LINEAR ALGEBRA EXERCISES

Exercise 1. Prove that for U unitary ||U|| = 1

Exercise 2. Compute the singular value decomposition of $R_2(\theta) \in \mathbb{R}^{2 \times 2}$, a rotation matrix in the $x_1 x_2$ -plane.

Exercise 3. Compute the singular value decomposition of $R_{3,1}(\theta) \in \mathbb{R}^{3\times 3}$, the rotation matrix in \mathbb{R}^3 around the x_1 -axis.

Exercise 4. Compute the singular value decomposition of $\mathbf{R}_{m,j}(\theta) \in \mathbb{R}^{m \times m}$, the rotation matrix in \mathbb{R}^m around the x_j -axis.

Exercise 5. Establish the geometric significance of the matrix $A = QR_{m,i}(\theta)$, Q unitary, $R_{m,i}(\theta)$ from above.

Exercise 6. Compute the singular value decomposition of $A = QR_{m,j}(\theta)$, Q unitary, $R_{m,j}(\theta)$ from above.

Exercise 7. Prove that the singular values of *A* hermitian are the absolute value of its eigenvalues.

Exercise 8. For $A \in \mathbb{C}^{m \times m}$ invertible with singular value decomposition $A = U \Sigma V^*$, determine the SVD of A^{-1} in terms of U, Σ, V .

Exercise 9. For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$, $p \leq m$, $q \leq n$, B a submatrix of A, prove $\|B\|_p \leq \|A\|_p$, for any $p, 1 \leq p \leq \infty$.

Exercise 10. Consider $u, v \in V$, $\mathcal{V} = (V, \mathbb{R}, +, \cdot)$ a vector space with norm induced by a scalar product $||u||^2 = (u, u)$. Prove that $||u|| = ||v|| \Rightarrow (u + v) \perp (u - v)$. Is the converse true?

Exercise 11. Let $\mathcal{B} = \{u_1, \dots, u_m\}$ be an orthonormal basis for $\mathcal{V} = (V, \mathbb{R}, +, \cdot)$ with norm induced by a scalar product. For $\mathbf{x} = \sum_{i=1}^m \xi_i u_i$, prove

$$\sum_{i=1}^{m} |\xi_i|^2 = \|\boldsymbol{x}\|^2.$$

Exercise 12. Let $\mathscr{C} = \{u_1, \dots, u_n\}$ be an orthonormal set for $\mathscr{V} = (V, \mathbb{R}, +, \cdot)$ with norm induced by a scalar product. For $\mathbf{x} = \sum_{i=1}^m \xi_i u_i$, prove

$$\sum_{i=1}^{n} |\xi_i|^2 = \|\mathbf{x}\|^2$$

Exercise 13. For $A \in \mathbb{R}^{m \times n}$, rank $(A) = n \le m$, prove the *QR* factorization *QR* = *A* is unique with *Q* orthogonal, *R* upper triangular. Exercise 14. For $A \in \mathbb{R}^{m \times m}$ skew-symmetric prove that $U = (I - A)(I - A)^{-1} = (I - A)^{-1}(I - A)$, and *U* is unitary.

Exercise 15. Prove that if *P* is an orthogonal projector then I - 2P is unitary.