS.
At each step of Ward’s method, the union of every possible pair of groups is considered

and two groups whose fusion results in the minimum increase in loss of information are
merged.

If the squared Euclidean distance is used to compute the dissimilarity matrix, then the
dissimilarity matrix can be updated by the Lance-Williams formula during the process of
clustering as follows (Wishart, 1969):

D(Ck, Ci ∪ Cj)

= |Ck| + |Ci |
�ijk

D(Ck, Ci)+ |Ck| + |Cj |
�ijk

D(Ck, Cj )

−|Ck|
�ijk

D(Ci, Cj ), (7.15)

where �ijk = |Ck| + |Ci | + |Cj |.
To justify this, we supposeCi andCj are chosen to be merged and the resulting cluster

is denoted by Ct , i.e., Ct = Ci ∪ Cj . Then the increase in ESS is

@ESSij = ESS(Ct )− ESS(Ci)− ESS(Cj )

=

∑

x∈Ct

xxT − |Ct |µtµ
T
t


−


∑

x∈Ci

xxT − |Ci |µiµ
T
i




−

∑

x∈Ct

xxT − |Cj |µjµ
T
j




= |Ci |µiµ
T
i + |Cj |µjµ

T
j − |Ct |µtµ

T
t , (7.16)

where µt, µi , and µj are the means of clusters Ct, Ci , and Cj , respectively.D
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134 Chapter 7. Hierarchical Clustering Techniques

Noting that |Ct |µt = |Ci |µi + |Cj |µj , squaring both sides of this equation gives

|Ct |2µtµ
T
t = |Ci |2µiµ

T
i + |Cj |2µjµ

T
j + 2|Ci ||Cj |µiµ

T
j ,

or

|Ct |2µtµ
T
t = |Ci |2µiµ

T
i + |Cj |2µjµ

T
j + |Ci ||Cj |(µiµ

T
i + µjµ

T
j )

−|Ci ||Cj |(µi − µj)(µi − µj)
T

= |Ci |(|Ci | + |Cj |)µiµ
T
i + |Cj |(|Ci | + |Cj |)µjµ

T
j

−|Ci ||Cj |(µi − µj)(µi − µj)
T , (7.17)

since
2µiµ

T
j = µiµ

T
i + µjµ

T
j − (µi − µj)(µi − µj)

T .

Dividing both sides of equation (7.17) by |Ct | and substituting |Ct |µtµ
T
t into equa-

tion (7.16) give

@ESSij = |Ci ||Cj |
|Ci | + |Cj | (µi − µj)(µi − µj)

T . (7.18)

Now considering the increase in ESS that would result from the potential fusion of
groups Ck and Ct , from equation (7.18) we have

@ESSkt = |Ck||Ct |
|Ck| + |Cj | (µk − µt)(µk − µt)

T , (7.19)

where µk = µ(Ck) is the mean of group Ck .
Noting that µt = 1

|Ct | (|Ci |µi+|Cj |µj) and |Ct | = |Ci |+ |Cj |, using equation (7.17),
we have

(µk − µt)(µk − µt)
T

= |Ci |
|Ct | (µk − µi)(µk − µi)

T + |Cj |
|Ct | (µk − µj)(µk − µj)

T

−|Ci ||Cj |
|Ct |2 (µi − µj)(µi − µj)

T .

Substituting the above equation into equation (7.19), and after simple manipulations, we
get

@ESSkt = |Ck||Ci |
|Ck| + |Ct | (µk − µi)(µk − µi)

T

+ |Ck||Cj |
|Ck| + |Ct | (µk − µj)(µk − µj)

T

−|Ck||Ci ||Cj |
|Ck| + |Ct | (µi − µj)(µi − µj)

T ,

and, using equation (7.18), we have

@ESSkt = |Ck| + |Ci |
|Ck| + |Ct |@ESSki + |Ck| + |Cj |

|Ck| + |Ct |@ESSkj

− |Ck|
|Ck| + |Ct |@ESSij . (7.20)D
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7.2. Agglomerative Hierarchical Methods 135

Table 7.6. The dissimilarity matrix of the data set given in Figure 7.9, where the
entry (i, j) in the matrix is the squared Euclidean distance between xi and xj .

x1 x2 x3 x4 x5

x1 0 0.25 5 11.25 9

x2 0.25 0 6.25 13 9.25
x3 5 6.25 0 1.25 2
x4 11.25 13 1.25 0 2.25
x5 9 9.25 2 2.25 0

This proves equation (7.15). If we compute the dissimilarity matrix for a data set D =
{x1, x2, . . . , xn} using the squared Euclidean distance, then the entry (i, j) of the dissimi-
larity matrix is

d2
ij = d(xi , xj ) = (xi − xj )(xi − xj )

T =
d∑

l=1

(xil − xjl)
2,

where d is the dimensionality of the data set D.
If Ci = {xi} and Cj = {xj } in equation (7.18), then the increase in ESS that results

from the fusion of xi and xj is

@ESSij = 1

2
d2
ij .

Since the objective of Ward’s method is to find at each stage those two groups whose
fusion gives the minimum increase in the total within-group ESS, the two points with
minimum squared Euclidean distance will be merged at the first stage. Suppose xi and xj
have minimum squared Euclidean distance. Then Ci = {xi} and Cj = {xj }will be merged.
AfterCi andCj are merged, the distances betweenCi∪Cj and other points must be updated.

Now let Ck = {xk} be any other group. Then the increase in ESS that would result
from the potential fusion of Ck and Ci ∪ Cj can be calculated from equation (7.20) as

@ESSk(ij) = 2

3

d2
ki

2
+ 2

3

d2
kj

2
− 1

3

d2
ij

2
.

If we update the dissimilarity matrix using equation (7.15), then we have from the
above equation that

@ESSk(ij) = 1

2
D(Ck, Ci ∪ Cj).

Thus if we update the dissimilarity matrix using equation (7.15) during the process
of clustering, then the two groups with minimum distance will be merged.

Taking the data set given in Figure 7.9 as an example, the dissimilarity matrix com-
puted by the squared Euclidean distance is given in Table 7.6.

Initially, each single point forms a cluster and the total ESS is ESS0 = 0. According
to the above discussion, x1 and x2 will be merged at the first stage of Ward’s method, andD
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136 Chapter 7. Hierarchical Clustering Techniques

the increase in ESS that results from the fusion of x1 and x2 is @ESS12 = 1
2 (0.25) = 0.125;

hence, the ESS becomes

ESS1 = ESS0 +@ESS12 = 0.125.

Using equation (7.15), the distances are updated as

D({x1, x2}, x3) = 2

3
(d(x1, x3)+ d(x2, x3))− 1

3
d(x1, x2) = 7.42,

D({x1, x2}, x4) = 2

3
(d(x1, x4)+ d(x2, x4))− 1

3
d(x1, x2) = 16.08,

D({x1, x2}, x5) = 2

3
(d(x1, x5)+ d(x2, x5))− 1

3
d(x1, x2) = 12.08,

and the dissimilarity matrix becomes

{x1, x2} x3 x4 x5

{x1, x2} 0 7.42 16.08 12.08
x3 7.42 0 1.25 2
x4 16.08 1.25 0 2.25
x5 12.08 2 2.25 0

At the second stage of this method, x3 and x4 will be merged and the resulting increase
in ESS is @ESS34 = 1

2 (1.25) = 0.625. The total ESS becomes

ESS2 = ESS1 +@ESS34 = 0.125+ 0.625 = 0.75.

After x3 and x4 are merged, the distances are updated as

D({x3, x4}, {x1, x2}) = 3

4
(7.42+ 16.08)− 2

4
(1.25) = 17,

D({x3, x4}, x5) = 2

3
(2+ 2.25)− 1

3
(1.25) = 2.42,

and the dissimilarity matrix becomes

{x1, x2} {x3, x4} x5

{x1, x2} 0 17 12.08
{x3, x4} 17 0 2.42

x5 12.08 2.42 0

At the third stage, {x3, x4} and x5 will be merged. The resulting increase in ESS is
@ESS(34)5 = 1

2 (2.42) = 1.21. Then the total ESS becomes

ESS3 = ESS2 +@ESS(34)5 = 0.75+ 1.21 = 1.96.

The distances are updated as

D({x1, x2}, {x3, x4, x5}) = 4

5
(17)+ 3

5
(12.08)− 2

5
(2.42) = 19.88,

and the dissimilarity matrix becomesD
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x1 x2 x3 x4 x5
0

0.25

1.25

2.42

19.88

Figure 7.16. The dendrogram produced by applying Ward’s method to the data set
given in Figure 7.9.

{x1, x2} {x3, x4, x5}
{x1, x2} 0 19.88

{x3, x4, x5} 19.88 0

When all the data points are merged to form a single cluster, the increase in ESS will
be @ESS(12)(345) = 1

2 (19.88) = 9.94 and the total ESS will be

ESS4 = ESS3 +@ESS(12)(345) = 1.96+ 9.94 = 11.9.

The whole process of this clustering can be represented by the dendrogram shown in
Figure 7.16.

As pointed out by Anderberg (1973), a set of k clusters produced by Ward’s method
may or may not give the minimum possible ESS over all possible sets of k clusters formed
from the n objects. However, the results of Ward’s method are usually very good approx-
imations of the optimal one. Kuiper and Fisher (1975) presented a comparison of Ward’s
method with the other five hierarchical clustering algorithms using the Monte Carlo method.

7.2.8 Other Agglomerative Methods

The seven agglomerative methods discussed in the previous subsections are most widely
used in practice. In the Lance-Williams framework, there are some other agglomerative
methods, such as the flexible method (Lance and Williams, 1967a), the sum of squares
method (Jambu, 1978), and the mean dissimilarity method (Podani, 1989). Relevant dis-
cussions can be found in (Holman, 1992) and (Gordon, 1996).

There also exist agglomerative methods that cannot fit into the Lance-Williams frame-
work. An example of such agglomerative methods is the bicriterion analysis proposed by
Delattre and Hansen (1980).

7.3 Divisive Hierarchical Methods
The divisive hierarchical method proceeds the opposite way of the agglomerative hierarchi-
cal method. Initially, all the data points belong to a single cluster. The number of clustersD
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138 Chapter 7. Hierarchical Clustering Techniques

is increased by one at each stage of the algorithm by dividing an existing cluster into two
clusters according to some criteria. A divisive hierarchical method may be adopted in which
a single cluster is subdivided into smaller and smaller clusters. Divisive hierarchical cluster-
ing methods are essentially of two types: monothetic and polythetic (Everitt, 1993; Willett,
1988). A monothetic method divides the data on the basis of the possession or otherwise of
a single specified attribute, while a polythetic method divides the data based on the values
taken by all attributes.

It is not feasible to enumerate all possible divisions of a large (even moderate) cluster
C to find the optimal partition, since there are 2|C|−1 − 1 nontrivial different ways of
dividing the cluster C into two clusters (Edwards and Cavalli-Sforza, 1965). Scott and
Symons (1971a) have proposed an improved algorithm that requires examination of 2d − 2
partitions by assigning points in the hyperplane to the two clusters being considered, where d
is the dimensionality of the data. Except for low-dimensional data, the algorithm proposed
by Scott and Symons (1971a) is also very time-consuming. In fact, it turns out that the
problem of finding an optimal bipartition for some clustering criteria is NP-hard (Gordon,
1996).

Another problem with divisive hierarchical algorithms is monotonicity, to be specified
below. In a divisive hierarchy, one cluster is divided at a time, so what is the next cluster
to be divided? This depends on the definition of a level. Such a level must be meaningful
and monotone, which means that no subcluster may have a larger level than the level of its
parent cluster.

However, it is possible to construct divisive hierarchical algorithms that do not need to
consider all divisions and are monothetic. An algorithm called DIANA(DIvisiveANAlysis)
presented in (Kaufman and Rousseeuw, 1990) is a divisive hierarchical clustering algorithm.
It was based on the idea of Macnaughton-Smith et al. (1964). Other divisive hierarchical
techniques are presented in (Edwards and Cavalli-Sforza, 1965) and (Späth, 1980).

7.4 Several Hierarchical Algorithms
Although the computational complexity of hierarchical algorithms is generally higher than
that of partitional algorithms, many hierarchical algorithms have been designed and studied
in (Kaufman and Rousseeuw, 1990), (Murtagh, 1983), and (Willett, 1988). In this section,
we shall introduce some hierarchical algorithms, but we defer the introduction of hierarchical
algorithms described in terms of graph theory (i.e., graph-based algorithms) to later chapters.

7.4.1 SLINK

The SLINK algorithm (Sibson, 1973) is a single-link hierarchical algorithm that can be car-
ried out using arbitrary dissimilarity coefficients. In this algorithm, a compact representation
of a dendrogram called a pointer representation, which offers economy in computation, is
introduced.D
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7.4. Several Hierarchical Algorithms 139

Recall that a dendrogram is a nested sequence of partitions with associated numerical
levels that can be defined as a function c : [0,∞)→ E(D) that satisfies

c(h) ⊆ c(h′) if h ≤ h′,
c(h) is eventually in D ×D,

c(h+ δ) = c(h) for some small δ > 0,

where D is a given data set and E(D) is the set of equivalence relations on D.
Recall also that a pointer representation is the pair of functions π : {1, 2, . . . , n} →

{1, 2, . . . , n} and λ : π({1, 2, . . . , n})→ [0,∞] that have the following properties:

π(n) = n, π(i) > i for i < n, (7.21a)

λ(n) = ∞, λ(π(i)) > λ(i) for i < n, (7.21b)

where n is the number of data points in D.
As discussed before, there is a one-to-one correspondence between dendrograms and

pointer representations (Sibson, 1973). In particular, if c is a dendrogram, then the corre-
sponding pointer representation is defined by

λ(i) = inf {h : ∃j > i such that (i, j) ∈ c(h)},
π(i) = max{j : (i, j) ∈ c(λ(i))}

for i < n. Intuitively, λ(i) is the lowest level at which the ith object is no longer the
last object in its cluster, and π(i) is the last object in the cluster that it joins. The pointer
representation of a dendrogram ensures that a new object can be inserted in an efficient way.

Algorithm 7.1. The SLINK algorithm.

Require: n: number of objects; d(i, j): dissimilarity coefficients;
1: Q[1] ⇐ 1,=[1] ⇐ ∞;
2: for t = 1 to n− 1 do
3: Q[t + 1] ⇐ t + 1,=[t + 1] ⇐ ∞;
4: M[i] ⇐ d(i, t + 1) for i = 1, 2, . . . , t ;
5: for i = 1 to t do
6: if =[i] ≥ M[i] then
7: M[Q[i]] ⇐ min{M[Q[i]],=[i]};
8: Q[i] ⇐ M[i], Q[i] ⇐ t + 1;
9: else

10: M[Q[i]] ⇐ min{M[Q[i]],M[i]};
11: end if
12: end for
13: for i = 1 to t do
14: if =[i] ≥ =[Q[i]] then
15: Q[i] ≤ t + 1;
16: end if
17: end forD
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140 Chapter 7. Hierarchical Clustering Techniques

18: end for

Let the dendrogram for the first t objects in the data set be ct and its pointer represen-
tation be πt , λt . Let µt(i) be defined recursively on i as

µt(i) = min{d(i, t + 1), min
j,πt (j)=i

max{µt(j), λt (j)}},

which is defined for all i = 1, 2, . . . , t . It can be shown that the pointer representation for
ct+1 is defined as (Sibson, 1973)

πt+1(i) =



t + 1 if i = t + 1,
t + 1 if µt(i) or µt(πt (i)) ≤ λt (i) for i < t + 1,
πt(i) otherwise,

(7.22a)

λt+1(i) =
{

min{µt(i), λt (i)} if i < t + 1,
∞ if i = t + 1.

(7.22b)

If we start with t = 1 by π1(1) = 1, λ1(1) = ∞, then after n−1 steps of the recursive
process defined in (7.22), we shall obtain πn, λn, which is the pointer representation of the
dendrogram on the whole data set. Let Q,=, and M be three n-dimensional vectors such
that Q,= contain πt , λt in their first t entries in the t th step. Then the SLINK algorithm
can be described as in Algorithm 7.1. The number of operations to find πn, λn is O(n2).

7.4.2 Single-link Algorithms Based on Minimum Spanning Trees

A single-link cluster analysis can be carried out by using only the information contained in
the minimum spanning tree (MST) (Gower and Ross, 1969). The performance of single-link
cluster analysis can be improved by incorporating the MST algorithms into the clustering. To
present the details, we start with a brief introduction of MSTs and some efficient algorithms
for finding an MST.

The tree is a concept in graph theory. A tree is a connected graph with no cycles (Jain
and Dubes, 1988). A spanning tree is a tree containing all vertices of the graph. When
each edge in a graph is weighted by the dissimilarity between the two vertices that the edge
connects, the weight of a tree is the sum of the edge weights in the tree. An MST of a graph
G is a tree that has minimal weight among all other spanning trees of G.

Anumber of algorithms have been developed to find an MST. Most popular algorithms
to find the MST proceed iteratively. Two popular algorithms for finding an MST have been
discussed in (Gower and Ross, 1969). These algorithms are also presented in (Kruskal,
1956) and (Prim, 1957). In these algorithms, the edges belong to one of two sets A and B

at any stage, where A is the set containing the edges assigned to the MST and B is the set of
edges not assigned. Prim (1957) suggested an iterative algorithm that starts with any one of
the given vertices and initially assigns to A the shortest segment starting from this vertex.
Then the algorithm continues to assign to A the shortest segment from B that connects at
least one segment from A without forming a closed loop among the segments already in A.
The algorithm will stop when there are n− 1 segments in A. The MST produced by these
algorithms may not be unique if there exist equal segments of minimum length.D
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7.4. Several Hierarchical Algorithms 141

Single-link cluster analysis can be performed by using a dissimilarity matrix that
contains n(n−1)

2 distances, but it is impractical to record all n(n−1)
2 distances when n is

large, where n is the number of data points. As such, the MST constructed from this data
set provides a useful ancillary technique. To employ this technique in single-link cluster
analysis, an MST should be constructed from the data set first.

Gower and Ross (1969) presented an approach to computing the MST from a data set.
Let D = {x1, . . . , xn} be a data set, and let L1, L2, and L3 be three n-dimensional vectors
defined as follows:

L1(i) = j if xi is the j th point to join A,

L2(i) = j if xi was linked to xj ∈ A when it joined A,

L3(i) = d(xi , xL2(i))

for i = 1, 2, . . . , n, where d(·, ·) is a distance function.
The three vectors can be computed as follows. Initially, L1(1) = 1, L1(i) = 0 for

i = 2, 3, . . . , n, and L2 and L3 are set to the zero vector, i.e., A = {x1}. At the first stage,
let i1 be defined as

i1 = arg max
1≤i≤n

L1(i)

and let j1 be defined as
j1 = arg min

1≤j≤n,L1(j)=0
d(xi1 , xj ).

Then xj1 will be assigned to A; i.e., L1(2) = 0 will be changed to L1(j1) = 2, and L2 and
L3 will be updated as L2(j1) = i1, and L3(j1) = d(xj1 , xi1).

At the rth stage, let ir and jr be computed as

ir = arg max
1≤i≤n

L1(i),

jr = arg min
1≤j≤n,L1(j)=0

d(xir , xj ).

Hence, ir is the point added to A at the previous stage. At this stage, xjr will be added to A,
and the vectors will be updated as L1(jr) = r + 1, L2(jr) = ir , and L3(jr) = d(xjr , xir ).

After n − 1 stages, all the points will be added to A; then the MST is found. Once
the MST of the data set is found, the single-link cluster analysis can be performed from the
MST. The algorithm does not need the full distance matrix at every level of clustering.

To find clusters at the first level, let δ be a distance threshold and L0 be the largest
multiple of δ that is less than the minimum distance, and letH be a set of links whose lengths
lie between L0 and L0 + δ. Let G be a list that contains the group members contiguously,
marking the final member of each group with an indicator. For each link in H , find the
endpoints in G, agglomerate the two groups in which the points are found, and shift down
the intervening groups when necessary. Using the same procedure, a hierarchical system of
agglomerative clusters can be easily constructed. This algorithm is also presented in (Rohlf,
1973), along with the FORTRAN code.

7.4.3 CLINK

Like the SLINK algorithm (Sibson, 1973), the CLINK algorithm (Defays, 1977) is also
a hierarchical clustering algorithm based on a compact representation of a dendrogram.D
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142 Chapter 7. Hierarchical Clustering Techniques

But the CLINK algorithm is designed for the complete link method. The input of the
CLINK algorithm is a fuzzy relation R, and the output is the pointer representation of the
dendrogram.

A fuzzy relation R used in CLINK is defined as a collection of ordered pairs. For
example, given a data set D = {xi : i = 1, 2, . . . , n}, the fuzzy relation R on D can
be characterized as a membership function R(·, ·) that associates with each pair (i, j) the
dissimilarity measure from xi to xj . The fuzzy relations R used in CLINK are reflexive and
symmetric, i.e.,

R(i, i) = 0, 1 ≤ i ≤ n (reflexivity),

R(i, j) = R(j, i), 1 ≤ i, j ≤ n (symmetry).

Let R and Q be two fuzzy relations defined on D. Then the min-max composition of
R and Q is defined by

R ◦Q(i, j) = min{max{Q(i, k), R(k, j)} : k = 1, 2, . . . , n}
for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

The r-fold composition R ◦ R ◦ · · · ◦ R is denoted by Rr . R is said to be transitive
if R2 ⊃ R. An ultrametric relation is a fuzzy relation that is reflexive, symmetric, and
transitive. If a fuzzy relation R is reflexive and symmetric, then its transitive closure
R̄ = Rn−1 may be obtained by a single-linkage clustering. A complete linkage clustering
gives one or more minimal ultrametric relations (MURs) superior to R.

The goal of the CLINK algorithm is to find one of the MURs L superior to a reflexive
symmetric fuzzy relation R. L and R̄ can be viewed as two extreme clusterings of D. In
order to find such an L efficiently, the pointer representation (Sibson, 1973) is used in the
CLINK algorithm. The pointer representation is a pair of functions (π, λ) defined as in
equation (7.21). There is a one-to-one correspondence between pointer representations and
ultrametric relations.

Algorithm 7.2. The pseudocode of the CLINK algorithm.

Require: n: number of objects; R(i, j): dissimilarity coefficients;
1: Q[1] ⇐ 1,=[1] ⇐ ∞;
2: for t = 1 to n− 1 do
3: Q[t + 1] ⇐ t + 1,=[t + 1] ⇐ ∞;
4: M[i] ⇐ R(i, t + 1) for i = 1, 2, . . . , t ;
5: for i = 1 to t do
6: if =[i] < M[i] then
7: M[Q[i]] ⇐ max{M[Q[i]],M[i]};
8: M[i] ⇐ ∞;
9: end if

10: end for
11: Set a ⇐ t ;
12: for i = 1 to t do
13: if =[t − i + 1] ≥ =[Q[t − i + 1]] thenD
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7.4. Several Hierarchical Algorithms 143

14: if M[t − i + 1] < M[a] then
15: a ⇐ t − i + 1;
16: end if
17: else
18: M[t − i + 1] ⇐ ∞;
19: end if
20: end for
21: Set b ⇐ Q[a], c ⇐ =[a], Q[a] ⇐ t + 1 and =[a] ⇐ M[a];
22: if a < t then
23: while b < t do
24: Set d ⇐ Q[b], e ⇐ =[b], Q[b] ⇐ t + 1 and =[b] ⇐ c;
25: Set b ⇐ d and c ⇐ e;
26: end while
27: if b = t then
28: Set Q[b] ⇐ t + 1 and =[b] ⇐ c;
29: end if
30: end if
31: for i = 1 to t do
32: if Q[Q[i]] = t + 1 and =[i] = =[Q[i]] then
33: Set Q[i] ⇐ t + 1;
34: end if
35: end for
36: end for

Suppose that L is an ultrametric relation on D. Then the corresponding pointer
representation (π, λ) is defined as

π(i) =
{

max{j : L(i, j) = λ(i)} if i < n,
n if i = n,

λ(i) =
{

min{L(i, j) : j > i} if i < n,
∞ if i = n.

Conversely, if (π, λ) is a pointer representation, then the corresponding ultrametric
relation R is defined as

R(i, j) =




λ(i) if j = π(i) > i,
λ(j) if i = π(j) > j ,
0 if i = j ,
∞ otherwise.

Let Rt be the restriction of R to the first t data points of D. If Lt is a MUR superior
to Rt , then a MUR superior to Rt+1 can be easily obtained from Lt . To do this, let (πt , λt )

be the pointer representation of a MUR Lt superior to Rt . The pseudocode of the CLINK
algorithm is described in Algorithm 7.2. It is modified from the SLINK algorithm. These
two algorithms cannot be further improved, because they require all pairwise dissimilarities
to be considered (Murtagh, 1983).D
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144 Chapter 7. Hierarchical Clustering Techniques

7.4.4 BIRCH

Zhang et al. (1996) proposed an agglomerative hierarchical algorithm, called BIRCH (Bal-
anced Iterative Reducing and Clustering using Hierarchies), for clustering very large nu-
merical data sets in Euclidean spaces. It is also the first clustering algorithm in the database
area that takes account of noise.

In the algorithm of BIRCH, a clustering feature (CF) vector is used to summarize the
information of each cluster. Given a cluster C of a d-dimensional data set, the CF vector
for C is a triple defined as

CF(C) = (|C|, S1, S2),

where |C| is the number of instances in C, and S1 and S2 are d-dimensional vectors defined
as

S1 =
∑
x∈C

x =
(∑

x∈C
x1,
∑
x∈C

x2, . . . ,
∑
x∈C

xd

)
,

S2 =
∑
x∈C

x2 =
(∑

x∈C
x2

1 ,
∑
x∈C

x2
2 , . . . ,

∑
x∈C

x2
d

)
,

where xj (1 ≤ j ≤ d) is the value of the j th attribute of x.
At the beginning, a CF tree is built dynamically as new data objects are inserted. A

CF tree has three parameters: the branching factor B, the leaf factor L, and the threshold T .
Each nonleaf node contains at most B subnodes of the form [CFi , childi], each leaf node
contains at most L entries of the form [CFi], and the diameter of each entry in a leaf node
has to be less than T .

Outliers or noise are determined by considering the density of each entry in leaf nodes;
i.e., low-density entries of leaf nodes are treated as outliers. Potential outliers are written
out to disk in order to reduce the size of the tree. At certain points in the process, outliers
are scanned to see if they can be reabsorbed into the current tree without causing the tree to
grow in size.

After the CF tree is built, an agglomerative hierarchical clustering algorithm is applied
directly to the nodes represented by their CF vectors. Then for each cluster, a centroid is
obtained. Finally, a set of new clusters is formed by redistributing each data point to its
nearest centroid.

BIRCH works well when clusters are of convex or spherical shape and uniform size.
However, it is unsuitable when clusters have different sizes or nonspherical shapes (Guha
et al., 1998).

7.4.5 CURE

Guha et al. (1998) proposed an agglomerative hierarchical clustering algorithm called CURE
(Clustering Using REpresentatives) that can identify nonspherical shapes in large databases
and wide variance in size. In this algorithm, each cluster is represented by a certain fixed
number of points that are well scattered in the cluster. A combination of random sampling
and partitioning is used in CURE in order to handle large databases.D
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7.4. Several Hierarchical Algorithms 145

CURE consists of six main steps: draw a random sample, partition the sample, par-
tially cluster the partitions, eliminate the outliers, cluster the partial clusters, and label the
data on the disk. Since CURE was developed for large databases, it begins by drawing a
random sample from the database. Then the sample is partitioned and data points in each
partition are partially clustered. After the outliers are eliminated, the preclustered data in
each partition are clustered in a final pass to generate the final clusters.

In the first step, a random sample is drawn in order to handle large databases. In this
step, the Chernoff bounds (Motwani and Raghavan, 1995) are used to analytically derive
values for sample sizes such that the probability of missing clusters is low. The following
theorem is proved.

Theorem 7.1. For a cluster C, if the sample size s satisfies

s ≥ f n+ n

|C| log

(
1

δ

)
+ n

|C|

√(
log

1

δ

)2

+ 2f |C| log
1

δ
,

then the probability that the sample contains fewer than f |C| (0 ≤ f ≤ 1) points belonging
to C is less than δ, 0 ≤ δ ≤ 1.

In the second step, a simple partitioning scheme is proposed for speeding up CURE
when input sizes become large, since samples of larger sizes are required in some situations,
such as when separation between clusters decreases and clusters become less densely packed.
This is done by partitioning the sample space into p partitions, each of size s

p
, where s is

the sample size.
In the third step, each partition is clustered until the final number of clusters in each

partition reduces to s
pq

for some constant q > 1. Since data sets almost always contain
outliers, the fourth step of CURE is to eliminate outliers. The idea of this step is based on
the fact that outliers tend, due to their large distances from other points, to merge with other
points less and typically grow at a much slower rate than actual clusters in an agglomerative
hierarchical clustering.

s
pq

clusters are generated for each partition in the third step. In the fifth step, a
second clustering pass is run on the s

q
partial clusters for all the partitions. The hierarchical

clustering algorithm is used only on points in a partition.
Since the input to CURE’s clustering algorithm is a set of randomly sampled points

from the original data set, the last step is to assign the appropriate cluster labels to the
remaining data points such that each data point is assigned to the cluster containing the
representative point closest to it.

The space complexity of CURE is linear in the input size n. The worst-case time
complexity is O(n2 log n), which can be further reduced to O(n2) in lower-dimensional
spaces (e.g. two-dimensional space).

7.4.6 DIANA

DIANA (DIvisive ANAlysis) presented in (Kaufman and Rousseeuw, 1990, Chapter 6)
is a divisive hierarchical algorithm based on the proposal of Macnaughton-Smith et al.D

ow
nl

oa
de

d 
02

/0
7/

19
 to

 1
52

.2
.1

76
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



146 Chapter 7. Hierarchical Clustering Techniques

(1964). It can be applied to all data sets that can be clustered by means of the agglomerative
hierarchical algorithms.

The algorithm DIANA proceeds by a series of successive splits. At each step, the
biggest cluster (i.e., the cluster with the largest diameter, which is defined to be the largest
dissimilarity between two objects in it) is divided until at step n−1 each object is in a single
cluster.

Let C be a cluster. Then the diameter of C is defined to be

Diam(C) = max
x,y∈C d(x, y). (7.23)

The values of the diameter are also used as heights to represent the clustering structure in
the dendrograms or banners.

At each step, let C (|C| ≥ 2) be the cluster to be divided, and let A and B be the
clusters divided from C, i.e., A ∩ B = ? and A ∪ B = C. Initially, A = C and B = ?,
and the algorithm DIANA finds A and B by moving points from A to B iteratively. At the
first stage, a point y1 will be moved from A to B if it maximizes the function

D(x, A\{x}) = 1

|A| − 1

∑
y∈A,y �=x

d(x, y), (7.24)

where d(·, ·) can be any distance measure appropriate for the data.
Then A and B are updated as

Anew = Aold\{y1},
Bnew = Bold ∪ {y1}.

In the next stage, the algorithm looks for other points in A that should be moved to
B. Let x ∈ A, and let the test function be defined as

D(x, A\{x})−D(x, B)

= 1

|A| − 1

∑
y∈A,y �=x

d(x, y)− 1

|B|
∑
z∈B

d(x, z). (7.25)

If a point y2 maximizes the function in equation (7.25) and the maximal value is strictly
positive, then y2 will be moved from A to B. If the maximal value is negative or 0, the
process is stopped and the division from C to A and B is completed.

Some variants of the process of dividing one cluster into two have been discussed
in (Kaufman and Rousseeuw, 1990, Chapter 6). For example, the test function defined in
equation (7.25) can be switched to

D(A\{x}, B ∪ {x}).
When a data point maximizes the above function, then it may be moved from A to B. A
possible stopping rule is that D(Anew, Bnew) no longer increases.

Since the algorithm DIANA uses the largest dissimilarity between two objects in a
cluster as the diameter of the cluster, it is sensitive to outliers. Other techniques for splitting
a cluster and examples of the algorithm have been presented in (Kaufman and Rousseeuw,
1990).D
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7.4. Several Hierarchical Algorithms 147

7.4.7 DISMEA

DISMEA, presented by Späth (1980) based on a divisive method proposed in Macqueen
(1967), is a divisive hierarchical clustering algorithm that uses the k-means algorithm to
subdivide a cluster into two. The divisive method produces a hierarchy that consists of n
levels, where n is the size of the given data set. Starting with the whole data set, at each
successive step, the cluster with the largest sum of squared distances (SSD) is divided into
two clusters. This process is continued until every cluster contains a single data point.

More specifically, for a given data set D with n objects, the first step of the divisive
method is to find a bipartition C1, C2 of D (i.e., C1 �= ?,C2 �= ?, C1 ∩ C2 = ?, and
C1 ∪ C2 = D) such that the objective function

F(C1, C2;D) =
2∑

i=1

∑
x∈Ci

‖x − µ(Ci)‖2 (7.26)

is minimized, where µ(Ci) is the centroid of cluster Ci , i.e.,

µ(Ci) = 1

|Ci |
∑
x∈Ci

x.

At the succeeding steps, the cluster with the largest SSD is selected to be divided,
where the SSD for a given cluster C is defined as

E(C) =
∑
x∈C

‖x − µ(C)‖2,

where µ(C) is the centroid of cluster C.
For example, let C1, C2, . . . , Cj (j < n) be the clusters at a step. Then the next step

is to divide Cj0 if
E(Cj0) = max

1≤s≤j
E(Cj ).

One possible way to find the optimal bipartition is to examine all the 2|C|−1 − 1 possible
bipartitions and find an optimal one. However, this is impractical when the size of the cluster
to be subdivided is large. Another approach is necessary to find an optimal bipartition.

Instead of examining all possible divisions, the algorithm DISMEA uses the k- means
algorithm to subdivide a cluster into two. In practice, the maximum number of clusters
kmax (≤ n) is specified in the algorithm DISMEA. The FORTRAN code for the algorithm
DISMEA and some examples have been presented in (Späth, 1980).

7.4.8 Edwards and Cavalli-Sforza Method

Edwards and Cavalli-Sforza (1965) have suggested a divisive hierarchical algorithm by
successfully splitting the objects into two groups to maximize the between-groups sum of
squares. In this algorithm, the cluster density is measured by the variance, i.e., the within-
cluster sum of squares divided by the number of points. At the beginning of the algorithm,
the whole data set is divided into two groups according to the criterion mentioned above.D
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Then each of the two groups will be split into two groups according to the same criterion.
One then continues splitting until each cluster contains only one point.

The technique adopted by Edwards and Cavalli-Sforza (1965) to split a group of data
points into two subgroups is to enumerate all possible bipartitions and choose the one that
minimizes the within-group sum of squares. Let D be a set of n data points. Then there
are 2n−1 − 1 different ways to divide D into two clusters. More specifically, let Ai, Bi

be a partition of D for i = 1, 2, . . . , 2n−1 − 1, i.e., Ai ∪ Bi = D, Ai ∩ Bi = ?, and
Ai �= ?,Bi �= ?. Then the within-cluster sum of squares of the partition (Ai, Bi) is

WSSi = 1

|Ai |
∑

x,y∈Ai

‖x − y‖2 + 1

|Bi |
∑

x,y∈Bi

‖x − y‖2 (7.27)

for i = 1, 2, . . . , 2n−1 − 1.
The best partition is (Ai0 , Bi0) such that

WSSi0 = min
1≤i≤2n−1−1

WSSi.

Edwards and Cavalli-Sforza (1965) also pointed out that the best partition may not
be unique in some cases. For example, if the distance between any two data points is the
same, say, d , then splitting n points into two clusters A,B such that |A| = r, |B| = n − r

will give a within-cluster sum of squares of

1

r
· 1

2
r(r − 1)d2 + 1

n− r
· 1

2
(n− r)(n− r − 1)d2 = 1

2
(n− 2)d2,

which is independent of r .
For the Edwards and Cavalli-Sforza method, a major difficulty is that the initial

division requires an examination of all 2n−1 − 1 bipartitions, where n is the size of the
original data set. This will take an enormous amount of computer time (Gower, 1967).
Scott and Symons (1971a) suggested a refined algorithm that limits the consideration to
(2d − 2)

(
n

d

)
partitions, where n is the size of the data set and d is the dimensionality of

the data set. The improved algorithm is based on the results by Fisher (1958). Regarding
the minimum variance partition for the univariate case, i.e., d = 1, Fisher (1958) defines a
contiguous partition to be such that if xi and xj (xi ≤ xj ) belong to the same group, then
every object xk with xi ≤ xk ≤ xj also belongs to the group, and he proved that the optimal
partition is contiguous.

For d ≥ 2, Scott and Symons (1971a) generalized the definition of a contiguous
partition into k groups to be such that if each member of a set of data points belongs to the
same group, then every data point in the convex hull (Barber et al., 1996) of the set also
belongs to the group. They also generalized Fisher’s result as follows:

1. The minimum variance partition is contiguous.

2. For d ≥ 2, the two groups of the minimum variance partition are separated by a
(d − 1)-dimensional hyperplane containing d of the data points.

Thus for each of the
(
n

d

)
choices of d data points, there are 2d − 2 (d ≥ 2) possible

assignments of the d points in the hyperplane into two groups. Since it is simple to decideD
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7.5. Summary 149

on which side of the hyperplane each of the remaining n− d points will lie, there are a total
of (2d − 2)

(
n

d

)
partitions that should be considered.

Note that, if d ≥ 2, then the same partition will be considered many times. For
example, when d = 2, the same partition will be considered twice. In fact, it has been
shown that the number of distinct contiguous partitions is given by (Harding, 1967)

νd(n) =
d∑

i=1

(
n

i

)
.

7.5 Summary
Comprehensive discussions of hierarchical clustering methods can be found in (Gordon,
1987) and (Gordon, 1996). Techniques for improving hierarchical methods are discussed
in (Murtagh, 1983), and (Murtagh, 1984a) discussed the complexities of some major ag-
glomerative hierarchical clustering algorithms. A review of applying hierarchical clustering
methods to document clustering is given in (Willett, 1988). Other discussions are provided
in (Hodson, 1970), (Lance and Williams, 1967a), and (Lance and Williams, 1967c).

Posse (2001) proposed a hierarchical clustering method for large datasets using the
MST algorithm to initialize the partition instead of the usual set of singleton clusters. Other
hierarchical clustering algorithms can be found in (Rohlf, 1970) and (Day and Edelsbrunner,
1984).
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