
MATH 661.FA21 Practice Final Examination 1

Solve the problems for your appropriate course track. Problems probe understanding of the course concepts.
Formulate your answers clearly and cogently. Sketch out an approach on scratch paper first. Then briefly
transcribe the approach to the answer you turn in, followed by appropriate calculations and conclusions,
within allotted time. Use concise, complete English sentences in the description of your approach.

Each question is meant to be completely answered and transcribed from proof to final copy within thirty
minutes. Concentrate foremost on clear exposition of the concept underlying your approach.

1 Track 1
1. Consider the ballistic missile trajectory problem of national defense interest. From measurements of

the positions xi= x(ti) at successive times ti, i= 0; :::; n predict the target reached at time T > tn.
Formulate a procedure to predict x(T ), assuming the missile is known to follow a parabolic trajectory.

Solution. The parabolic trajectory is expressed through a quadratic approximant

x(t)= c0+ c1 t+ c2 t
2 :

The coefficients a; b; c are the solution of the least squares problem

min
c
kAc¡xk2;

with

tj=

2666666664
t0
j

t1
j

���
tn
j

3777777775;A=
�
t0 t1 t2

�
; c=

24 c0
c1
c2

35;x=
26666664
x0
x1
���
xn

37777775:

To solve the least squares problem:

¡ Compute QR-factorization, QR=A

¡ Solve Rc=QTx.

2. Construct a quadrature formula for integrals of the formZ
0

1
e¡�t f(t) dt:

Solution. Assuming sampling data D = f(ti; fi = f(ti)); i = 0; 1; ::; ng, find the weights wi of the
quadrature Z

0

1
e¡�t f(t) dt=�

X
i=0

n

wi fi

by imposing the moment conditionsZ
0

1
e¡�t tj dt=

X
i=0

n

wi ti
j ; k=0; 1; ::; n

a linear system with a Vandermonde system matrix

Vw= b:
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The moments are analytically evaluated through integration by parts

bj=
Z
0

1
e¡�t tj dt= j

�

Z
0

1
e¡�t tj dt= j

�
bj¡1=

j!
aj+1

; b0=
1
�
:

3. Find the best approximant in the least squares sense of sin t within spanf1; t; t2g.

Solution. Orthonormalize f1; t; t2g using Gram-Schmidt in a Hilbert space with scalar product

(f ; g)=
Z
¡�

p

f(t) g(t) dt:

Obtain the orthonormal set fp0(t); p1(t); p2(t)g. The least squares approximant g is

g(t)= (sin ; p0) p0(t)+ (sin ; p1) p1(t)+ (sin ; p2) p2(t):

Gram-Schmidt calculations:

p0(t)=
1

(1; 1)
= 1

2�
p :

q1(t)= t¡ (t; p0)p0= t

p1(t)=
q1(t)
(q1; q1)

= 3
2�3

r
t

q2(t)= t2¡ (t2; p1)p1(t)¡ (t2; p0)p0(t)= t2¡ �2

3

p2(t)=
q2(t)
(q2; q2)

= 45
8�5

r �
t2¡ �2

3

�
:

Coefficient of sin t on orthonormal basis (use fact that sin is odd, p0; p2 are even)

(sin; p0)=0; (sin; p2)= 0

(sin; p1)=
6
�

r
:

The best approximant is

sin t=�
6
�

r
3
2�3

r
t= 3

�2
t:

4. Find the best inf-norm approximant of f : [0; 1]!R, f(t)= e¡t by a first-degree polynomial.

By equioscillation theorem g(t)= a+ bt satisfies the alternating difference conditions

e0¡ g(0)= �; g(�)¡ e¡�= �; e¡1¡ g(1)= �;

and the stationarity condition �
d
dt
(g(t)¡ e¡t)

�
t=�

=0:

These lead to the system

1¡a= �; a+ b� ¡ e¡�= �; e¡1¡ (a+ b)= �; b+ e¡�=0:
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Eliminaing �; � leads to a system for a; b with solution

b= 1¡ e
e

; �=1¡ ln(e¡ 1); a= 1
2

�
1+ e¡�¡ �

1¡ e
e

�
;

defining the best inf-norm linear approximant of e¡t

e¡t

g(t)= a+ bt

�

Figure 1.

5. Propose a scheme to solve the integro-differential equation

dy
dt

+ y=
Z
0

t

sin(t¡ �) y(�) d� ;

for y:R!R. Apply all relevant course concepts to analyze the scheme.

Solution. Consider an equidistant sampling at ti= ih, yi=� y(ti), and discretize the derivative through
forward differencing (forward Euler, second-order one-step error)

yi+1¡ yi=¡hyi+
X
j=1

i+1 Z
tj¡1

tj

sin(t¡ �) y(�) d� :

Over [tj¡1; tj] approximate the integrand the scond-order accurate trapezoid rule (to maintain Euler
one-step error)

yi+1¡ yi=¡hyi+
h
2

X
j=1

i+1

[sin(ti¡ tj¡1)yj¡1+ sin(ti¡ tj)yj])

yi+1¡ yi=¡hyi+
h
2

24X
j=0

i

sin(ti+1¡ tj)yj+
X
j=1

i+1

sin(ti¡ tj)yj

35)

yi+1¡ yi=¡hyi+
h
2
sin(ti+1) y0+

h
2

X
j=1

i

[sin(ti+1¡ tj)+ sin(ti¡ tj)]yj+
h
2
sin(ti¡ ti+1) yi+1)

�
1+ h sinh

2

�
yi+1=(1+h)yi++

h

2
sin(ti+1) y0+h cosh

X
j=1

i

sin[2(i¡ j)h+1] yj :

The above scheme has one step error of O(h2), overall error of O(h):
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2 Track 2

1. Construct an approximant of eA(t) whereA(t)2Rm�m is a symmetric positive definite matrix-valued
function of t2R.

Solution. Many approaches are possible; the question tests understanding of the overall course mate-
rial to the level of proposing a viable technique.

Simplest approach. A(t) s.p.d. implies it is unitarily diagonalizable, i.e., 8t, 9Q(t)2Rm�m, QQT =
QTQ= I such that

A(t)=Q(t)�(t)QT(t):

By definition

eA(t)= I + 1
1!
A(t)+ 1

2!
A2(t)+ � � �=Q(t)

�
I + 1

1!
�(t)+ 1

2!
�2(t)+ � � �

�
QT(t)=Q(t)e�(t)QT(t):

Introduce a piecewise constant approximation of A(t)=�Ak for t2 [tk¡1; tk) (0-degree B-spline basis).
Then

eA(t)=Qk e
�kQk

T =Qk diag(�1k; ::; �mk )Qk
T :

Extension to a piecewise linear approximation

A(t)=Ak¡1+
�
t¡ tk¡1
tk¡ tk¡1

�
(Ak¡Ak¡1)

is not immediate since Ak¡Ak¡1 is not guaranteed to be s.p.d.

Differential system approach. Recall that y 0=ay has solution y(t)=eaty0, and y 0=a(t) y has solution

y(t)= exp
�Z

0

t

a(�) d�
�
y0:

With B(t)=A0(t), ODE system

y 0=By (1)

has solution

y(t)= exp
�Z

0

t

B(�) d�
�
y0= exp

�Z
0

t

A0(t) d�
�
y0= exp[A(t)¡A(0)] y0= eA(t)y0¡ eA0y0 :

Column j of eA(t) is obtained as

eA(t) ej ;

i.e., the action of eA(t) on the jth column vector of the identity matrix. This can be obtained by any
numerical scheme to solve the ODE system (1) starting from initial condition y0= ej, amd adding
eA0 y0 to the result.

2. Construct a quadrature formula for integrals of the formZ
0

1
eA(t) f(t) dt;
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where A(t)2Rm�m is a symmetric negative definite matrix-valued function of t2R, and f :R!Rm

has Riemann integrable components.

Solution. A(t) admits an orthogonal diagonalization

A(t)=Q(t)�(t)QT(t)

with �(t)= diag(�1; ::; �m), �i< 0, and the matrix exponential is

eA(t)=Q(t) e�(t)QT(t):

Define the scalar product

(f ; g)A=
Z
0

1
gT(t) eA(t) f(t) dt=

Z
0

1
gT(t)Q(t)e�(t)QT(t)f(t) dt:

Approximate f(t); g(t) on the Q(t) basis

f(t)=�Q(t) c(t)) c(t)=QT(t) f(t); g(t)=�Q(t)d(t))d(t)=QT(t) g(t);

and obtain

(f ; g)A=(c;d)�=
Z
0

1
dT(t) e�(t) c(t) dt :

Denote by �j the average value of �j(t), �= diag(�1; ::; �m) such that, by mean value theorem

(f ; g)A=(c;d)�=
Z
0

1
dT(t)e�(t) c(t) dt=

Z
0

1
dT(t)e� c(t) dt:

Interpret above as stating that standard Gauss-Laguerre quadrature formulas

I(f)=
Z
0

1
e¡t f(t) dt=�

X
i=0

n

wi fi=Q(f)

are applicable to the individual components of

c(t)=QT(t) f(t);

using scale transformationZ
0

1
e¡�t f(t) dt= 1

�

Z
0

1
e¡s f(s/�) ds= 1

�

Z
0

1
e¡s g(s) ds= 1

�
Q(g):

3. Find the best approximant of y 2Rm within C(A), A2Rm�n in a space with scalar product

(u;v)=uTPv ;

and norm

kuk=(u;u)1/2;

where P 2Rm�m is symmetric positive definite. Verify the correspondence principle that for P = I
standard least-squares projection is obtained.
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Solution. Construct an orthogonal factorizationA=QR using Gram-Schmidt and the specified scalar
product

Algorithm 1

for i=1:n
qi=ai
for j=1: i¡ 1
rji= qj

TPqi
qi= qi¡ rjiqj

end
rii= qi

TPqi
qi= qi/rii

end

The matrix Q= [ q1 :::: qn ] satisfies orthogonality relationship QTPQ= I2664 q1
T

���
qn
T

3775P [ q1 ::: qn ] =

2664 q1
T

���
qn
T

3775[ Pq1 ::: Pqn ] =

2664 q1
TPq1 q1

TPq2 :::
3775= In

The residual r= y¡Ax is orthogonal to C(A)

(qj ; y¡Ax)= 0)QTP (t¡Ax)= 0)QTPAx=QTPy)

QTPQRx=QTPy)Rx=QTPy:

The best approximant is z=Ax=QRx=QQTPy. For P =I, the Euclidean projection z=QQTy

is obtained.

4. Find the best inf-norm approximant of f : [0;1)!R, f(t)= e¡t cos t by a first-degree polynomial.

Solution. The approximation error is

"(t)= e¡t cos t¡ (at+ b)

and the problem is stated as

min
a;b
k"k1=min

a;b
sup
t2R

j"(t)j :

Since a=/ 0 leads to infinitely large error, simplify the problem to

min
b

sup
t2R

je¡t cos t¡ bj :

The derivative

f 0(t)= e¡t(¡sin t¡ cos t)=¡ 2
p

e¡t sin
�
t+ �

4

�
has a root at �=3�/4 at which point

f(3�/4)=¡e¡3�/4/ 2
p

:

Equioscillation theorem is satisfied by

b= 1
2
(1¡ e¡3�/4/ 2

p
):
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5. Consider the half-derivative operator H defined as

H2 f =H(Hf)=Df

where D=d/dt is the derivative operator. Propose a numerical scheme to evaluate Hf that can be
used to solve fractional differential equations.

Solution. The differentiation operator D is approximated to order k in terms of the backward finite
difference operator r=E0¡E¡1= I ¡E¡1 by

H2=�Dk=
1
h

�
r+ r

2

2
+ r

3

3
+ � � �+ r

k

k

�
;

where (Ekf)(x0)= f(x0+ kh) is the argument translation operator.

Consider k=1

H =�
1
h

p r1/2= 1
h

p (I ¡E¡1)1/2;

and apply the generalized binomial expansion

(a+ b)r=
X
k=0

1 �
r
k

�
ar¡k bk;

for a= I, b=¡E¡1, r=1/2. Obtain

h
p

H =�
�
r
0

�
(¡E¡1)0+

�
r
1

�
(¡E¡1)1+

�
r
2

�
(¡E¡1)2+ � � � )

h
p

H =� I ¡
1
2
E¡1¡ 1

8
E¡2¡ 1

16
E¡3¡ 5

128
E¡4¡ � � � :

Apply the above to fractional equation Hf = g, and obtain the scheme

fi¡
1
2
fi¡1¡

1
8
fi¡2¡

1
16

fi¡3¡
5

128
fi¡4= h

p
gi :
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