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Chapter 9

Center-based Clustering
Algorithms

Compared to other types of clustering algorithms, center-based algorithms are very effi-
cient for clustering large databases and high-dimensional databases. Usually, center-based
algorithms have their own objective functions, which define how good a clustering solution
is. The goal of a center-based algorithm is to minimize its objective function. Clusters
found by center-based algorithms have convex shapes and each cluster is represented by
a center. Therefore, center-based algorithms are not good choices for finding clusters of
arbitrary shapes. In this chapter, we shall present and discuss some center-based clustering
algorithms and their advantages and disadvantages. We should mention that the expectation-
maximization (EM) algorithm can be treated as a center-based algorithm, but we will defer
the introduction of the EM algorithm to the chapter on model-based algorithms (Chapter 14).

9.1 The k-means Algorithm
The conventional k-means algorithm described in Algorithm 9.1, one of the most used
clustering algorithms, was first described by Macqueen (1967). It was designed to cluster
numerical data in which each cluster has a center called the mean. The k-means algorithm
is classified as a partitional or nonhierarchical clustering method (Jain and Dubes, 1988). In
this algorithm, the number of clusters k is assumed to be fixed. There is an error function in
this algorithm. It proceeds, for a given initial k clusters, by allocating the remaining data to
the nearest clusters and then repeatedly changing the membership of the clusters according
to the error function until the error function does not change significantly or the membership
of the clusters no longer changes. The conventional k-means algorithm (Hartigan, 1975;
Hartigan and Wong, 1979) is briefly described below.

Let D be a data set with n instances, and let C1, C2, . . . , Ck be the k disjoint clusters
of D. Then the error function is defined as

E =
k∑

i=1

∑
x∈Ci

d(x, µ(Ci)), (9.1)
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162 Chapter 9. Center-based Clustering Algorithms

where µ(Ci) is the centroid of cluster Ci . d(x, µ(Ci)) denotes the distance between x and
µ(Ci), and it can be one of the many distance measures discussed before, a typical choice
of which is the Euclidean distance deuc(·, ·) defined in (6.11).

Algorithm 9.1. The conventional k-means algorithm.

Require: Data set D, Number of Clusters k, Dimensions d:
{Ci is the ith cluster}
{1. Initialization Phase}

1: (C1, C2,…,Ck) = Initial partition of D.
{2. Iteration Phase}

2: repeat
3: dij = distance between case i and cluster j ;
4: ni = arg min1≤j≤k dij ;
5: Assign case i to cluster ni ;
6: Recompute the cluster means of any changed clusters above;
7: until no further changes of cluster membership occur in a complete iteration
8: Output results.

The k-means algorithm can be divided into two phases: the initialization phase and
the iteration phase. In the initialization phase, the algorithm randomly assigns the cases into
k clusters. In the iteration phase, the algorithm computes the distance between each case
and each cluster and assigns the case to the nearest cluster.

We can treat the k-means algorithm as an optimization problem. In this sense, the
goal of the algorithm is to minimize a given objective function under certain conditions.
Let D = {xi , i = 1, 2, . . . , n} be a data set with n instances and k be a given integer. The
objective function can be defined as

P(W,Q) =
k∑

l=1

n∑
i=1

wildeuc(xi , ql), (9.2)

where Q = {ql , l = 1, 2, . . . , k} is a set of objects, deuc(·, ·) is the Euclidean distance
defined in (6.11), and W is an n× k matrix that satisfies the following conditions:

1. wil ∈ {0, 1} for i = 1, 2, . . . , n, l = 1, 2, . . . , k,

2.
∑k

l=1 wil = 1 for i = 1, 2, . . . , n.

The k-means algorithm can be formatted as the following optimization problem P (Selim
and Ismail, 1984; Bobrowski and Bezdek, 1991): Minimize P(W,Q) in (9.2) subject to
conditions (1) and (2).

The optimization problem P can be solved by iteratively solving the following two
subproblems (Huang, 1998):

• Subproblem P1: Fix Q = Q̂ and solve the reduced problem P(W, Q̂).

• Subproblem P2: Fix W = Ŵ and solve the reduced problem P(Ŵ ,Q).D
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9.1. The k-means Algorithm 163

As to how to solve the subproblems P1 and P2, we have the following theorems
(Huang, 1998).

Theorem 9.1. In subproblem P1, let Q̂ = {1̂l , l = 1, 2 . . . , k} be fixed. Then the function
P(W, Q̂) is minimized if and only if

wil =
{

1 if deuc(xi , q̂l) = min
1≤t≤k

deuc(xi , q̂t ),

0 otherwise
(9.3)

for i = 1, 2, . . . , n and l = 1, 2, . . . , k.

Theorem 9.2. In subproblem P2, let Ŵ = (ŵil) be fixed. Then the function P(Ŵ ,Q) is
minimized if and only if

qlj =
∑n

i=1 ŵilxij∑n
i=1 ŵil

(9.4)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d.

Algorithm 9.2. The k-means algorithm treated as an optimization problem.

Require: Data set D, Number of Clusters k, Dimensions d:
1: Choose an initial Q0 and solve P(W,Q0) to obtain W 0;
2: Let T be the number of iterations;
3: for t = 0 to T do
4: Let Ŵ ⇐ Wt and solve P(Ŵ ,Q) to obtain Qt+1;
5: if P(Ŵ ,Qt) = P(Ŵ ,Qt+1) then
6: Output Ŵ ,Qt ;
7: Break;
8: end if
9: Let Q̂⇐ Qt+1 and solve P(Wt, Q̂) to obtain Wt+1;

10: if P(Wt, Q̂) = P(Wt+1, Q̂) then
11: Output Wt, Q̂;
12: Break;
13: end if
14: end for
15: Output WT+1,QT+1.

The pseudocode of the optimization algorithm is described in Algorithm 9.2. The
computational complexity of the algorithm is O(nkd) per iteration (Phillips, 2002), where
d is the dimension, k is the number of clusters, and n is the number of data points in the
data set.

Since the sequence P(·, ·) generated by the algorithm is strictly decreasing, the al-
gorithm will converge to a local minimum point after a finite number of iterations (Selim
and Ismail, 1984). Convergence and some probability properties regarding the k-meansD
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164 Chapter 9. Center-based Clustering Algorithms

algorithm are also discussed in (Pollard, 1981), (Pollard, 1982), and (Serinko and Babu,
1992). García-Escudero and Gordaliza (1999) discussed the robustness properties of the
k-means algorithm.

As one of the most often used clustering algorithms, the k-means algorithm has some
important properties:

• It is efficient in clustering large data sets, since its computational complexity is linearly
proportional to the size of the data sets.

• It often terminates at a local optimum (Anderberg, 1973; Selim and Ismail, 1984).

• The clusters have convex shapes, such as a ball in three-dimensional space (Anderberg,
1973).

• It works on numerical data.

• The performance is dependent on the initialization of the centers.

The k-means algorithm has some drawbacks (Peńa et al., 1999). In particular, the
performance is dependent on the initialization of the centers, as mentioned above. As
a result, some methods for selecting good initial centers are proposed, for example, in
(Babu and Murty, 1993) and (Bradley and Fayyad, 1998). Peńa et al. (1999) provide a
comparison of four initialization methods: a random method, Forgy’s approach (Anderberg,
1973), Macqueen’s approach (Macqueen, 1967), and Kaufman’s approach (Kaufman and
Rousseeuw, 1990). Other initialization methods are presented in (Khan and Ahmad, 2004).

In the iteration phase of the algorithm, the objects will be moved from one cluster to
another in order to minimize the objective function. Tarsitano (2003) presents a computa-
tional study of the shortcomings and relative merits of 17 reallocation methods for the k-
means algorithm.

Another drawback of the k-means algorithm is that it does not work effectively on
high-dimensional data (Keim and Hinneburg, 1999). Also, working only on numerical data
restricts some applications of the k-means algorithm.

The algorithm presented above is usually called the standard k-means algorithm. The
standard k-means algorithm has several variations, such as the k-harmonic algorithm, the
fuzzy k-means algorithm, and the Gaussian EM algorithm. Hamerly and Elkan (2002)
investigated the properties of the standard k-means algorithm and its variations and alter-
natives.

9.2 Variations of the k-means Algorithm
Many clustering algorithms originating from the k-means algorithm are presented in (Faber,
1994), (Bradley and Fayyad, 1998), (Alsabti et al., 1998), and (Bottou and Bengio, 1995).
These clustering algorithms were developed to improve the performance of the standard
k-means algorithm. We will address some of these algorithms in subsequent sections.D
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9.2. Variations of the k-means Algorithm 165

9.2.1 The Continuous k-means Algorithm

The continuous k-means algorithm, proposed by Faber (1994), is faster than the standard
k-means algorithm. It is different from the standard k-means algorithm in the following
aspects. Firstly, in the continuous k-means algorithm, the prototypes (or reference points)
are chosen as a random sample from the whole database, while in the standard k-means
algorithm the initial points are chosen arbitrarily. Secondly, the data points are treated
differently. During each complete iteration, the continuous k-means algorithm examines
only a sample of the data points, while the standard k-means algorithm examines all the
data points in sequence.

Theoretically, random sampling represents a return to Macqueen’s original concept
of the algorithm as a method of clustering data over a continuous space. In Macqueen’s
formulation, the error measure Ei for each region Ri is given by

Ei =
∫
Ri

ρ(x)‖x − zi‖2dx,

where ρ(·) is the probability distribution function, which is a continuous function defined
over the space, and zi is the centroid of the region Ri . The sum of all the Ei’s is the total
error measure.

A random sample of the data set can be a good estimate of the probability distribution
function ρ(x). Such a sample yields a representative set of centroids and a good estimate
of the error measure without using all the data points in the original data set. Since both
the reference points and the data points for updates are chosen by random sampling, the
continuous k-means algorithm is generally faster than the standard k-means algorithm,
and ten times faster than Lloyd’s algorithm (Lloyd, 1982). Ways of further reducing the
computer time are discussed in (Faber, 1994).

9.2.2 The Compare-means Algorithm

In order to accelerate the k-means algorithm, the algorithm compare-means (Phillips, 2002)
uses a simple approach to avoid many unnecessary comparisons.

Let x be a point in D and µi and µj be two means. By the triangle inequality, we
have d(x, µi)+ d(x, µj ) ≥ d(µi, µj ), so d(x, µj ) ≥ d(µi, µj )− d(x, µi). Therefore, we
have d(x, µj ) ≥ d(x, µi) if d(µi, µj ) ≥ 2d(x, µi). In this case, computing d(x, µj ) is
unnecessary.

Since the number of clusters k is usually small, distances of all pairs of means are
precomputed before each iteration. Then, before comparing a point x to a mean µj , the
above test is performed using the closest known mean to x. The compare-means algorithm
is described in Algorithm 9.3.

Algorithm 9.3. The compare-means algorithm.

Require: Data set D, Number of Clusters k, Dimensions d:
{Ci is the ith cluster}
{1. Initialization Phase}D
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166 Chapter 9. Center-based Clustering Algorithms

1: (C1, C2, . . . , Ck) = Initial partition of D.
{2. Iteration Phase}

2: repeat
3: Calculate Dij = d(µi, µj ) for all i, j = 1, 2, . . . , k {µi is the mean of the ith cluster

in the previous iteration};
4: Let ni be the subscript such that xi ∈ Cni ;
5: Dmin ⇐ d(xi , µni );
6: for j = 1 to k do
7: if Djni < 2 ∗Dmin and j �= ni then
8: dist = d(xi , µj );
9: if dist < Dmin then

10: Dmin ⇐ dist ;
11: ni ⇐ j ;
12: end if
13: end if
14: end for
15: Assign case i to cluster ni ;
16: Recompute the cluster means of any changed clusters above;
17: until no further changes in cluster membership occur in a complete iteration
18: Output results;

The number of comparisons made by compare-means is harder to determine, but the
overhead of compare-means is T(k2d + nkd) (Phillips, 2002), where n is the number of
records, k is the number of clusters, and d is the dimension.

9.2.3 The Sort-means Algorithm

The algorithm sort-means (Phillips, 2002) is an extension of compare-means. In this al-
gorithm, the means are sorted in order of increasing distance from each mean in order to
obtain a further speedup.

Let Dij = d(µi, µj ) for i, j = 1, 2, . . . , k, where µi is the mean of the ith cluster.
Let M be a k × k array in which row i (mi1,mi1, . . . , mik) is a permutation of 1, 2, . . . , k
such that d(µi, µmi1) ≤ d(µi, µmi2) ≤ · · · ≤ d(µi, µmik

). An iteration of sort-means is
described in Algorithm 9.4.

Algorithm 9.4. An iteration of the sort-means algorithm.

1: Calculate Dij = d(µi, µj ) for all i, j = 1, 2, . . . , k {µi is the mean of the ith cluster
in the previous iteration};

2: Construct the array M;
3: Let ni be the subscript such that xi ∈ Cni ;
4: Dinmin ⇐ d(xi , µni );
5: Dmin ⇐ Dinmin;
6: for j = 2 to k do
7: l ⇐ Mnij ;D
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9.2. Variations of the k-means Algorithm 167

8: if Dnil >= 2 ∗Dinmin then
9: break;

10: end if
11: dist = d(x, µl);
12: if dist < Dinmin then
13: Dmin ⇐ dist ;
14: ni ⇐ l;
15: end if
16: end for
17: Assign case i to cluster ni ;
18: Recompute the cluster means of any changed clusters above;

For the sort-means algorithm, the running time of an iteration is O(ndγ + k2d +
k2 log k) (Phillips, 2002), where n is the number of records, k is the number of clusters, d
is the dimension, and γ is the average over all points x of the number of means that are no
more than twice as far as x is from the mean x was assigned to in the previous iteration.

9.2.4 Acceleration of the k-means Algorithm with the kd-tree

Pelleg and Moore (1999) proposed an algorithm for the k-means clustering problem using
the kd-tree data structure. The kd-tree data structure, described in Appendix B, can be used
to reduce the large number of nearest-neighbor queries issued by the traditional k-means
algorithm. Hence, an analysis of the geometry of the current cluster centers can lead to
a great reduction in the work needed to update the cluster centers. In addition, the initial
centers of the k-means algorithm can be chosen by the kd-tree efficiently.

One way to use the kd-tree in the inner loop of the k-means algorithm is to store the
centers in the tree; another way is to store the whole data set in the tree. The latter method is
used in (Pelleg and Moore, 1999). To describe the application of the kd-tree in the k-means
algorithm, let us start with an iteration of the k-means algorithm.

Let C(i) denote the set of centroids after the ith iteration. Before the first iteration,
C(0) is initialized to a set of random values. The stop criterion of the algorithm is that C(i)

and C(i−1) are identical. In each iteration of the algorithm, the following two steps are
performed:

1. For each data point x, find the center in C(i) that is closest to x and associate x with
this center.

2. Update C(i) to C(i+1) by taking, for each center, the center of mass of all the data
points associated with this center.

Pelleg’s algorithm involves modifying the second step in the iteration. The procedure
to update the centroids in C(i) is recursive and has a parameter, a hyperrectangle h. The
procedure starts with the initial value of h being the hyperrectangle containing all the input
points. If the procedure can find ownerC(i) (h), it updates its counters using the center of
mass and number of points that are stored in the kd-tree node corresponding to h; otherwise,
it splits h by recursively calling itself with the children of h. Hence, given a set of centroidsD
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168 Chapter 9. Center-based Clustering Algorithms

C and a hyperrectangle h, ownerC(h) is defined to be a center z in C such that any point in
h is closer to z than to any other center in C, if such a center exists.

Performance comparison with BIRCH (Zhang et al., 1996) was presented in (Pelleg
and Moore, 1999). Pelleg’s method performs badly for high-dimensional (e.g.,> 8) data but
scales very well with the number of centers. Interested readers are referred to (Alsabti et al.,
1998) and (Kanungo et al., 2002) for other examples of applying kd-tree in the k-means
algorithm.

9.2.5 Other Acceleration Methods

We presented some methods previously for improving the performance of the k-means
algorithm. Besides the above-mentioned methods, several other extensions of the standard
k-means are proposed in order to improve the speed and quality of the k-means algorithm.

In order to improve the performance of the k-means algorithm in terms of solution
quality and robustness, Chen et al. (2004) proposed a clustering algorithm that integrates
the concepts of hierarchical approaches and the k-means algorithm. The initialization phase
of this algorithm is similar to that of the k-means algorithm except that the number of initial
centers m is larger than the number of clusters k. The iteration phase is the same as that of
the k-means algorithm. The last phase is to merge clusters until k clusters are formed. The
pair of clusters with the smallest score values will be merged into one cluster. The score
between clusters Ci and Cj is defined as

Score(Ci, Cj ) = |Ci ||Cj |
|Ci | + |Cj |d

2
euc(µ(Ci), µ(Cj )),

where µ(Ci) and µ(Cj ) are the centers of clusters Ci and Cj , respectively, and deuc(·, ·) is
the Euclidean distance.

Matoušek (2000) proposed a (1 + ε)-approximate (i.e., the objective function value
of the approximation is no worse than (1 + ε) times the minimum value of the objective
function) k-clustering algorithm whose complexity is

O(n logk nε−2k2d)

for k ≥ 3, where ε > 0.
Har-Peled and Mazumdar (2004) proposed a similar approximation algorithm for the

k-means by applying the k-means algorithm to, instead of the original data set D, a small
weighted set S ⊂ D, of size O(kε−d log n), where ε is a positive number, n is the number
of objects in D, d is the dimensionality, and k is the number of clusters. It has been shown
that the complexity of the approximation algorithm is

O

(
n+ kk+2ε−(2d+1)k logk+1 n logk 1

ε

)
,

which is linear to n for fixed k and ε. Details of this algorithm are omitted, but interested
readers are referred to (Har-Peled and Mazumdar, 2004) for how the core set is computed.

Su and Chou (2001) proposed a modified version of the k-means algorithm that adopts
a nonmetric distance measure based on the idea of “point symmetry.” Precisely, for a givenD
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9.3. The Trimmed k-means Algorithm 169

data set D = {x1, x2, . . . , xn} and a center z, the point symmetry distance between an object
xi and the center z is defined as

d(xi , z) = min
1≤j≤n, j �=i

‖(xi − z)+ (xj − z)‖
‖xi − z‖ + ‖xj − z‖ .

An application of this algorithm for human face detection is presented in Su and Chou
(2001).

In order to handle high-dimensional data, Stute and Zhu (1995) proposed a modi-
fied version of the k-means algorithm based on the projection pursuit, and Agarwal and
Mustafa (2004) proposed an extension of the k-means algorithm for projective clustering
in arbitrary subspaces with techniques to avoid local minima. Kantabutra and Couch (2000)
implemented a parallel k-means algorithm to handle large databases.

9.3 The Trimmed k-means Algorithm
The trimmed k-means algorithm (Cuesta-Albertos et al., 1997), based on “impartial trim-
ming,” is a procedure that is more robust than the standard k-means algorithm. The main
idea of the trimmed k-means algorithm is presented in this section.

The k-means algorithm can be viewed as a procedure based on the minimization of
the expected value of a “penalty function” ? of the distance to k-sets (sets of k points)
through the following problem: Given an Rd -valued random vector X, find the k-set M =
{m1,m2, . . . ,mk} in Rd such that

V?(M) =
∫

?

(
inf

i=1,2,...,k
‖X −mi‖

)
dP

is minimized.
The trimmed k-means procedure based on the methodology of “impartial trimming,”

which is a way to obtain a trimmed set with the lowest possible variation at some given
level α, is formulated as follows (Cuesta-Albertos et al., 1997).

Let α ∈ (0, 1), the number of clusters k, and the penalty function ? be given. For
every set A such that P(A) ≥ 1 − α and every k-set M = {m1,m2, . . . ,mk} in Rd , the
variation of M given A is defined as

V A
? (M) = 1

P(A)

∫
A

?

(
inf

i=1,2,...,k
‖X −mi‖

)
dP.

V A
? (M) measures how well the set M represents the probability mass of P living on A.

To find the best representation of the “more adequate” set containing a given amount of
probability mass, we can minimize V A

? (M) on A and M in the following way:

1. Obtain the k-variation given A, V A
k,?, by minimizing with respect to M:

V A
k,? = inf

M⊂Rd ,|M|=k
V A
? (M).
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170 Chapter 9. Center-based Clustering Algorithms

2. Obtain the trimmed k-variation Vk,?,α by minimizing with respect to A:

Vk,?,α = Vk,?,α(X) = Vk,?,α(PX) = inf
A∈βd ,P (A)≥1−α

V A
k,?.

The goal of the algorithm is to obtain a trimmed set A0 and a k-set M0, if both of them exist,
through the condition

V
A0
? (M0) = Vk,?,α.

The trimmed k-means algorithm described above can be generalized as follows. Let
D = {x1, x2, . . . , xn} be a sample of independently identically distributed random variables
in Rd with common distribution F . Let ? : R+ → R be a suitable nondecreasing penalty
function and 1− γ ∈ (0, 1) be a trimming level. Then the generalized trimmed k-means of
D is a k-set {m∗

1,m∗
2, . . . ,m∗

k} ⊂ Rd solving the double optimization problem

min
Y

min
{m1,m2,...,mk}⊂Rd

1

-nγ .
∑
x∈Y

?

(
inf

1≤j≤k
‖x −mj‖

)
,

where Y ranges in the class of the subsets of D with -nγ . data points, and -x. denotes the
smallest integer greater than or equal to x.

The properties of existence and consistency of the trimmed k-means are shown to
hold under certain conditions. Details of the theorems are omitted here; interested readers
are referred to (Cuesta-Albertos et al., 1997). A central limit theory for the generalized
trimmed k-means algorithm is given in (García-Escudero et al., 1999b). García-Escudero
and Gordaliza (1999) investigated the performance of the generalized k-means algorithm
and the generalized trimmed k-means algorithm from the viewpoint of Hampel’s robustness
criteria (Hampel, 1971). Further discussions of the trimmed k-means algorithm are given
in (García-Escudero et al., 1999a).

9.4 The x-means Algorithm
In the k-means algorithm, the number of clusters k is an input parameter specified by the user.
In order to reveal the true number of clusters underlying the distribution, Pelleg and Moore
(2000) proposed an algorithm, called x-means, by optimizing the Bayesian information
criterion (BIC) or the Akaike information criterion (AIC) measure (Bozdogan, 1987).

In the x-means algorithm, the BIC or Schwarz criterion (Kass and Raftery, 1995;
Schwarz, 1978) is used globally and locally in order to find the best number of clusters k.
Given a data set D = {x1, x2, . . . , xn} containing n objects in a d-dimensional space and a
family of alternative models Mj = {C1, C2, . . . , Ck}, (e.g., different models correspond to
solutions with different values of k), the posterior probabilities P(Mj |D) are used to score
the models. The Schwarz criterion can be used to approximate the posteriors.

The Schwarz criterion is defined as

BIC(Mj) = l̂j (D)− pj

2
log n,D
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9.5. The k-harmonic Means Algorithm 171

where l̂j (D) is the loglikelihood of D according to the j th model and taken at the maximum
likelihood point, and pj is the number of parameters in Mj . The model with the largest
score is selected.

Under the identical spherical Gaussian distribution, the maximum likelihood estimate
for variance is

σ̂ 2 = 1

n− k

n∑
i=1

(xi − µ(i))
2,

where µ(i) is the centroid associated with the object xi , i.e., (i) denotes the index of the
centroid that is closest to xi . The point probabilities are

P̂ (xi ) = |C(i)|
n

· 1√
2πσ̂ d

exp

(
− 1

2σ̂ 2
‖xi − µ(i)‖2

)
.

Thus, the loglikelihood of the data is

l(D) = log
n∏

i=1

P(xi ) =
n∑

i=1

(
log

1√
2πσ̂ d

− 1

2σ̂ 2
‖xi − µ(i)‖2 + log

|C(i)|
n

)
.

The number of free parameters pj is k − 1+ dk + 1 = (d + 1)k.
The Schwarz criterion is used in x-means globally to choose the best model it en-

counters and locally to guide all centroid splits. The algorithm can be briefly described as
follows.

Given a range for k, [kmin, kmax], the x-means algorithm starts with k = kmin and
continues to add centroids when they are needed until the upper bound is reached. New
centroids are added by splitting some centroids into two according to the Schwarz criterion.
During the process, the centroid set with the best score is recorded as the one that is the final
output. The algorithm can be implemented efficiently using ideas of “blacklisting”(Pelleg
and Moore, 1999) and kd-trees.

9.5 The k-harmonic Means Algorithm
k-harmonic means (Zhang et al., 2000a, 1999) is developed from the k-means algorithm
and it is essentially insensitive to the initialization of centers.

We know that the error function (or performance function) of the k-means algorithm
can be written as

E =
n∑

i=1

min{d(xi , µj ), j = 1, 2, . . . , k}, (9.5)

where µj is the mean of the j th cluster.
Then the error function of the k-harmonic means algorithm is obtained by replacing

the minimum function min(·) by the harmonic average (or harmonic mean) function HA(·)D
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172 Chapter 9. Center-based Clustering Algorithms

and using the squared Euclidean distance, i.e.,

E =
n∑

i=1

HA({dseuc(xi , µj ), j = 1, 2, . . . , k})

=
n∑

i=1

k

k∑
j=1

1
(xi−µj )T (xi−µj )

, (9.6)

where µj is the mean of the j th cluster, dseuc(·, ·) is the squared Euclidean distance, and
HA(·) is the harmonic average defined as

HA({ai : i = 1, 2, . . . , m}) = m
m∑
i=1

a−1
i

. (9.7)

The recursive formula for the k-harmonic means algorithm can be obtained by taking
partial derivatives of the error function (9.6) with respect to the means µl, l = 1, 2, . . . , k,
and setting them to zero. That is,

∂E

∂µl

= −k
n∑

i=1

2(xi − µl)

d4
il

(
k∑

j=1
d−2
ij

)2 = 0, (9.8)

where dij = deuc(xi , µj ) =
[
(xi − µj)

T (xi − µj)
] 1

2 .
By solving equation (9.8), we obtain new centers µ∗l , l = 1, 2, . . . , k as follows:

µ∗l =

n∑
i=1

d−4
il

(
k∑

j=1
d−2
ij

)−2

xi

n∑
i=1

d−4
il

(
k∑

j=1
d−2
ij

)−2 . (9.9)

Then given a set of initial centers, we can obtain new centers by (9.9). This recursion
is continued until the centers stabilize.

In order to reduce the sensitivity of the convergence quality to the initial centers,
Zhang et al. (2000) proposed a generalized k-harmonic means algorithm as follows:

µ∗l =

n∑
i=1

d−sil

(
k∑

j=1
d−2
ij

)−2

xi

n∑
i=1

d−sil

(
k∑

j=1
d−2
ij

)−2 (9.10)

for l = 1, 2, . . . , k, where s is a parameter. Unfortunately, no method has been developed
to choose the parameter s.D
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9.6. The Mean Shift Algorithm 173

9.6 The Mean Shift Algorithm
The mean shift algorithm (Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and
Meer, 2002, 1999) is a simple iterative procedure that shifts each data point to the average
of data points in its neighborhood. To introduce the mean shift algorithm, let us start with
some definitions and notation.

Definition 9.3 (Profile). A profile k is a function k : [0,∞] → [0,∞] satisfying the
following conditions:

1. k is nonincreasing,

2. k is piecewise continuous, and

3.
∫∞

0 k(r)dr <∞.

Definition 9.4 (Kernel). A function K : Rd → R is said to be a kernel if there exists a
profile k such that

K(x) = k
(‖x‖2

)
,

where ‖ · ‖ denotes the Euclidean norm.

Let α > 0. If K is a kernel, then

(αK)(x) = αK(x),

Kα(x) = K
( x
α

)
,

(Kα)(x) = (K(x))α

are all kernels.

Definition 9.5 (The mean shift algorithm). Let D ⊂ Rd be a finite data set, K a kernel,
and w : D → (0,∞) a weight function. The sample mean with kernel K at x ∈ Rd is
defined as

m(x) =

∑
y∈D

K(y − x)w(y)y

∑
y∈D

K(y − x)w(y)
.

Let T ⊂ Rd be a finite set of cluster centers. The evolution of T in the form of iterations
T ← m(T ) with m(T ) = {m(y) : y ∈ T } is called the mean shift algorithm.

The mean shift algorithm is a very general iterative procedure to the extent that some
well-known clustering algorithms are its special cases. The maximum-entropy clustering
(MEC) algorithm (Rose et al., 1990), for example, is a mean shift algorithm when T and D

are separate sets, Gβ(x) = e−β‖x‖2
is the kernel, and

w(y) = 1∑
t∈T

Gβ(y − t)
, y ∈ D.

D
ow

nl
oa

de
d 

02
/0

7/
19

 to
 1

52
.2

.1
76

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



174 Chapter 9. Center-based Clustering Algorithms

In addition, the well-known k-means algorithm is a limiting case of the mean shift algorithm
(Cheng, 1995).

We now introduce some definitions in order to describe the convergence properties
of the mean shift algorithm.

Definition 9.6 (Direction). A direction in Rd is a point on the unit sphere, i.e., a is a
direction if and only if |a| = 1.

Definition 9.7 (Projection). The projection in the direction a is defined as the mapping
πa : Rd → R with πa(x) = 〈x, a〉, where 〈· · · , · · · 〉 denotes the inner product.

Definition 9.8 (Convex hull). The convex hull h(Y ) of a set Y ⊂ Rd is defined as⋂
‖a‖=1

{x ∈ Rd : min πa(Y ) ≤ πa(x) ≤ max πa(Y )}.

Definition 9.9 (Translation). h(D) ⊇ h(m(D)) ⊇ h(m(m(D))) ⊇ · · · , i.e., a translation
is a transformation of the data so that the origin is in all the convex hulls of data.

Definition 9.10 (Radius). Suppose after a translation, the origin is in all the convex hulls
of data. Then the radius of data is

ρ(D) = max{‖x‖ : x ∈ D}.

Definition 9.11 (Diameter). The diameter of data is defined as

d(D) = sup
‖a‖

(max πa(D)−min πa(D)).

Regarding the convergence of the mean shift algorithm, Cheng (1995) proved the
following two theorems.

Theorem 9.12 (Convergence with broad kernels). Let k be the profile of the kernel used
in a blurring process and S0 be the initial data. If k(d2(S0)) ≥ κ for some κ > 0, then the
diameter of the data approaches zero. The convergence rate is at least as fast as

d(m(D))

d(D)
≤ 1− κ

4k(0)
.

Theorem 9.13 (Convergence with truncated kernels). If data points cannot move arbi-
trarily close to each other and K(x) is either zero or larger than a fixed positive constant,
then the blurring process reaches a fixed point in finitely many iterations.

The mean shift algorithm is not only an intuitive and basic procedure but also a
deterministic process. It is more efficient than gradient descent or ascent methods in termsD
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9.7. MEC 175

of adapting to the right step size (Cheng, 1995). There are also some factors that make the
mean shift algorithm not popular. For example, the computational cost of an iteration of the
mean shift algorithm is O(n2) (Cheng, 1995), where n is the number of data points in the
data set. The mean shift algorithm is also not suitable for high-dimensional data sets and
large data sets. Other discussions of the mean shift algorithm can be found in Fashing and
Tomasi (2005), Yang et al. (2003a), Chen and Meer (2005), and Georgescu et al. (2003).

9.7 MEC
The MEC algorithm, based on statistical physics, was introduced by Rose et al. (1990).
The MEC algorithm is a fuzzy clustering algorithm and the fuzzy membership is obtained
by maximizing the entropy at a given average variance. A deterministic annealing process
is derived from the relationship between the corresponding Lagrange multiplier and the
“temperature” so that the free energy is minimized at each temperature.

The energy or cost contributed to the cluster Cj by a data point x is denoted by Ej(x).
In MEC, the energy Ej(x) is defined as

Ej(x) = ‖x − zj‖2,

where ‖ · ‖ is the Euclidean norm and zj is the centroid of Cj . The average total energy for
a given partition is defined as

E =
∑
x∈D

k∑
j=1

P(x ∈ Cj)Ej (x), (9.11)

where D = {x1, x2, . . . , xn} is the data set under consideration, k is the number of clusters,
and P(x ∈ Cj), j = 1, 2, . . . , k, are the association probabilities or fuzzy memberships.
The association probabilities that maximize the entropy under the constraint (9.11) are Gibbs
distributions defined as

P(x ∈ Cj) = e−βEj (x)

Zx
, (9.12)

where Zx is the partition function defined as

Zx =
k∑

j=1

e−βEj (x).

The parameter β is the Lagrange multiplier determined by the given value of E in
equation (9.11). The total partition function is defined as

Z =
∏
x∈D

Zx.

Based on the partition function, the free energy is defined as

F = − 1

β
ln Z = − 1

β

∑
x∈D

ln


 k∑

j=1

e−β‖x−zj ‖2


 . (9.13)
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176 Chapter 9. Center-based Clustering Algorithms

The set of centroids zj that optimizes the free energy satisfies

∂F

∂zj
= 0 ∀j

or ∑
x∈D

(x − zj )e−β‖x−zj ‖2

k∑
l=1

e−β‖x−zl‖2

= 0 ∀j,

which leads to

zj =
∑
x∈D

xP(x ∈ Cj)∑
x∈D

P (x ∈ Cj)
.

The MEC algorithm is an iterative process z(r) → z(r+1), r = 1, 2, . . . . Note that the
MEC algorithm is a special case of the mean shift algorithm (Cheng, 1995) and the k-means
algorithm is the limiting case of the MEC algorithm when β approaches infinity (Cheng,
1995).

9.8 The k-modes Algorithm (Huang)
The k-modes algorithm (Huang, 1997b, 1998) comes from the k-means algorithm (see
Section 9.1), and it was designed to cluster categorical data sets. The main idea of the
k-modes algorithm is to specify the number of clusters (say, k) and then to select k initial
modes, followed by allocating every object to the nearest mode.

The k-modes algorithm uses the simple match dissimilarity measure (see Section 6.3.1)
to measure the distance of categorical objects. The mode of a cluster is defined as follows.

LetD be a set of categorical objects described by d categorical attributes, A1, A2, . . . ,

Ad . Let X ⊆ D. Then the mode of X is defined to be a vector q = (q1, q2, . . . , qd) such
that the function

D(X, q) =
∑
x∈X

dsim(x, q) (9.14)

is minimized, where dsim(·, ·) is defined in (6.23).
Hence, according to this definition, the mode is not necessarily an element of that

data set. The following theorem (Huang, 1998) shows how to minimize the function given
in (9.14).

Theorem 9.14. Let the domain of Aj be DOM(Aj ) = {Aj1, Aj2, . . . , Ajnj } for j =
1, 2, . . . , d, and let X ⊆ D. Let fjr(X)(1 ≤ j ≤ d, 1 ≤ r ≤ nj ) be the number of objects
in X that take value Ajr at the j th attribute, i.e.,

fjr(X) = |{x ∈ X : xj = Ajr}|. (9.15)

Then the function given in (9.14) is minimized if and only if qj ∈ DOM(Aj ) for j =
1, 2, . . . , d, and

fjrj (X) ≥ fjl(X)∀l �= rj , j = 1, 2, . . . , d,

where rj is the subscript defined as qj = Ajrj for j = 1, 2, . . . , d.D
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9.8. The k-modes Algorithm (Huang) 177

Theorem 9.14 provides us with a way to find q for a given data set X. This theorem
also implies that the mode of a data set is not necessarily unique.

Since the k-modes algorithm comes from the k-means algorithm, it can also be treated
as an optimization problem. The objective function for the k-modes algorithm can be defined
as in (9.2) by changing the Euclidean distance to the simple matching distance, i.e.,

P(W,Q) =
k∑

l=1

n∑
i=1

wildsim(xi , ql), (9.16)

where Q = {ql , l = 1, 2, . . . , k} is a set of objects, dsim(·, ·) is the simple matching distance
defined in (6.23), and W is an n× k matrix that satisfies the following conditions:

1. wil ∈ {0, 1} for i = 1, 2, . . . , n, l = 1, 2, . . . , k,

2.
∑k

l=1 wil = 1 for i = 1, 2, . . . , n.

Thus, Algorithm 9.5 can be used for the k-modes algorithm by using the objective
function defined in (9.16). But this algorithm is not efficient, since we need to calculate
the total cost P of the whole data set each time a new Q or W is obtained. To make the
computation more efficient, we use the algorithm described inAlgorithm 9.5 (Huang, 1998).

Algorithm 9.5. The k-modes algorithm.

Require: Data set D, Number of Clusters k, Dimensions d:
1: Select k initial modes Q = {q1, q2, . . . ,qk}, and ql for cluster l;
2: for i = 1 to n do
3: Find an l such that dsim(xi , ql) = min1≤t≤k dsim(xi , qt );
4: Allocate xi to cluster l;
5: Update the mode ql for cluster l;
6: end for
7: repeat
8: for i = 1 to n do
9: Let l0 be the index of the cluster to which xi belongs;

10: Find an l1 such that dsim(xi , ql1) = min1≤t≤k,t �=l0 dsim(xi , qt );
11: if dsim(xi , ql1) < dsim(xi , ql0) then
12: Reallocate xi to cluster l1;
13: Update ql0 and ql1 ;
14: end if
15: end for
16: until No changes in cluster membership
17: Output results.

The proof of convergence for this algorithm is not available (Anderberg, 1973), but
its practical use has shown that it always converges (Huang, 1998).D
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178 Chapter 9. Center-based Clustering Algorithms

The k-modes algorithm is very popular for clustering categorical data. It has some
important properties:

• It is efficient for clustering large data sets.

• It also produces locally optimal solutions that are dependent on initial modes and the
order of objects in the data set (Huang, 1998).

• It works only on categorical data.

9.8.1 Initial Modes Selection

Since the clustering results and convergence speed of the k-modes algorithm are dependent
on the initial modes, the selection of initial modes is an important issue in the k-modes
algorithm. Good initial modes lead to fast convergence and good results, while bad initial
modes lead to slow convergence. Many initial modes selection methods have been discussed
in the literature. Acommonly used approach, called the direct method, is to choose the first k
distinct objects as initial modes. For example, for a given data setD = {xi , i = 1, 2, . . . , n},
we choose ql = xl for l = 1, 2, . . . , k as modes if xl �= xt for all 1 ≤ l < t ≤ k. Another
approach, called the diverse modes method, is to spread the initial modes over the whole data
set by assigning the most frequent categories equally to the initial modes (Huang, 1998).
Given a data set D, we first sort each column of its symbol table Ts such that each column
of its corresponding frequency table of D is in decreasing order. In other words for each j ,
we sort Aj1, Aj2, . . . , Ajnj such that fj1(D) ≥ fj2 ≥ · · · ≥ fjnj (D). Secondly, the most
frequent categories are equally assigned to the initial modes q1, q2, . . . ,qk . For example,
A11, A21, . . . , Ad1 are in different initial modes. Finally, we start with q1, select the record
most similar to q1, and replace q1 as the first initial mode. After qi (i = 1, 2, . . . , l) are
replaced, we select the record in D most similar to ql+1 and replace ql+1 with that record
as the (l + 1)th initial mode. We keep doing this until qk is replaced.

The last step is taken to avoid the occurrence of an empty cluster. The initial modes
found by this method are diverse in the data set. These initial modes can lead to better
clustering results, but this costs time.

9.9 The k-modes Algorithm (Chaturvedi et al.)
Chaturvedi et al. (2001) proposed a nonparametric bilinear model to derive clusters from
categorical data. The clustering procedure is analogous to the traditional k-means algorithm
(Macqueen, 1967). To describe the algorithm, let us begin with the bilinear clustering model.

Let D = {x1, x2, . . . , xn} be a data set with n objects, each of which is described by d

categorical attributes. Let k be the number of clusters. Then the bilinear clustering model
is (Chaturvedi et al., 2001)

C = SW + error, (9.17)

where C is an n× d data matrix; S is an n× k binary indicator matrix for membership of
the n objects in k mutually exclusive, nonoverlapping clusters (i.e., the (i, j)th entry of S
is 1 if xi belongs to the j th clusters, and 0 otherwise); and W is the matrix of centroids.D
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9.10. The k-probabilities Algorithm 179

The data matrix C in equation (9.17) is known, whereas both S and W are unknown
and must be estimated. The algorithm iterates as follows: estimate S given estimates of
W , and then revise the estimates of W given the new estimates of S. This process will be
repeated until the quality of clustering is not improved. In this algorithm, the quality of
clustering is indicated by an L0 loss function.

Let Ĉ = SW . Then the Lp-norm–based loss function is defined as

Lp =
n∑

i=1

d∑
j=1

|cij − ĉij |p

for positive values of p → 0, where cij and ĉij are the (i, j)th entries of C and Ĉ, respec-
tively. L0 is the limiting case as p → 0 and simply counts the number of mismatches in
the matrices C and Ĉ, i.e.,

L0 =
n∑

i=1

d∑
j=1

δ(cij , ĉij ),

where δ(·, ·) is defined in equation (6.22).
The goal of the algorithm is to minimize L0. The matrices S and W are estimated

iteratively until the value of the L0 loss function is not improved. The detailed estimation
procedure is described as follows.

To estimate S = (sil) given the estimates of W = (wlj ), we consider the functions

fi =
d∑

j=1

(
cij −

k∑
l=1

silwlj

)0

=
k∑

l=1

sil


 d∑

j=1

δ(cij , wlj )




for i = 1, 2, . . . , n. Then L0 =∑n
i=1 fi . To minimize L0, we can separately minimize fi .

To minimize fi , we try all the d patterns sil = 1 for l = 1, 2, . . . , d and choose ŝil0 = 1 if

d∑
j=1

δ(cij , wl0j ) = min
1≤l≤k

d∑
j=1

δ(cij , wlj ).

To estimate W = (wlj ) given the estimates of S = (sil), we can estimate wlj sepa-
rately. Precisely, let Cl be the lth cluster, i.e., Cl = {xi : sil = 1, 1 ≤ i ≤ n}, and consider
the mode of {xj : x ∈ Cl}, where xj is the j th attribute value of x. Let ŵlj be the mode of
{xj : x ∈ Cl}.

Although the above k-modes algorithm is faster than other procedures in some cases,
such as the latent class procedure (Goodman, 1974), it has some disadvantages. Firstly, it
can only guarantee a locally optimal solution. Secondly, the number of clusters k is required.
In order to achieve a globally optimal solution, Gan et al. (2005) proposed a genetic k-modes
algorithm based on the k-modes algorithm and the genetic algorithm.

9.10 The k-probabilities Algorithm
The k-probabilities algorithm (Wishart, 2002) is an extension of the k-modes algorithm. It
was designed for clustering mixed-type data sets. The k-probabilities algorithm uses theD
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180 Chapter 9. Center-based Clustering Algorithms

general distance coefficient (Gower, 1971) measure between two records, and it uses the
squared distance to compute the distance between a case and a cluster; for instance, the
distance dip between any case i and a cluster p is defined as

d2
ip =

∑
k

wipk(xik − µpk)
2∑

k wipk

, (9.18)

where xik is the value of the kth variable for case i, µpk is the mean of the kth variable
for cluster p, and wipk is a weight of 1 or 0 depending on whether or not the comparison
between case i and cluster p is valid for the kth variable, i.e., wipk = 1 if we can compare
the kth variable between case i and cluster p; otherwise wipk = 0. Notice that for nominal
variables, the mean µpk is a vector ϕpks of probabilities for each state s of the kth variable
within cluster p.

The object function of this algorithm is

E =
∑
p

Ep, (9.19)

where Ep is the Euclidean sum of squares defined as

Ep =
∑
i∈p

ni
∑
k

wk(xik − µpk)
2∑

k wk

, (9.20)

where xik and µpk are the same as in equation (9.18), ni is a differential weight for case i

(normally 1), and wk is a differential weight for the kth variable, where wk = 0 if xik or
µpk has a missing value at the kth variable.

The object of the k-probabilities algorithm is to minimize the total Euclidean sum of
squares E in equation (9.19). The algorithm starts with an initial partition of the data set
into k clusters, and then reassigns the cases to another cluster such that the total Euclidean
sum of squares E is minimized. To minimize E, a case i should only be reassigned from
cluster p to cluster q if (Wishart, 1978)

Ep + Eq > Ep−i + Eq+i ,

which is equivalent to
Ip−i,i > Iq,i .

Algorithm 9.6. The k-probabilities algorithm.

Require: Data set D, No. of Clusters:k, Dimensions: d:
{Ci is the ith cluster}
{1. Initialization Phase}

1: (C1, C2, . . . , Ck) = Initial partition of D.
{2. Reallocation Phase}

2: repeat
3: for i = 1 to |D| doD

ow
nl

oa
de

d 
02

/0
7/

19
 to

 1
52

.2
.1

76
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



9.11. The k-prototypes Algorithm 181

4: Compute Ip−i,i {p is the current cluster number of case i};
5: for q = 1 to k, q �= p do
6: compute Iq+i,i ;
7: if Ip−i,i > Iq+i,i then
8: Assign case i to cluster ni ;
9: break;

10: end if
11: end for
12: end for
13: Recompute the cluster means of any changed clusters above;
14: until no further changes in cluster membership occur in a complete iteration

The pseudocode of the k-probabilities algorithm is given inAlgorithm 9.6. Gupta et al.
(1999) also proposed an algorithm that extends the k-means algorithm to cluster categorical
data through defining the objective function based on the new Condorcet criterion (Michaud,
1997).

9.11 The k-prototypes Algorithm
The k-prototypes algorithm (Huang, 1998) comes from the k-means and k-modes algorithm;
it was designed to cluster mixed-type data sets. A related work is (Huang, 1997a). In the
k-prototypes algorithm, the prototype is the center of a cluster, just as the mean and mode
are the centers of a cluster in the k-means and k-modes algorithms, respectively.

Let two mixed-type objects be described by attributesAr
1, A

r
2, . . . , A

r
p, A

c
p+1, . . . , A

c
m,

where the firstp attributes are numerical while the remainingm−p attributes are categorical.
Let X = [x1, x2, . . . , xm], and Y = [y1, y2, . . . , ym], where xi, and yi (1 ≤ i ≤ p) take
numerical values while the rest take categorical values. Then the dissimilarity measure
between X and Y can be

d(X, Y ) =
p∑

j=1

(xj − yj )
2 + γ

m∑
j=p+1

δ(xj , yj ),

where γ is a balance weight used to avoid favoring either type of attribute. In the definition
of the dissimilarity measure, the squared Euclidean distance is used to measure the numerical
attributes and the simple matching dissimilarity (Kaufman and Rousseeuw, 1990) measure
is used to measure the categorical attributes.

The goal of the k-prototypes algorithm is to minimize the cost function

P(W,Q) =
k∑

l=1

(P r
l + γP c

l ),D
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182 Chapter 9. Center-based Clustering Algorithms

where

P r
l =

n∑
i=1

wi,l

p∑
j=1

(xi,j − ql,j )
2,

P c
l =

n∑
i=1

wi,l

m∑
j=p+1

δ(xi,j , ql,j ).

Algorithm 9.7. The k-prototypes algorithm.

Require: k: the number of clusters;
1: Select k initial prototypes from the database, one for each cluster;
2: Allocate each object in the database to a cluster whose prototype is the nearest to it

according to the dissimilarity measure, and update the prototype of the cluster after
each allocation;

3: repeat
4: Retest the similarity between each object and the prototype; if an object is found that

is nearest to another prototype rather than the current one, reallocate the object to the
nearest cluster;

5: Update the prototypes of both clusters;
6: until no further changes in the cluster membership

The k-prototypes algorithm (Algorithm 9.7) is the same as the k-probabilities al-
gorithm (see Algorithm 9.6) except for the reallocation phase. The complexity of the
k-prototypes algorithm is O((t+1)kn), where n is the number of data points in the data set,
k is the number of clusters, and t is the number of iterations of the reallocation process.

9.12 Summary
A popular center-based clustering algorithm, the k-means algorithm, and its variations,
has been presented in this chapter. To handle categorical data, two versions of the k-
modes algorithm are also presented. Center-based algorithms are easy to implement and the
results are easy to interpret. In addition, center-based algorithms are faster than hierarchical
algorithms in general. Therefore, they are popular for clustering large databases. Zhang
and Hsu (2000) discussed accelerating center-based clustering algorithms by parallelism.

In center-based clustering algorithms, each cluster has one center. Instead of gen-
erating a cluster center as a point, Bradley and Mangasarian (2000) proposed a clustering
algorithm, called the k-plane algorithm, in which the entity of the center is changed from a
point to a plane. In some cases, the k-plane algorithm outperforms the k-means algorithm
(Bradley and Mangasarian, 2000).
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