LINEAR ALGEBRA TOOLS - EXERCISES

1. Linear mappings

Exercise 1. Construct the matrix A that represents the mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$, f reflects a vector across the x_1x_2 plane. Exercise 2. Construct the matrix B that represents the mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$, f reflects a vector across the x_2x_3 plane. Exercise 3. Construct the matrix C that represents the mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$, f reflects a vector across x_2 axis. Exercise 4. Does C = BA? If so, what does this signify? Exercise 5. Construct the matrix D that represents the mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$, f rotates a vector around the x_3 axis by angle θ . Exercise 6. Construct the matrix E that represents the mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$, f rotates a vector around the x_2 axis by angle φ . Exercise 7. What does DE represent? Exercise 8. What does ED represent? Exercise 9. Is DE = ED true? Explain

2. Norms

Exercise 10. For $x \in \mathbb{R}^m$, prove $||x||_{\infty} \leq ||x||_2$.

Exercise 11. For $x \in \mathbb{R}^m$, prove $||x||_2 \leq \sqrt{m} ||x||_{\infty}$.

Exercise 12. Prove that equality holds in $||\mathbf{x} + \mathbf{y}||_2 \leq ||\mathbf{x}||_2 + ||\mathbf{y}||_2$ if and only if $\exists a < \mathbb{R}$, s.t. $\mathbf{x} = a\mathbf{y}$.