Linear Algebra Tools - Exercises

1. Linear mappings

Exercise 1. Construct the matrix \boldsymbol{A} that represents the mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}$ reflects a vector across the $x_{1} x_{2}$ plane.
Exercise 2. Construct the matrix \boldsymbol{B} that represents the mapping $\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}$ reflects a vector across the $x_{2} x_{3}$ plane.
Exercise 3. Construct the matrix \boldsymbol{C} that represents the mapping $\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}$ reflects a vector across x_{2} axis.
Exercise 4. Does $\boldsymbol{C}=\boldsymbol{B} \boldsymbol{A}$? If so, what does this signify?
Exercise 5. Construct the matrix \boldsymbol{D} that represents the mapping $\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}$ rotates a vector around the x_{3} axis by angle θ.
Exercise 6. Construct the matrix \boldsymbol{E} that represents the mapping $\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}$ rotates a vector around the x_{2} axis by angle φ.
Exercise 7. What does $\boldsymbol{D E}$ represent?
Exercise 8. What does $\boldsymbol{E D}$ represent?
Exercise 9. Is $\boldsymbol{D E}=\boldsymbol{E} \boldsymbol{D}$ true? Explain

2. Norms

Exercise 10. For $\boldsymbol{x} \in \mathbb{R}^{m}$, prove $\|\boldsymbol{x}\|_{\infty} \leqslant\|\boldsymbol{x}\|_{2}$.
Exercise 11. For $\boldsymbol{x} \in \mathbb{R}^{m}$, prove $\|\boldsymbol{x}\|_{2} \leqslant \sqrt{m}\|\boldsymbol{x}\|_{\infty}$.
Exercise 12. Prove that equality holds in $\|\boldsymbol{x}+\boldsymbol{y}\|_{2} \leqslant\|\boldsymbol{x}\|_{2}+\|\boldsymbol{y}\|_{2}$ if and only if $\exists a<\mathbb{R}$, s.t. $\boldsymbol{x}=a \boldsymbol{y}$.

