NUMBER APPROXIMATION - EXERCISES

1. Numbers

Exercise 1. Define one-to-one correspondences between the following sets of numbers:
a) $\mathbb{E}=\{n \mid n \in \mathbb{N}, n \bmod 2=0\}, \mathbb{O}=\{n \mid n \in \mathbb{N}, n \bmod 2=1\}$

Solution. $f: \mathbb{E} \rightarrow \mathbb{O}, f(n)=n+1$ is one-to-one.
b) \mathbb{N}, \mathbb{Z}

Solution. $f: \mathbb{N} \rightarrow \mathbb{Z}$, with f defined by $\{0 \rightarrow 0,1 \rightarrow-1,2 \rightarrow 1,3 \rightarrow-2,4 \rightarrow 2, \ldots\}$ is one possibility. Introducing $[x]$ as the integer part of $x \in \mathbb{Q}$, i.e. $[x]=n$ with $n \leqslant x<n+1, f$ can be expressed as

$$
f(n)=(-1)^{n \bmod 2}([n / 2]+n \bmod 2)
$$

In Julia $x \div y$ is integer division, so for $n \in \mathbb{N}[n / 2]=n \div 2$, and $\%$ is the modulo operator

$$
\begin{align*}
& \therefore[4 \div 5 \quad 4 \div 4 \quad 4 \div 3 \quad 4 \div 2 ; 4 \div 5 \quad 4 \% 4 \quad 4 \% 3 \quad 4 \div 2] \\
& {\left[\begin{array}{llll}
0 & 1 & 1 & 2 \\
4 & 0 & 1 & 0
\end{array}\right]} \tag{1}\\
& \text { f } \\
& \left.\therefore \text { N=10; [collect }(0: N)^{\prime} \text {; } \sqcup f .(0: N)^{\prime}\right] \\
& {\left[\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & -1 & 1 & -2 & 2 & -3 & 3 & -4 & 4 & -5 & 5
\end{array}\right]} \tag{2}
\end{align*}
$$

c) \mathbb{Z}, \mathbb{Q}

Solution. Construct a table and introduce diagonal traversal to obtain the positive rationals p / q.

Figure 1. One-to-one mapping showing that $|\mathbb{Q}|=|\mathbb{N}|$

From above deduce $|\mathbb{N}|=|\mathbb{E}|=|\mathbb{O}|=|\mathbb{Z}|=|\mathbb{Q}|=\aleph_{0}$.
Exercise 2. Provide an example to show $|\mathbb{R}|>|\mathbb{N}|$.
Exercise 3. Let $\mathbb{N}_{q}=\left\{n \mid n \in \mathbb{N}, n<2^{q}\right\}$. Answer the following questions analytically. Also provide a Julia implementation.
a) Define a one-to-one correspondence $f: \mathbb{N}_{2 q} \rightarrow \mathbb{N}_{q} \times \mathbb{N}_{q}$
b) Let $f\left(m_{1}\right)=\left(n_{1}, p_{1}\right), f\left(m_{2}\right)=\left(n_{2}, p_{2}\right)$. Assume $m_{1}+m_{2} \in \mathbb{N}_{2 q}$. Express $f\left(m_{1}+m_{2}\right)$ in terms of $n_{1}, n_{2}, p_{1}, p_{2}$.
c) Assume $m_{1} \cdot m_{2} \in \mathbb{N}_{2 q}$. Express $f\left(m_{1} \cdot m_{2}\right)$ in terms of $n_{1}, n_{2}, p_{1}, p_{2}$.

Exercise 4. Construct a one-to-one representation of the positions of atoms within an hexagonal lattice, $f: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2}$. Implement f and f^{-1} as Julia functions. Use f to construct a graphical representation of a two-dimensional hexagonal lattice.

Exercise 5. Construct a one-to-one representation of the positions of atoms within an hexagonal lattice, $f: \mathbb{Z}^{3} \rightarrow \mathbb{R}^{3}$. Implement f and f^{-1} as Julia functions. Use f to construct a graphical representation of a three-dimensional hexagonal lattice.

2. Approximation

Exercise 6. Write Julia code to compute machine epsilon ϵ for Float 32 and Float 64 .

Solution.

```
\therefore function MachEps(type)
    one=type(1.0); half=type(0.5); eps=one;
    while (one+half*eps != one)
        eps=half*eps;
    end
    return eps;
    end;
\therefore [MachEps(Float 32) eps(Float32) MachEps(Float64) eps(Float64)]
    [1.1920928955078125e-7,1.1920928955078125e-7,2.220446049250313e-16,2.220446049250313e-16]

Exercise 7. Carry out a numerical experiment to verify the Axiom of floating point arithmetic within Float 32, by computing \(\pi+r\) in Float 32 and comparing to the result in Float 64 . Construct a scatter plot of \((r, \varepsilon)\) with \(\varepsilon\) the error in computing \(\pi+r\) in Float 32 .

Solution. The floating point axiom states \(\mathrm{f}(x) \circledast \mathrm{fl}(y)=(x * y)(1+\varepsilon)\), with \(|\varepsilon| \leqslant \epsilon\), leading to
\[
\varepsilon=\frac{\mathrm{f}(x) \circledast \mathrm{fl}(y)}{x * y}-1,
\]
or in this case
\[
\varepsilon=\frac{\mathrm{f}(\pi) \oplus \mathrm{f}(r)}{\pi+r}-1 .
\]

The operations in \(\mathbb{R}\) are computed in Float 64 in the following, with \(r\) randomly chosen.
```

function ErrPlot(n)
pi32=Float32(pi); pi64=Float64(pi); half=Float64(0.5); one=Float64(1.0);
rscale = 1.0e3*half; e32 = eps(Float32);
r64=Float64.(rscale*(rand(n) .- half));
r32=Float32.(r64);
result32 = pi32 .+ r32; result64 = pi64 .+ r64;
\varepsilon = result32 ./ result64 .- one;
rmin=minimum(r64); rmax=maximum(r64);
clf(); plot(r32,\varepsilon,".",[rmin rmax],[e32 e32],"dg",[rmin rmax],[-e32 -e32],"dg");
xlabel("\Upsilon"); ylabel("\&"); title("Float32чaddition\sqcuperror");
end;
ErrPlot(1000); savefig(homedir()*"/courses/MATH661/images/E01Fig02.eps")
\therefore

```


Figure 2. Numerical experiment on verification of floating point axiom. While for most numbers within this random sample the axiom is verified, there are a few cases when \(r \cong 0\) the error is larger than \(\epsilon\).

Exercise 8. Consider the approximations of \(e\)
\[
S_{n}=1+\frac{1}{2!}+\cdots+\frac{1}{n!}, T_{n}=\frac{1}{n!}+\frac{1}{(n-1)!}+\cdots+1
\]
a) Write Julia functions to compute \(S_{n}, T_{n}\).

\section*{Solution.}
```

\therefore function S(n)
fact=1.0; sum=1.0;
for k=2:n
fact = k*fact;
sum = sum + 1/fact;
end
return sum;
end;
\therefore function T(n)
fact=1.0;
for k=n:-1:2
fact=k*fact;
end
sum=0.0;
for k=n:-1:1
sum = sum + 1/fact;
fact = fact/k;
end
return sum;
end;

```
b) Determine if \(S_{n}=T_{n}\) for all \(n \in \mathbb{N}\).

Solution. In \(\mathbb{R}\), indeed \(S_{n}=T_{n}\) by commutativity (proof by induction). In \(\mathbb{F}\) there must exist some \(N\) such that for \(n>N, S_{n} \neq T_{n}\) as a consequence of the existence of machine epsilon. Verify by computation (note organization of computations to use Julia broadcasting and presentation of results in a single table)

c) Determine if \(\left|S_{n}-T_{n}\right|<\epsilon\) ( \(\epsilon\) is machine epsilon). Is the floating point axiom verified?
d) Determine if \(\left|S_{n}-T_{n}\right|<(n-1) \epsilon\). Is the floating point axiom verified?

Exercise 9. Consider the approximations of \(\pi / 2\) given by Wallis's product
\[
\begin{aligned}
& S_{n}=\left(\frac{2}{1}\right) \cdot\left(\frac{2}{3} \cdot \frac{4}{3}\right) \cdot\left(\frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7}\right) \ldots p_{n}, \\
& T_{n}=p_{n} \cdot \ldots \cdot\left(\frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7}\right) \cdot\left(\frac{2}{3} \cdot \frac{4}{3}\right) \cdot\left(\frac{2}{1}\right)
\end{aligned}
\]
a) Find the general term \(p_{n}\).
b) Determine if \(S_{n}=T_{n}\) for all \(n \in \mathbb{N}\).
c) Determine if \(\left|S_{n}-T_{n}\right|<\epsilon\) ( \(\epsilon\) is machine epsilon). Is the floating point axiom verified?
d) Determine if \(\left|S_{n}-T_{n}\right|<(n-1) \epsilon\). Is the floating point axiom verified?

Exercise 10. Consider the approximations of \(e / 2\) given by Pippenger's product
\[
\begin{aligned}
& S_{n}=\left(\frac{2}{1}\right)^{1 / 2} \cdot\left(\frac{2}{3} \cdot \frac{4}{3}\right)^{1 / 4} \cdot\left(\frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7}\right)^{1 / 8} \ldots p_{n}, \\
& T_{n}=p_{n} \cdot \ldots \cdot\left(\frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7}\right)^{1 / 8} \cdot\left(\frac{2}{3} \cdot \frac{4}{3}\right)^{1 / 4} \cdot\left(\frac{2}{1}\right)^{1 / 2}
\end{aligned}
\]
a) Find the general term \(p_{n}\).
b) Determine if \(S_{n}=T_{n}\) for all \(n \in \mathbb{N}\).
c) Determine if \(\left|S_{n}-T_{n}\right|<\epsilon\) ( \(\epsilon\) is machine epsilon). Is the floating point axiom verified?
d) Determine if \(\left|S_{n}-T_{n}\right|<(n-1) \epsilon\). Is the floating point axiom verified?

\section*{3. Successive approximations}

Exercise 11. Assume errors in successive numerical approximation of \(a \in \mathbb{R}\), finite, are given by \(e_{n}=a_{n}-a_{n-1}\), with \(\left\{a_{n}\right\}_{n \in \mathbb{N}}, a_{n}=n^{1 / 3}\).
a) Construct a scatter plot of \(\left(n, e_{n}\right)\). Does the plot indicate convergence of the numerical approximation?
b) Compute \(\lim _{n \rightarrow \infty} e_{n}\).
c) Suppose \(\left|e_{n}\right|<\varepsilon\). What is an upper bound for \(\left|a_{n}-a\right|\) ?

Exercise 12. Assume errors in successive numerical approximation of \(a \in \mathbb{R}\), finite, are given by \(e_{n}=a_{n}-a_{n-1}\), with \(\left\{a_{n}\right\}_{n \in \mathbb{N}}, a_{n}=n^{-1 / 2}\).
a) Construct a scatter plot of \(\left(n, e_{n}\right)\). Does the plot indicate convergence of the numerical approximation?
b) Compute \(\lim _{n \rightarrow \infty} e_{n}\).
c) Suppose \(\left|e_{n}\right|<\varepsilon\). What is an upper bound for \(\left|a_{n}-a\right|\) ?

Exercise 13. Consider a sequence of successive approximations of the derivative \(f^{\prime}\left(x_{0}\right)\)
\[
d_{n}=\frac{f\left(x_{0}+1 / n\right)-f\left(x_{0}\right)}{1 / n}, n \in \mathbb{N}
\]
a) Is \(\left\{d_{n}\right\}_{n \in \mathbb{N}}\) a convergent sequence?
b) Is \(\left\{d_{n}\right\}_{n \in \mathbb{N}}\) a Cauchy sequence?
c) Construct a scatter plot of \(\left(n, d_{n}\right)\) for \(f(x)=\sin x, x_{0}=\pi / 4\). Does the plot indicate convergence of \(\left\{d_{n}\right\}_{n \in \mathbb{N}}\) ?
d) Construct a scatter plot of \(\left(n, e_{n}\right), e_{n}=d_{n}-d_{n-1}\), for \(f(x)=\sin x, x_{0}=\pi / 4\). Does the plot indicate convergence of \(\left\{d_{n}\right\}_{n \in \mathbb{N}}\) ?

Exercise 14. Consider errors in successive approximations \(\left\{a_{n}\right\}_{n \in \mathbb{N}}\) given by \(e_{n}=a_{n}-a_{n-1}=e_{n-1}+e_{n-2}\), i.e., errors at each step accumulate errors in previous two steps, with \(e_{1}=e_{0}=1\). Is this a convergent approximation? Present both an analytical solution, and a numerical experiment.
Exercise 15. Consider errors in successive approximations \(\left\{a_{n}\right\}_{n \in \mathbb{N}}\) given by \(e_{n}=a_{n}-a_{n-1}=\frac{5}{6} e_{n-1}+\frac{1}{6} e_{n-2}\), i.e., errors at each step are a weighted average of those in previous two steps, with \(e_{1}=e_{0}=1\). Is this a convergent approximation? Present both an analytical solution, and a numerical experiment.
Exercise 16. Consider errors in successive approximations \(\left\{a_{n}\right\}_{n \in \mathbb{N}}\) given by \(e_{n}=a_{n}-a_{n-1}=\frac{1}{2} e_{n-1}+\frac{1}{4} e_{n-2}\), i.e., errors at each step are less than a weighted average of those in previous two steps, with \(e_{1}=e_{0}=1\). Is this a convergent approximation? Present both an analytical solution, and a numerical experiment.```

