MATH661 EC - Least squares, minimax

Posted: 10/25/23
Due: $11 / 08 / 23,11: 59 \mathrm{PM}$
Time constraints and clasas cancellation at time of H01 did not allow a computational assignment on least squares and minimax approximation. These are important topics to explore numerically so this assignment is offered as extra credit, with 4 course points for the first three questions. These correspond to a normal homework assignment effort. An additional 3 course points are awarded to correct solution of the fourth question on the Remez algorithm. For Track 1 a solution is to be sought by computer-aided calculation, and for Track 2 a general implementation is required. The effort requried for this single question is comparable to a full homework assignment.

1 Track 1

1. Apply the Gram-Schmidt process to $\left\{1, t, t^{2}\right\}$ to obtain the first three Legendre polynomials P_{0}, P_{1}, P_{2}, orthonormal with respect to the scalar product

$$
(f, g)=\int_{-1}^{1} f(t) g(t) \mathrm{d} t
$$

Show intermediate steps. Check hand calculations with symbolic integration packages.
2. Find the best approximant of $f(t)=1+\cos (\pi t)+\sin (\pi t)$ in the Hilbert space $\mathcal{F}=\left(C^{\infty}(\mathbb{R})\right.$, $\mathbb{R},+, \cdot)$ with scalar product and norm

$$
(f, g)=\int_{-1}^{1} f(t) g(t) \mathrm{d} t,\|f\|=(f, f)^{1 / 2}
$$

3. Find the best inf-norm approximant by $g(t)=a+b t$ of $f(t)=1+\cos (\pi t)+\sin (\pi t), f:[0,1]$.
a) By the equioscillation theorem, the solution is a line that intersects the graph of f twice such that the error $e(t)=f(t)-g(t)$ has three extrema of equal absolute value at $0, x, 1$, with e stationary at $t=x$. Write the four equations that arise
b) Solve the above problem, and plot f, g.
4. Extra credit (3 points). Apply the Remez algorithm to Q3

2 Track 2

1. Find and plot the first six members of the orthonormal basis \mathcal{L} obtained from applying the Gram-Schmidt algorithm to $\left\{1, t, t^{2}, \ldots\right\}$ with the scalar product

$$
(f, g)=-\int_{0}^{1} f(t) g(t) \log (1-t) \mathrm{d} t
$$

2. Find and plot the best approximants of

$$
f(t)=\tan \left(\frac{\pi t}{2}\right)
$$

in $\operatorname{span}\left(\mathcal{L}_{n}\right)$ for $\mathcal{L}_{n}=\left\{l_{0}(t), l_{1}(t), \ldots, l_{n}(t)\right\}$ and scalar product from problem 1 , for $n=1,2$, $3,4,5,6$.
a) First, carry out analytical computations. Symbolic computation software (Maple, Mathematica, Maxima) is allowed. Maxima is available in the SciComp@UNC virtual machine.
b) For each n, form the matrix $\boldsymbol{L}=\left[\begin{array}{llll}l_{0}(\boldsymbol{t}) & l_{1}(\boldsymbol{t}) & \ldots & \boldsymbol{l}_{n}(\boldsymbol{t})\end{array}\right] \in \mathbb{R}^{m \times n}$ at sample points \boldsymbol{t} within $[0,1]$ and $m \gg n$. Solve the least squares problem

$$
\min _{c}\|\boldsymbol{L} \boldsymbol{c}-f(\boldsymbol{t})\|
$$

in the Euclidean two-norm. Plot the numerically determined approximants

$$
p(t)=\mathcal{L}_{n}(t) \boldsymbol{c}
$$

together with the analytically determined approximants, and compare.
3. Apply the Remez algorithm to find the best inf-norm approximant by a quadratic of f : $[0,1] \rightarrow \mathbb{R}, f(t)=\sin (\pi t)$. Establish your own convergence criteria.
4. Extra credit (3points). Implement the Remez algorithm. Use whatever root-finding routine is available within the programming environment (e.g., Roots for Julia) to solve the extrema conditions $f^{\prime}(x)-p^{\prime}(x)$ needed in the Remez algorithm.

