
NUMBER APPROXIMATION - EXERCISES

1. Numbers

Exercise 1. Define one-to-one correspondences between the following sets of numbers:

a) 𝔼={n|n ∈ℕ,n mod2=0}, 𝕆={n|n ∈ℕ, n mod2=1}
Solution. f : 𝔼→ 𝕆, f (n)=n +1 is one-to-one.

b) ℕ, ℤ
Solution. f :ℕ→ℤ, with f defined by {0→0,1→−1,2→1, 3→−2, 4→2, . . . } is one possibility. Introducing [x] as the integer part of
x∈ℚ, i.e. [x]=n with n ⩽x <n +1, f can be expressed as

f (n)=(−1)nmod2([n/2]+n mod2)

In Julia x÷y is integer division, so for n ∈ℕ [n/2]=n ÷2, and % is the modulo operator

∴ [4÷5 4÷4 4÷3 4÷2; 4%5 4%4 4%3 4%2]

[[[[[[[[[[ 0 1 1 2
4 0 1 0 ]]]]]]]]]] (1)

∴ function f(n)

q = n÷2; r = n%2; s = 1-2*r;

s*(q+r)

end

f

∴ N=10; [collect(0:N)'; f.(0:N)']

[[[[[[[[[[ 0 1 2 3 4 5 6 7 8 9 10
0 −1 1 −2 2 −3 3 −4 4 −5 5 ]]]]]]]]]] (2)

∴

c) ℤ, ℚ
Solution. Construct a table and introduce diagonal traversal to obtain the positive rationals p/q.

Figure 1. One-to-one mapping showing that |ℚ| = |ℕ|
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From above deduce |ℕ| = |𝔼| = |𝕆| = |ℤ| = |ℚ| =ℵ0.

Exercise 2. Provide an example to show |ℝ|> |ℕ|.

Exercise 3. Let ℕq={n|n ∈ℕ,n <2q}. Answer the following questions analytically. Also provide a Julia implementation.

a) Define a one-to-one correspondence f :ℕ2q →ℕq×ℕq

b) Let f (m1) =(n1, p1), f (m2)=(n2, p2). Assume m1+m2∈ℕ2q. Express f (m1+m2) in terms of n1,n2, p1, p2 .

c) Assume m1 ⋅m2 ∈ℕ2q. Express f (m1 ⋅m2) in terms of n1,n2, p1, p2 .

Exercise 4. Construct a one-to-one representation of the positions of atoms within an hexagonal lattice, f :ℤ2→ℝ2. Implement f and f −1 as
Julia functions. Use f to construct a graphical representation of a two-dimensional hexagonal lattice.

Exercise 5. Construct a one-to-one representation of the positions of atoms within an hexagonal lattice, f :ℤ3→ℝ3. Implement f and f −1 as
Julia functions. Use f to construct a graphical representation of a three-dimensional hexagonal lattice.

2. Approximation

Exercise 6. Write Julia code to compute machine epsilon 𝜖 for Float32 and Float64.

Solution.

∴ function MachEps(type)

one=type(1.0); half=type(0.5); eps=one;

while (one+half*eps != one)

eps=half*eps;

end

return eps;

end;

∴ [MachEps(Float32) eps(Float32) MachEps(Float64) eps(Float64)]

[1.1920928955078125e− 7,1.1920928955078125e− 7,2.220446049250313e− 16,2.220446049250313e− 16] (3)

∴

Exercise 7. Carry out a numerical experiment to verify the Axiom of floating point arithmetic within Float32, by computing 𝜋 + r in
Float32 and comparing to the result in Float64. Construct a scatter plot of (r, 𝜀) with 𝜀 the error in computing 𝜋+ r in Float32.

Solution. The floating point axiom states fl(x) ⊛fl(y) =(x ∗y)(1+𝜀), with |𝜀| ⩽𝜖, leading to

𝜀= fl(x)⊛fl(y)
x∗ y − 1,

or in this case

𝜀= fl(𝜋)⊕fl(r)
𝜋+ r −1.

The operations in ℝ are computed in Float64 in the following, with r randomly chosen.

∴ function ErrPlot(n)

pi32=Float32(pi); pi64=Float64(pi); half=Float64(0.5); one=Float64(1.0);

rscale = 1.0e3*half; e32 = eps(Float32);

r64=Float64.( rscale*(rand(n) .- half) );

r32=Float32.(r64);

result32 = pi32 .+ r32; result64 = pi64 .+ r64;

ε = result32 ./ result64 .- one;

rmin=minimum(r64); rmax=maximum(r64);

clf(); plot(r32,ε,".",[rmin rmax],[e32 e32],"dg",[rmin rmax],[-e32 -e32],"dg");

xlabel("r"); ylabel("ε"); title("Float32 addition error");
end;

∴ ErrPlot(1000); savefig(homedir()*"/courses/MATH661/images/E01Fig02.eps")

∴
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Figure 2. Numerical experiment on verification of floating point axiom. While for most numbers within this random sample the axiom
is verified, there are a few cases when r ≅0 the error is larger than 𝜖.

Exercise 8. Consider the approximations of e

Sn =1+ 1
2! + ⋅ ⋅ ⋅ + 1

n!,Tn= 1
n! + 1

(n − 1)! + ⋅ ⋅ ⋅ +1.

a) Write Julia functions to compute Sn, Tn.

Solution.

∴ function S(n)

fact=1.0; sum=1.0;

for k=2:n

fact = k*fact;

sum = sum + 1/fact;

end

return sum;

end;

∴ function T(n)

fact=1.0;

for k=n:-1:2

fact=k*fact;

end

sum=0.0;

for k=n:-1:1

sum = sum + 1/fact;

fact = fact/k;

end

return sum;

end;

∴

b) Determine if Sn=Tn for all n ∈ℕ.

Solution. In ℝ, indeed Sn = Tn by commutativity (proof by induction). In 𝔽 there must exist some N such that for n >N , Sn ≠Tn
as a consequence of the existence of machine epsilon. Verify by computation (note organization of computations to use Julia
broadcasting and presentation of results in a single table)

∴ r=1:8; s=S.(r); t=T.(r); chk = s.==t; [r s t chk]

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[

[

[ 1.0 1.0 1.0 1.0
2.0 1.5 1.5 1.0
3.0 1.6666666666666667 1.6666666666666665 0.0
4.0 1.7083333333333335 1.7083333333333333 0.0
5.0 1.7166666666666668 1.7166666666666668 1.0
6.0 1.7180555555555557 1.7180555555555554 0.0
7.0 1.7182539682539684 1.7182539682539684 1.0
8.0 1.71827876984127 1.7182787698412698 0.0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]

]

]

(4)
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∴

c) Determine if |Sn− Tn| <𝜖 (𝜖 is machine epsilon). Is the floating point axiom verified?

d) Determine if |Sn− Tn| <(n −1)𝜖. Is the floating point axiom verified?

Exercise 9. Consider the approximations of 𝜋/2 given by Wallis's product

Sn=�2
1� ⋅�2

3 ⋅ 4
3�⋅�4

5 ⋅ 6
5 ⋅ 6

7 ⋅ 8
7�. . .pn,

Tn= pn ⋅ . . . ⋅ �4
5 ⋅ 6

5 ⋅ 6
7 ⋅ 8

7�⋅�2
3 ⋅ 4

3�⋅�2
1�

a) Find the general term pn.

b) Determine if Sn=Tn for all n ∈ℕ.

c) Determine if |Sn− Tn| <𝜖 (𝜖 is machine epsilon). Is the floating point axiom verified?

d) Determine if |Sn− Tn| <(n −1)𝜖. Is the floating point axiom verified?

Exercise 10. Consider the approximations of e/2 given by Pippenger's product

Sn=�2
1�

1/2
⋅ �2

3 ⋅ 4
3�

1/4
⋅�4

5 ⋅ 6
5 ⋅ 6

7 ⋅ 8
7�

1/8
. . .pn,

Tn= pn ⋅ . . . ⋅ �4
5 ⋅ 6

5 ⋅ 6
7 ⋅ 8

7�
1/8

⋅ �2
3 ⋅ 4

3�
1/4

⋅ �2
1�

1/2

a) Find the general term pn.

b) Determine if Sn=Tn for all n ∈ℕ.

c) Determine if |Sn− Tn| <𝜖 (𝜖 is machine epsilon). Is the floating point axiom verified?

d) Determine if |Sn− Tn| <(n −1)𝜖. Is the floating point axiom verified?

3. Successive approximations
Exercise 11. Assume errors in successive numerical approximation of a ∈ℝ, finite, are given by en =an− an−1,with{an}n∈ℕ, an =n1/3.

a) Construct a scatter plot of (n,en). Does the plot indicate convergence of the numerical approximation?

b) Compute limn→∞en.

c) Suppose |en| <𝜀. What is an upper bound for |an− a|?

Exercise 12. Assume errors in successive numerical approximation of a ∈ℝ, finite, are given by en =an− an−1,with{an}n∈ℕ, an =n−1/2.

a) Construct a scatter plot of (n,en). Does the plot indicate convergence of the numerical approximation?

b) Compute limn→∞en.

c) Suppose |en| <𝜀. What is an upper bound for |an− a|?

Exercise 13. Consider a sequence of successive approximations of the derivative f ′(x0)

dn = f (x0+1/n) − f (x0)
1/n ,n ∈ℕ.

a) Is {dn}n∈ℕ a convergent sequence?

b) Is {dn}n∈ℕ a Cauchy sequence?

c) Construct a scatter plot of (n,dn) for f (x)=sin x, x0=𝜋/4. Does the plot indicate convergence of {dn}n∈ℕ?

d) Construct a scatter plot of (n,en), en=dn −dn−1, for f (x)=sin x, x0=𝜋/4. Does the plot indicate convergence of {dn}n∈ℕ?

Exercise 14. Consider errors in successive approximations {an}n∈ℕ given by en =an − an−1 = en−1 + en−2, i.e., errors at each step accumulate
errors in previous two steps, with e1 = e0 = 1. Is this a convergent approximation? Present both an analytical solution, and a numerical
experiment.

Exercise 15. Consider errors in successive approximations {an}n∈ℕ given by en = an − an−1 = 5
6en−1 + 1

6en−2, i.e., errors at each step are a
weighted average of those in previous two steps, with e1=e0=1. Is this a convergent approximation? Present both an analytical solution, and
a numerical experiment.

Exercise 16. Consider errors in successive approximations {an}n∈ℕ given by en=an−an−1= 1
2en−1+ 1

4en−2, i.e., errors at each step are less than
a weighted average of those in previous two steps, with e1 = e0 = 1. Is this a convergent approximation? Present both an analytical solution,
and a numerical experiment.
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