Linear Algebra Tools - Exercises

1.Norms

Exercise 1. Prove the Hölder inequality: for p,q>1, 1/p+1/q=1,

i=1m|xiyi|β©½(i=1m|xi|p)1/p(i=1m|yi|q)1/q.

Exercise 2. Prove the Minkowski inequality: for pβ©Ύ1,

(i=1m|xi+yi|p)1/pβ©½(i=1m|xi|p)1/p+(i=1m|yi|p)1/p.

Exercise 3. Prove the parallelogram identity

||𝒙+π’š||2+||𝒙-π’š||2=2(||𝒙||2+||π’š||2),

for 𝒙,π’šβˆˆβ„‚m, with |||| denoting the 2-norm.

Exercise 4. Consider π‘¨βˆˆβ„‚mΓ—m, C(𝑨)=β„‚m. Prove that

(π’™βˆ—π‘¨βˆ—π‘¨π’™)1/2

is a norm.

Exercise 5. For π’™βˆˆβ„m, prove ||𝒙||∞⩽||𝒙||2.

Exercise 6. For π’™βˆˆβ„m, prove ||𝒙||2β©½m||𝒙||∞.

Exercise 7. For π‘¨βˆˆβ„mΓ—n, prove ||𝑨||∞⩽n||𝑨||2.

Exercise 8. For π‘¨βˆˆβ„mΓ—n, prove ||𝑨||2β©½m||𝑨||∞.

Exercise 9. For π‘¨βˆˆβ„mΓ—n, π‘©βˆˆβ„pΓ—q, pβ©½m, qβ©½n, 𝑩 a submatrix of 𝑨, prove ||𝑩||pβ©½||𝑨||p, for any p, 1β©½p⩽∞.

2.Projection and orthogonality

Exercise 10. Consider 𝒖,π’—βˆˆV, 𝒱=(V,ℝ,+,β‹…) a vector space with norm induced by a scalar product ||𝒖||2=(𝒖,𝒖). Prove that ||𝒖||=||𝒗||β‡’ (𝒖+𝒗)βŠ₯(𝒖-𝒗). Is the converse true?

Exercise 11. Let ℬ={𝒖1,…,𝒖m} be an orthonormal basis for 𝒱=(V,ℝ,+,β‹…) with norm induced by a scalar product. For 𝒙=i=1mΞΎi𝒖i, prove

i=1m|ΞΎi|2=||𝒙||2.

Exercise 12. Let π’ž={𝒖1,…,𝒖n} be an orthonormal set for 𝒱=(V,ℝ,+,β‹…) with norm induced by a scalar product. For 𝒙=i=1mΞΎi𝒖i, prove

i=1n|ΞΎi|2=||𝒙||2.

Exercise 13. For π‘¨βˆˆβ„mΓ—n, rank(𝑨)=nβ©½m, prove the QR factorization 𝑸𝑹=𝑨 is unique with 𝑸 orthogonal, 𝑹 upper triangular.

Exercise 14. For π‘¨βˆˆβ„mΓ—m skew-symmetric prove that 𝑼=(𝑰-𝑨)(𝑰-𝑨)-1=(𝑰-𝑨)-1(𝑰-𝑨), and 𝑼 is unitary.

Exercise 15. Prove that if 𝑷 is an orthogonal projector then 𝑰-2𝑷 is unitary.