EIGENPROBLEM EXERCISES

Notation: $A \in \mathbb{C}^{m \times m}$, $Ax = \lambda x$, $AX = X\Lambda$ the eigenproblem, $AQ = Q\Lambda$ the eigenproblem for A normal $(A = A^*)$, $A = U\Sigma V^*$, the SVD,

$$\boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \boldsymbol{X} = [\boldsymbol{x}_1 \ \boldsymbol{x}_2 \ \dots \ \boldsymbol{x}_m], \boldsymbol{Q} = [\boldsymbol{q}_1 \ \boldsymbol{q}_2 \ \dots \ \boldsymbol{q}_m],$$
$$p_{\boldsymbol{A}}(\lambda) = \operatorname{det}(\lambda \boldsymbol{I} - \boldsymbol{A}) = (\lambda - \lambda_1) \cdot \dots \cdot (\lambda - \lambda_m) = \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_0$$
$$p_{\boldsymbol{A}}(\boldsymbol{B}) = \boldsymbol{B}^m + a_{m-1} \boldsymbol{B}^{m-1} + \dots + a_0 \boldsymbol{B}^0.$$

Exercise 1. Prove $\Lambda = 0 \Rightarrow A = 0$.

Exercise 2. Find X, Λ for A = [1] (all elements are one).

Exercise 3. Let $\lambda_1 \neq \lambda_2$, prove $c_1 x_1 + c_2 x_2$ is not an eigenvector of A.

Exercise 4. For $x \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times m}$, is u = cx an eigenvector for $c \in \mathbb{C}$?

Exercise 5. Prove that for $A = A^*$, $|\lambda|$ is a singular value.

Exercise 6. Consider the mapping $S: \mathbb{C}^m \to \mathbb{C}^m$

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{m-1} \\ v_m \end{bmatrix}, S(\mathbf{v}) = \begin{bmatrix} v_2 \\ v_3 \\ \vdots \\ v_m \\ v_1 \end{bmatrix}.$$

- 1. Prove S is a linear map. Find its matrix representation, A.
- 2. Prove A is orthogonal.
- 3. Prove that the eigenvectors of A are

$$\mathbf{x}_{k} = \begin{bmatrix} \boldsymbol{\omega}^{k \cdot 0} \\ \boldsymbol{\omega}^{k \cdot 1} \\ \vdots \\ \boldsymbol{\omega}^{k \cdot (m-1)} \end{bmatrix}, \boldsymbol{\omega} = \exp\left(\frac{2\pi i}{m}\right).$$

4. Find the eigenvalues $Ax_k = \lambda_k x_k$

Exercise 7. Let $\rho(A) = \max_k \{|\lambda_k|\}$ (the spectral radius of *A*). Prove

$$\lim_{n \to \infty} \|A^n\|_2 = 0 \Leftrightarrow \rho(A) < 1,$$

Exercise 8. Why do similar matrices have the same eigenvalues? Give both a proof and an intuitive explanation. **Exercise 9.** Consider $AX = X \Lambda$, $BY = Y \Gamma$, $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$. Find the eigenvalues and eigenvectors of

$$C = \left[\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right].$$

Exercise 10. Prove that eigenvalues of *A* skew-symmetric ($A = -A^*$) are purely imaginary (Re $\lambda = 0$).

Exercise 11. Let *D* denote a diagonal matrix. Prove that $p_D(D) = 0$.

Exercise 12. Prove that for *A* non-defective $p_A(A) = 0$.

Exercise 13. Prove the Cayley-Hamilton theorem (generalization of Ex.11, Ex. 12), $p_A(A) = 0$.

Exercise 14. For *A* normal, prove $A - \lambda I$ is normal.

Exercise 15. For A normal, prove that A, A^* have the same eigenvectors.

Exercise 16. Prove $tr(A) = \sum_{j=1}^{m} a_{jj}$.

Exercise 17. Find all $\lambda \in \mathbb{C}$ such that $I - \lambda u u^*$ is unitary for some $u \neq 0$.

Exercise 18. For $x \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times m}$ is u = cx an eigenvector for $c \in \mathbb{C}$?

Exercise 19. Find the characteristic polynomial of

$$\boldsymbol{A} = \begin{bmatrix} a_1 & a_2 & \dots & a_{m-1} & a_m \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ & \ddots & & & \\ & & & 1 & 0 \end{bmatrix}$$

Exercise 20. Let A be tridiagonal with non-zero subdiagonal entries. Prove that eigenvalues of A are distinct.