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NUMBER APPROXIMATION - EXERCISES

1. Numbers

Exercise 1. Define one-to-one correspondences between the following sets of numbers:

a) E={nneN,nmod2=0}, O={nneN,nmod2=1}
Solution. f:E - O, f(n) =n+ 1 is one-to-one.

b) N,Z
Solution. f: N - Z, with f defined by {0»0,1--1,2-1,3->-2,4-2,...} is one possibility. Introducing [x] as the integer part of
x€Q,ie. [x]=nwithn<x<n+1, f can be expressed as

fn)=(=1)"°92([/2] + nmod2)

In Julia x+y is integer division, so for n €N [n/2]=n+2, and % is the modulo operator

[4+5 4+4 4+3 4+2; 4%5 4%4 4%3 4%2]
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. function £ (n)
g =n+2; r = n%2; s = 1-2*r;
s* (g+r)
end

| N=10; [collect (0:N)"';,f. (0:N) "] |
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c) Z,Q

Solution. Construct a table and introduce diagonal traversal to obtain the positive rationals p/g.

0 1 -1 2z -2 3 -3 4 -4 5 =5

1 1 1 1 1 1 1 1 1 1 1
10-1 2 -2 38 =8 4 =4 5 =5
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Figure 1. One-to-one mapping showing that |Q|=|N]|



From above deduce |[N|=|E|=]0|=|Z|=|Q| =N,.

Exercise 2. Provide an example to show |R|>|N]|.

Exercise 3. Let N, = {njn € N,n <29). Answer the following questions analytically. Also provide a Julia implementation.
a) Define a one-to-one correspondence f: Ny, — N;x N,
b) Let f(my) = (n1,p1), f(m2) = (n2, p2). Assume m1+my & Noy. Express f(m+my) in terms of ni,n2, p1,p2 .
c) Assume my-my € Ny,. Express f(m-my) in terms of ni,n, p1,p2 .

Exercise 4. Construct a one-to-one representation of the positions of atoms within an hexagonal lattice, f: Z>—» R Implement f and £~ as
Julia functions. Use f to construct a graphical representation of a two-dimensional hexagonal lattice.

Exercise 5. Construct a one-to-one representation of the positions of atoms within an hexagonal lattice, f: Z.3 —» R3. Implement f and £~ as
Julia functions. Use f to construct a graphical representation of a three-dimensional hexagonal lattice.

2. Approximation

Exercise 6. Write Julia code to compute machine epsilon € for Float32 and Float 64.

Solution.

. function MachEps (type)
one=type (1.0); half=type(0.5); eps=one;

while (onet+half*eps != one)
eps=half*eps;
end

return eps;
end;

[MachEps (Float32) eps(Float32) MachEps (Float64) eps (Float64) ]
[1.1920928955078125 e —7,1.1920928955078125 ¢ —7,2.220446049250313 e — 16, 2.220446049250313 ¢ — 16] 3)

Exercise 7. Carry out a numerical experiment to verify the Axiom of floating point arithmetic within Float 32, by computing o + r in
Float 32 and comparing to the result in Float 64. Construct a scatter plot of (r, £) with ¢ the error in computing 77 +r in Float 32.

Solution. The floating point axiom states fl(x) @ fl(y) = (x*y) (1 + &), with |g| <€, leading to

=A@y

1,
Xy
or in this case
. fl() ®fl(r) _L
T+

The operations in R are computed in F1oat 64 in the following, with  randomly chosen.

. function ErrPlot (n)
pi32=Float32 (pi); pib6d4=Float64d (pi); half=Float64 (0.5); one=Float64(1.0);
rscale = 1.0e3*half; e32 = eps(Float32);
r64=Float64.( rscale* (rand(n) .- half) );
r32=Float32. (r64);
result32 = pi32 .+ r32; result64 = pi6d .+ r64;
e = result32 ./ result64 .- one;
rmin=minimum (r64); rmax=maximum (ré64);
clf(); plot(r32,¢&,".", [rmin rmax], [e32 e32],"dg", [rmin rmax], [-e32 -e32],"dg");
xlabel ("r"); ylabel("e"); title("Float32jadditiongerror");

end;

. ErrPlot (1000); savefig(homedir ()*"/courses/MATH661/images/E01Fig02.eps")
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Figure 2. Numerical experiment on verification of floating point axiom. While for most numbers within this random sample the axiom
is verified, there are a few cases when r = 0 the error is larger than €.

Exercise 8. Consider the approximations of e

a) Write Julia functions to compute Sy, 7.

Solution.

. function S (n)
fact=1.0; sum=1.0;
for k=2:n
fact = k*fact;
sum = sum + 1/fact;
end
return sum;
end;

. function T (n)

fact=1.0;

for k=n:-1:2
fact=k*fact;

end

sum=0.0;

for k=n:-1:1
sum = sum + 1/fact;
fact = fact/k;

end

return sum;

end;

b) Determine if S,,=T, for all n € N.

Solution. In R, indeed S, = 7}, by commutativity (proof by induction). In F there must exist some N such that for n >N, S, # T,
as a consequence of the existence of machine epsilon. Verify by computation (note organization of computations to use Julia
broadcasting and presentation of results in a single table)

. r=1:8; s=S.(r); t=T.(r); chk = s.==t; [r s t chk]

1.0 1.0 1.0 1.0
2.0 1.5 1.5 1.0
3.0 1.6666666666666667 1.6666666666666665 0.0
4.0 1.7083333333333335 1.7083333333333333 0.0 @
5.0 1.7166666666666668 1.7166666666666668 1.0
6.0 1.7180555555555557 1.7180555555555554 0.0
7.0 1.7182539682539684 1.7182539682539684 1.0
8.0 1.71827876984127 1.7182787698412698 0.0



¢) Determine if |S,,— 7,| < € (¢ is machine epsilon). Is the floating point axiom verified?
d) Determine if |S,— 7,/ < (n—1)e. Is the floating point axiom verified?

Exercise 9. Consider the approximations of s /2 given by Wallis's product
- (2) . (2.&) . (i.
"1 33 5
4 6 6
Tn—pn' et (337
a) Find the general term p,,.
b) Determine if S,,=T, for all n € N.
¢) Determine if |S,,— 7,| < € (¢ is machine epsilon). Is the floating point axiom verified?

d) Determine if |S,— T,/ < (n—1)e. Is the floating point axiom verified?

Exercise 10. Consider the approximations of e/2 given by Pippenger's product

G (2)2 (2 4\ (4.6 6 8)IS
=(5)(53) 55Ta) e

_ 4 6 6 8\1/8 (2 4\l/4 (2)\1/2
""’"““‘(3'3'7'7) ‘(3'3) (T)

a) Find the general term p,,.
b) Determine if S,,=T, for all n € N.
¢) Determine if |S,,— 7,| < € (¢ is machine epsilon). Is the floating point axiom verified?

d) Determine if |S,— T,/ < (n—1)e. Is the floating point axiom verified?

3. Successive approximations

Exercise 11. Assume errors in successive numerical approximation of a € R, finite, are given by e, =a,— a,-1, with{a,},eN, an= nl/3,
a) Construct a scatter plot of (n,e,). Does the plot indicate convergence of the numerical approximation?
b) Compute lim,,_, ep,.
¢) Suppose |e,| <. What is an upper bound for |a,—al|?
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Exercise 12. Assume errors in successive numerical approximation of a € R, finite, are given by e, =a,— a,-1, with{a,},eN, an=n"
a) Construct a scatter plot of (n,e,). Does the plot indicate convergence of the numerical approximation?
b) Compute lim,,_, €.
¢) Suppose |e,| <e. What is an upper bound for |a,—al?

Exercise 13. Consider a sequence of successive approximations of the derivative f”(xo)

g, =fFoH/m—fixo)
1/n
a) Is {d,},eN a convergent sequence?

b) Is {d,}neN a Cauchy sequence?
¢) Construct a scatter plot of (n,d,) for f(x)=sinx, xo= /4. Does the plot indicate convergence of {d,},en?
d) Construct a scatter plot of (n,e,), e,=d,—d,-1, for f(x)=sinx, xo= /4. Does the plot indicate convergence of {d,},eN?

Exercise 14. Consider errors in successive approximations {a,},en given by e, =a,—a,—1 =e,-1 + €,-2, i.e., errors at each step accumulate
errors in previous two steps, with e;j =eop=1. Is this a convergent approximation? Present both an analytical solution, and a numerical
experiment.

Exercise 15. Consider errors in successive approximations {a,},eN given by e, =a,—a,-| :%e,,_l +%e,,_2, i.e., errors at each step are a
weighted average of those in previous two steps, with e; =eo=1. Is this a convergent approximation? Present both an analytical solution, and
a numerical experiment.

. . . . L . 1 1 .
Exercise 16. Consider errors in successive approximations {a,, ivenby e, =a,—a,_1 ==e,_1 +—e,_2, i.e., errors at each step are less than
pp: neN & y 3 7 P
a weighted average of those in previous two steps, with e;j =ep=1. Is this a convergent approximation? Present both an analytical solution,
and a numerical experiment.
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